@article{(Open Science Index):https://publications.waset.org/pdf/2755,
	  title     = {Seismic Analysis of a S-Curved Viaduct using Stick and Finite Element Models},
	  author    = {Sourabh Agrawal and  Ashok K. Jain},
	  country	= {},
	  institution	= {},
	  abstract     = {Stick models are widely used in studying the
behaviour of straight as well as skew bridges and viaducts subjected
to earthquakes while carrying out preliminary studies. The
application of such models to highly curved bridges continues to
pose challenging problems. A viaduct proposed in the foothills of the
Himalayas in Northern India is chosen for the study. It is having 8
simply supported spans @ 30 m c/c. It is doubly curved in horizontal
plane with 20 m radius. It is inclined in vertical plane as well. The
superstructure consists of a box section. Three models have been
used: a conventional stick model, an improved stick model and a 3D
finite element model. The improved stick model is employed by
making use of body constraints in order to study its capabilities. The
first 8 frequencies are about 9.71% away in the latter two models.
Later the difference increases to 80% in 50th mode. The viaduct was
subjected to all three components of the El Centro earthquake of May
1940. The numerical integration was carried out using the Hilber-
Hughes-Taylor method as implemented in SAP2000. Axial forces
and moments in the bridge piers as well as lateral displacements at
the bearing levels are compared for the three models. The maximum
difference in the axial forces and bending moments and
displacements vary by 25% between the improved and finite element
model. Whereas, the maximum difference in the axial forces,
moments, and displacements in various sections vary by 35%
between the improved stick model and equivalent straight stick
model. The difference for torsional moment was as high as 75%. It is
concluded that the stick model with body constraints to model the
bearings and expansion joints is not desirable in very sharp S curved
viaducts even for preliminary analysis. This model can be used only
to determine first 10 frequency and mode shapes but not for member
forces. A 3D finite element analysis must be carried out for
meaningful results.},
	    journal   = {International Journal of Civil and Environmental Engineering},
	  volume    = {3},
	  number    = {2},
	  year      = {2009},
	  pages     = {34 - 44},
	  ee        = {https://publications.waset.org/pdf/2755},
	  url   	= {https://publications.waset.org/vol/26},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 26, 2009},
	}