Search results for: Canny Edge Detection
459 Hybrid Honeypot System for Network Security
Authors: Kyi Lin Lin Kyaw
Abstract:
Nowadays, we are facing with network threats that cause enormous damage to the Internet community day by day. In this situation, more and more people try to prevent their network security using some traditional mechanisms including firewall, Intrusion Detection System, etc. Among them honeypot is a versatile tool for a security practitioner, of course, they are tools that are meant to be attacked or interacted with to more information about attackers, their motives and tools. In this paper, we will describe usefulness of low-interaction honeypot and high-interaction honeypot and comparison between them. And then we propose hybrid honeypot architecture that combines low and high -interaction honeypot to mitigate the drawback. In this architecture, low-interaction honeypot is used as a traffic filter. Activities like port scanning can be effectively detected by low-interaction honeypot and stop there. Traffic that cannot be handled by low-interaction honeypot is handed over to high-interaction honeypot. In this case, low-interaction honeypot is used as proxy whereas high-interaction honeypot offers the optimal level realism. To prevent the high-interaction honeypot from infections, containment environment (VMware) is used.Keywords: Low-interaction honeypot, High-interactionhoneypot, VMware, Proxy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2957458 Multidimensional Data Mining by Means of Randomly Travelling Hyper-Ellipsoids
Authors: Pavel Y. Tabakov, Kevin Duffy
Abstract:
The present study presents a new approach to automatic data clustering and classification problems in large and complex databases and, at the same time, derives specific types of explicit rules describing each cluster. The method works well in both sparse and dense multidimensional data spaces. The members of the data space can be of the same nature or represent different classes. A number of N-dimensional ellipsoids are used for enclosing the data clouds. Due to the geometry of an ellipsoid and its free rotation in space the detection of clusters becomes very efficient. The method is based on genetic algorithms that are used for the optimization of location, orientation and geometric characteristics of the hyper-ellipsoids. The proposed approach can serve as a basis for the development of general knowledge systems for discovering hidden knowledge and unexpected patterns and rules in various large databases.Keywords: Classification, clustering, data minig, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776457 Real-time Tracking in Image Sequences based-on Parameters Updating with Temporal and Spatial Neighborhoods Mixture Gaussian Model
Abstract:
Gaussian mixture background model is widely used in moving target detection of the image sequences. However, traditional Gaussian mixture background model usually considers the time continuity of the pixels, and establishes background through statistical distribution of pixels without taking into account the pixels- spatial similarity, which will cause noise, imperfection and other problems. This paper proposes a new Gaussian mixture modeling approach, which combines the color and gradient of the spatial information, and integrates the spatial information of the pixel sequences to establish Gaussian mixture background. The experimental results show that the movement background can be extracted accurately and efficiently, and the algorithm is more robust, and can work in real time in tracking applications.Keywords: Gaussian mixture model, real-time tracking, sequence image, gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480456 Intelligent System for Breast Cancer Prognosis using Multiwavelet Packets and Neural Network
Authors: Sepehr M.H.Jamarani, M.H.Moradi, H.Behnam, G.A.Rezai Rad
Abstract:
This paper presents an approach for early breast cancer diagnostic by employing combination of artificial neural networks (ANN) and multiwaveletpacket based subband image decomposition. The microcalcifications correspond to high-frequency components of the image spectrum, detection of microcalcifications is achieved by decomposing the mammograms into different frequency subbands,, reconstructing the mammograms from the subbands containing only high frequencies. For this approach we employed different types of multiwaveletpacket. We used the result as an input of neural network for classification. The proposed methodology is tested using the Nijmegen and the Mammographic Image Analysis Society (MIAS) mammographic databases and images collected from local hospitals. Results are presented as the receiver operating characteristic (ROC) performance and are quantified by the area under the ROC curve.Keywords: Breast cancer, neural networks, diagnosis, multiwavelet packet, microcalcification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404455 A Green Method for Selective Spectrophotometric Determination of Hafnium(IV) with Aqueous Extract of Ficus carica Tree Leaves
Authors: A. Boveiri Monji, H. Yousefnia, M. Haji Hosseini, S. Zolghadri
Abstract:
A clean spectrophotometric method for the determination of hafnium by using a green reagent, acidic extract of Ficus carica tree leaves is developed. In 6-M hydrochloric acid, hafnium reacts with this reagent to form a yellow product. The formed product shows maximum absorbance at 421 nm with a molar absorptivity value of 0.28 × 104 l mol⁻¹ cm⁻¹, and the method was linear in the 2-11 µg ml⁻¹ concentration range. The detection limit value was found to be 0.312 µg ml⁻¹. Except zirconium and iron, the selectivity was good, and most of the ions did not show any significant spectral interference at concentrations up to several hundred times. The proposed method was green, simple, low cost, and selective.
Keywords: Spectrophotometric determination, Ficus carica tree leaves, synthetic reagents, hafnium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 743454 Active Contours with Prior Corner Detection
Authors: U.A.A. Niroshika, Ravinda G.N. Meegama
Abstract:
Deformable active contours are widely used in computer vision and image processing applications for image segmentation, especially in biomedical image analysis. The active contour or “snake" deforms towards a target object by controlling the internal, image and constraint forces. However, if the contour initialized with a lesser number of control points, there is a high probability of surpassing the sharp corners of the object during deformation of the contour. In this paper, a new technique is proposed to construct the initial contour by incorporating prior knowledge of significant corners of the object detected using the Harris operator. This new reconstructed contour begins to deform, by attracting the snake towards the targeted object, without missing the corners. Experimental results with several synthetic images show the ability of the new technique to deal with sharp corners with a high accuracy than traditional methods.Keywords: Active Contours, Image Segmentation, Harris Operator, Snakes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284453 Documents Emotions Classification Model Based on TF-IDF Weighting Measure
Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees
Abstract:
Emotions classification of text documents is applied to reveal if the document expresses a determined emotion from its writer. As different supervised methods are previously used for emotion documents’ classification, in this research we present a novel model that supports the classification algorithms for more accurate results by the support of TF-IDF measure. Different experiments have been applied to reveal the applicability of the proposed model, the model succeeds in raising the accuracy percentage according to the determined metrics (precision, recall, and f-measure) based on applying the refinement of the lexicon, integration of lexicons using different perspectives, and applying the TF-IDF weighting measure over the classifying features. The proposed model has also been compared with other research to prove its competence in raising the results’ accuracy.
Keywords: Emotion detection, TF-IDF, WEKA tool, classification algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727452 High Performance Liquid Chromatographic Method for Determination of Colistin Sulfate and its Application in Medicated Premixand Animal Feed
Authors: S.Choosakoonkriang, S. Supaluknari, P. Puangkaew
Abstract:
The aim of the present study was to develop and validate an inexpensive and simple high performance liquid chromatographic (HPLC) method for the determination of colistin sulfate. Separation of colistin sulfate was achieved on a ZORBAX Eclipse XDB-C18 column using UV detection at λ=215 nm. The mobile phase was 30 mM sulfate buffer (pH 2.5):acetonitrile(76:24). An excellent linearity (r2=0.998) was found in the concentration range of 25 - 400 μg/mL. Intra- day and inter-day precisions of method (%RSD, n=3) were less than 7.9%.The developed and validated method was applied to determination of the content of colistin sulfate in medicated premix and animal feed sample.The recovery of colistin from animal feed was satisfactorily ranged from 90.92 to 93.77%. The results demonstrated that the HPLC method developed in this work is appropriate for direct determination of colistin sulfate in commercial medicated premixes and animal feed.Keywords: Colistin sulfate, HPLC, medicated premix, animal feed
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8171451 ROC Analysis of PVC Detection Algorithm using ECG and Vector-ECG Charateristics
Authors: J. S. Nah, A. Y. Jeon, J. H. Ro, G. R. Jeon
Abstract:
ECG analysis method was developed using ROC analysis of PVC detecting algorithm. ECG signal of MIT-BIH arrhythmia database was analyzed by MATLAB. First of all, the baseline was removed by median filter to preprocess the ECG signal. R peaks were detected for ECG analysis method, and normal VCG was extracted for VCG analysis method. Four PVC detecting algorithm was analyzed by ROC curve, which parameters are maximum amplitude of QRS complex, width of QRS complex, r-r interval and geometric mean of VCG. To set cut-off value of parameters, ROC curve was estimated by true-positive rate (sensitivity) and false-positive rate. sensitivity and false negative rate (specificity) of ROC curve calculated, and ECG was analyzed using cut-off value which was estimated from ROC curve. As a result, PVC detecting algorithm of VCG geometric mean have high availability, and PVC could be detected more accurately with amplitude and width of QRS complex.Keywords: Vectorcardiogram (VCG), Premature Ventricular contraction (PVC), ROC (receiver operating characteristic) curve, ECG
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2946450 Segmentation of Korean Words on Korean Road Signs
Authors: Lae-Jeong Park, Kyusoo Chung, Jungho Moon
Abstract:
This paper introduces an effective method of segmenting Korean text (place names in Korean) from a Korean road sign image. A Korean advanced directional road sign is composed of several types of visual information such as arrows, place names in Korean and English, and route numbers. Automatic classification of the visual information and extraction of Korean place names from the road sign images make it possible to avoid a lot of manual inputs to a database system for management of road signs nationwide. We propose a series of problem-specific heuristics that correctly segments Korean place names, which is the most crucial information, from the other information by leaving out non-text information effectively. The experimental results with a dataset of 368 road sign images show 96% of the detection rate per Korean place name and 84% per road sign image.Keywords: Segmentation, road signs, characters, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2754449 Mastering the Innovation Paradox: The Five Unexpected Qualities of Innovation Leaders
Authors: Murtuza Ali Lakhani, Michelle Marquard
Abstract:
From an organizational perspective, leaders are a variation of the same talent pool in that they all score a larger than average value on the bell curve that maps leadership behaviors and characteristics, namely competence, vision, communication, confidence, cultural sensibility, stewardship, empowerment, authenticity, reinforcement, and creativity. The question that remains unanswered and essentially unresolved is how to explain the irony that leaders are so much alike yet their organizations diverge so noticeably in their ability to innovate. Leadership intersects with innovation at the point where human interactions get exceedingly complex and where certain paradoxical forces cohabit: conflict with conciliation, sovereignty with interdependence, and imagination with realism. Rather than accepting that leadership is without context, we argue that leaders are specialists of their domain and that those effective at leading for innovation are distinct within the broader pool of leaders. Keeping in view the extensive literature on leadership and innovation, we carried out a quantitative study with data collected over a five-year period involving 240 participants from across five dissimilar companies based in the United States. We found that while innovation and leadership are, in general, strongly interrelated (r = .89, p = 0.0), there are five qualities that set leaders apart on innovation. These qualities include a large radius of trust, a restless curiosity with a low need for acceptance, an honest sense of self and other, a sense for knowledge and creativity as the yin and yang of innovation, and an ability to use multiple senses in the engagement with followers. When these particular behaviors and characteristics are present in leaders, organizations out-innovate their rivals by a margin of 29.3 per cent to gain an unassailable edge in a business environment that is regularly disruptive. A strategic outcome of this study is a psychometric scale named iLeadership, proposed with the underlying evidence, limitations, and potential for leadership and innovation in organizations.c
Keywords: Innovation, leadership, ileadership, stewardship, communication, empowerment, creativity, vision, influence, emotional connection, group membership, sense of community, knowledge creation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2612448 Adaptive Gaussian Mixture Model for Skin Color Segmentation
Authors: Reza Hassanpour, Asadollah Shahbahrami, Stephan Wong
Abstract:
Skin color based tracking techniques often assume a static skin color model obtained either from an offline set of library images or the first few frames of a video stream. These models can show a weak performance in presence of changing lighting or imaging conditions. We propose an adaptive skin color model based on the Gaussian mixture model to handle the changing conditions. Initial estimation of the number and weights of skin color clusters are obtained using a modified form of the general Expectation maximization algorithm, The model adapts to changes in imaging conditions and refines the model parameters dynamically using spatial and temporal constraints. Experimental results show that the method can be used in effectively tracking of hand and face regions.Keywords: Face detection, Segmentation, Tracking, Gaussian Mixture Model, Adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2418447 Improvement of Ground Truth Data for Eye Location on Infrared Driver Recordings
Authors: Sorin Valcan, Mihail Găianu
Abstract:
Labeling is a very costly and time consuming process which aims to generate datasets for training neural networks in several functionalities and projects. For driver monitoring system projects, the need of labeled images has a significant impact on the budget and distribution of effort. This paper presents the modifications done to a ground truth data generation algorithm for 2D eyes location on infrared images with drivers in order to improve the quality of the data and performance of the trained neural networks. The algorithm restrictions become tougher which makes it more accurate but also less constant. The resulting dataset becomes smaller and shall not be altered by any kind of manual labels adjustment before being used in the neural networks training process. These changes resulted in a much better performance of the trained neural networks.
Keywords: Labeling automation, infrared camera, driver monitoring, eye detection, Convolutional Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 426446 Audio Watermarking Based on Compression-expansion Technique
Authors: Say Wei Foo, Qi Dong
Abstract:
A novel robust audio watermarking scheme is proposed in this paper. In the proposed scheme, the host audio signals are segmented into frames. Two consecutive frames are assessed if they are suitable to represent a watermark bit. If so, frequency transform is performed on these two frames. The compressionexpansion technique is adopted to generate distortion over the two frames. The distortion is used to represent one watermark bit. Psychoacoustic model is applied to calculate local auditory mask to ensure that the distortion is not audible. The watermarking schemes using mono and stereo audio signals are designed differently. The correlation-based detection method is used to detect the distortion and extract embedded watermark bits. The experimental results show that the quality degradation caused by the embedded watermarks is perceptually transparent and the proposed schemes are very robust against different types of attacks.Keywords: Audio watermarking, Compression-expansion, Stereo signals, Robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647445 Words Reordering based on Statistical Language Model
Authors: Theologos Athanaselis, Stelios Bakamidis, Ioannis Dologlou
Abstract:
There are multiple reasons to expect that detecting the word order errors in a text will be a difficult problem, and detection rates reported in the literature are in fact low. Although grammatical rules constructed by computer linguists improve the performance of grammar checker in word order diagnosis, the repairing task is still very difficult. This paper presents an approach for repairing word order errors in English text by reordering words in a sentence and choosing the version that maximizes the number of trigram hits according to a language model. The novelty of this method concerns the use of an efficient confusion matrix technique for reordering the words. The comparative advantage of this method is that works with a large set of words, and avoids the laborious and costly process of collecting word order errors for creating error patterns.Keywords: Permutations filtering, Statistical languagemodel N-grams, Word order errors
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592444 A K-Means Based Clustering Approach for Finding Faulty Modules in Open Source Software Systems
Authors: Parvinder S. Sandhu, Jagdeep Singh, Vikas Gupta, Mandeep Kaur, Sonia Manhas, Ramandeep Sidhu
Abstract:
Prediction of fault-prone modules provides one way to support software quality engineering. Clustering is used to determine the intrinsic grouping in a set of unlabeled data. Among various clustering techniques available in literature K-Means clustering approach is most widely being used. This paper introduces K-Means based Clustering approach for software finding the fault proneness of the Object-Oriented systems. The contribution of this paper is that it has used Metric values of JEdit open source software for generation of the rules for the categorization of software modules in the categories of Faulty and non faulty modules and thereafter empirically validation is performed. The results are measured in terms of accuracy of prediction, probability of Detection and Probability of False Alarms.Keywords: K-Means, Software Fault, Classification, ObjectOriented Metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2308443 Machine Learning Methods for Environmental Monitoring and Flood Protection
Authors: Alexander L. Pyayt, Ilya I. Mokhov, Bernhard Lang, Valeria V. Krzhizhanovskaya, Robert J. Meijer
Abstract:
More and more natural disasters are happening every year: floods, earthquakes, volcanic eruptions, etc. In order to reduce the risk of possible damages, governments all around the world are investing into development of Early Warning Systems (EWS) for environmental applications. The most important task of the EWS is identification of the onset of critical situations affecting environment and population, early enough to inform the authorities and general public. This paper describes an approach for monitoring of flood protections systems based on machine learning methods. An Artificial Intelligence (AI) component has been developed for detection of abnormal dike behaviour. The AI module has been integrated into an EWS platform of the UrbanFlood project (EU Seventh Framework Programme) and validated on real-time measurements from the sensors installed in a dike.Keywords: Early Warning System, intelligent environmentalmonitoring, machine learning, flood protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4086442 Optimizing Organizational Performance: The Critical Role of Headcount Budgeting in Strategic Alignment and Financial Stability
Authors: Shobhit Mittal
Abstract:
Headcount budgeting stands as a pivotal element in organizational financial management, extending beyond traditional budgeting to encompass strategic resource allocation for workforce-related expenses. This process is integral to maintaining financial stability and fostering a productive workforce, requiring a comprehensive analysis of factors such as market trends, business growth projections, and evolving workforce skill requirements. It demands a collaborative approach, primarily involving Human Resources (HR) and finance departments, to align workforce planning with an organization's financial capabilities and strategic objectives. The dynamic nature of headcount budgeting necessitates continuous monitoring and adjustment in response to economic fluctuations, business strategy shifts, technological advancements, and market dynamics. Its significance in talent management is also highlighted, aligning financial planning with talent acquisition and retention strategies to ensure a competitive edge in the market. The consequences of incorrect headcount budgeting are explored, showing how it can lead to financial strain, operational inefficiencies, and hindered strategic objectives. Examining case studies like IBM's strategic workforce rebalancing and Microsoft's shift for long-term success, the importance of aligning headcount budgeting with organizational goals is underscored. These examples illustrate that effective headcount budgeting transcends its role as a financial tool, emerging as a strategic element crucial for an organization's success. This necessitates continuous refinement and adaptation to align with evolving business goals and market conditions, highlighting its role as a key driver in organizational success and sustainability.
Keywords: Strategic planning, fiscal budget, headcount planning, resource allocation, financial management, decision-making, operational efficiency, risk management, headcount budget.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 183441 Fast Facial Feature Extraction and Matching with Artificial Face Models
Authors: Y. H. Tsai, Y. W. Chen
Abstract:
Facial features are frequently used to represent local properties of a human face image in computer vision applications. In this paper, we present a fast algorithm that can extract the facial features online such that they can give a satisfying representation of a face image. It includes one step for a coarse detection of each facial feature by AdaBoost and another one to increase the accuracy of the found points by Active Shape Models (ASM) in the regions of interest. The resulted facial features are evaluated by matching with artificial face models in the applications of physiognomy. The distance measure between the features and those in the fate models from the database is carried out by means of the Hausdorff distance. In the experiment, the proposed method shows the efficient performance in facial feature extractions and online system of physiognomy.Keywords: Facial feature extraction, AdaBoost, Active shapemodel, Hausdorff distance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818440 Rapid Study on Feature Extraction and Classification Models in Healthcare Applications
Authors: S. Sowmyayani
Abstract:
The advancement of computer-aided design helps the medical force and security force. Some applications include biometric recognition, elderly fall detection, face recognition, cancer recognition, tumor recognition, etc. This paper deals with different machine learning algorithms that are more generically used for any health care system. The most focused problems are classification and regression. With the rise of big data, machine learning has become particularly important for solving problems. Machine learning uses two types of techniques: supervised learning and unsupervised learning. The former trains a model on known input and output data and predicts future outputs. Classification and regression are supervised learning techniques. Unsupervised learning finds hidden patterns in input data. Clustering is one such unsupervised learning technique. The above-mentioned models are discussed briefly in this paper.
Keywords: Supervised learning, unsupervised learning, regression, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 348439 Vessel Inscribed Trigonometry to Measure the Vessel Progressive Orientations in the Digital Fundus Image
Authors: Pil Un Kim, Yunjung Lee, Gihyoun Lee, Jin Ho Cho, Myoung Nam Kim
Abstract:
In this paper, the vessel inscribed trigonometry (VITM) for the vessel progression orientation (VPO) is proposed in the two-dimensional fundus image. The VPO is a major factor in the optic disc (OD) detection which is a basic process in the retina analysis. To measure the VPO, skeletons of vessel are used. First, the vessels are classified into three classes as vessel end, vessel branch and vessel stem. And the chain code maps of VS are generated. Next, two farthest neighborhoods of each point on VS are searched by the proposed angle restriction. Lastly, a gradient of the straight line between two farthest neighborhoods is estimated to measure the VPO. VITM is validated by comparing with manual results and 2D Gaussian templates. It is confirmed that VPO of the proposed mensuration is correct enough to detect OD from the results of experiment which applied VITM to detect OD in fundus images.
Keywords: Angle measurement, Optic disc, Retina vessel, Vessel progression orientation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418438 Energy Efficient Clustering and Data Aggregation in Wireless Sensor Networks
Authors: Surender Kumar Soni
Abstract:
Wireless Sensor Networks (WSNs) are wireless networks consisting of number of tiny, low cost and low power sensor nodes to monitor various physical phenomena like temperature, pressure, vibration, landslide detection, presence of any object, etc. The major limitation in these networks is the use of nonrechargeable battery having limited power supply. The main cause of energy consumption WSN is communication subsystem. This paper presents an efficient grid formation/clustering strategy known as Grid based level Clustering and Aggregation of Data (GCAD). The proposed clustering strategy is simple and scalable that uses low duty cycle approach to keep non-CH nodes into sleep mode thus reducing energy consumption. Simulation results demonstrate that our proposed GCAD protocol performs better in various performance metrics.Keywords: Ad hoc network, Cluster, Grid base clustering, Wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3141437 Post-Compression Consideration in Video Watermarking for Wireless Communication
Authors: Chuen-Ching Wang, Yao-Tang Chang, Yu-Chang Hsu
Abstract:
A simple but effective digital watermarking scheme utilizing a context adaptive variable length coding (CAVLC) method is presented for wireless communication system. In the proposed approach, the watermark bits are embedded in the final non-zero quantized coefficient of each DCT block, thereby yielding a potential reduction in the length of the coded block. As a result, the watermarking scheme not only provides the means to check the authenticity and integrity of the video stream, but also improves the compression ratio and therefore reduces both the transmission time and the storage space requirements of the coded video sequence. The results confirm that the proposed scheme enables the detection of malicious tampering attacks and reduces the size of the coded H.264 file. Therefore, the current study is feasible to apply in the video applications of wireless communication such as 3G systemKeywords: 3G, wireless communication, CAVLC, digitalwatermarking, motion compensation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874436 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients
Authors: Karina Zaccari, Ernesto Cordeiro Marujo
Abstract:
This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.
Keywords: Machine learning, medical diagnosis, meningitis detection, gradient boosting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1116435 Auditory Brainstem Response in Wave VI for the Detection of Learning Disabilities
Authors: M.Victoria Garcia-Camba, M.Isabel Garcia-Planas
Abstract:
The use of brain stem auditory evoked potential (BAEP) is a common way to study the hearing function of people, a way to learn the functionality of a part of the brain neuronal groups that intervene in the learning process by studying the behaviour of wave VI. The latest advances in neuroscience have revealed the existence of different brain activity in the learning process that can be highlighted through the use of innocuous, low-cost and easy-access techniques such as, among others, the BAEP that can help us to detect early possible neurodevelopmental difficulties for their subsequent assessment and cure. To date and the authors best knowledge, only the latency data obtained, observing the first to V waves and mainly in the left ear, were taken into account. This work shows that it is essential to consider both ears; with these latest data, it has been possible to diagnose more precisely some cases than with the previous data had been diagnosed as “normal”despite showing signs of some alteration that motivated the new consultation to the specialist.
Keywords: Ear, neurodevelopment, auditory evoked potentials, intervals of normality, learning disabilities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 512434 Detection and Quantification of Ozone in Screen Printing Facilities
Authors: Kiurski J., Adamović S., Oros I., Krstić J., Đogo M.
Abstract:
Most often the contaminants are not taken seriously into consideration, and this behavior comes out directly from the lack of monitoring and professional reporting about pollution in the printing facilities in Serbia. The goal of planned and systematic ozone measurements in ambient air of the screen printing facilities in Novi Sad is to examine of its impact on the employees health, and to track trends in concentration. In this study, ozone concentrations were determined by using discontinuous and continuous method during the automatic and manual screen printing process. Obtained results indicates that the average concentrations of ozone measured during the automatic process were almost 3 to 28 times higher for discontinuous and 10 times higher for continuous method (1.028 ppm) compared to the values prescribed by OSHA. In the manual process, average concentrations of ozone were within prescribed values for discontinuous and almost 3 times higher for continuous method (0.299 ppm).
Keywords: indoor pollution, ozone, screen printing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149433 OCR For Printed Urdu Script Using Feed Forward Neural Network
Authors: Inam Shamsher, Zaheer Ahmad, Jehanzeb Khan Orakzai, Awais Adnan
Abstract:
This paper deals with an Optical Character Recognition system for printed Urdu, a popular Pakistani/Indian script and is the third largest understandable language in the world, especially in the subcontinent but fewer efforts are made to make it understandable to computers. Lot of work has been done in the field of literature and Islamic studies in Urdu, which has to be computerized. In the proposed system individual characters are recognized using our own proposed method/ algorithms. The feature detection methods are simple and robust. Supervised learning is used to train the feed forward neural network. A prototype of the system has been tested on printed Urdu characters and currently achieves 98.3% character level accuracy on average .Although the system is script/ language independent but we have designed it for Urdu characters only.Keywords: Algorithm, Feed Forward Neural Networks, Supervised learning, Pattern Matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3038432 An ANN-Based Predictive Model for Diagnosis and Forecasting of Hypertension
Authors: O. O. Obe, V. Balanica, E. Neagoe
Abstract:
The effects of hypertension are often lethal thus its early detection and prevention is very important for everybody. In this paper, a neural network (NN) model was developed and trained based on a dataset of hypertension causative parameters in order to forecast the likelihood of occurrence of hypertension in patients. Our research goal was to analyze the potential of the presented NN to predict, for a period of time, the risk of hypertension or the risk of developing this disease for patients that are or not currently hypertensive. The results of the analysis for a given patient can support doctors in taking pro-active measures for averting the occurrence of hypertension such as recommendations regarding the patient behavior in order to lower his hypertension risk. Moreover, the paper envisages a set of three example scenarios in order to determine the age when the patient becomes hypertensive, i.e. determine the threshold for hypertensive age, to analyze what happens if the threshold hypertensive age is set to a certain age and the weight of the patient if being varied, and, to set the ideal weight for the patient and analyze what happens with the threshold of hypertensive age.
Keywords: Neural Network, hypertension, data set, training set, supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661431 MITAutomatic ECG Beat Tachycardia Detection Using Artificial Neural Network
Authors: R. Amandi, A. Shahbazi, A. Mohebi, M. Bazargan, Y. Jaberi, P. Emadi, A. Valizade
Abstract:
The application of Neural Network for disease diagnosis has made great progress and is widely used by physicians. An Electrocardiogram carries vital information about heart activity and physicians use this signal for cardiac disease diagnosis which was the great motivation towards our study. In our work, tachycardia features obtained are used for the training and testing of a Neural Network. In this study we are using Fuzzy Probabilistic Neural Networks as an automatic technique for ECG signal analysis. As every real signal recorded by the equipment can have different artifacts, we needed to do some preprocessing steps before feeding it to our system. Wavelet transform is used for extracting the morphological parameters of the ECG signal. The outcome of the approach for the variety of arrhythmias shows the represented approach is superior than prior presented algorithms with an average accuracy of about %95 for more than 7 tachy arrhythmias.Keywords: Fuzzy Logic, Probabilistic Neural Network, Tachycardia, Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293430 Computer Aided Classification of Architectural Distortion in Mammograms Using Texture Features
Authors: Birmohan Singh, V. K. Jain
Abstract:
Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Architectural distortions, masses and microcalcifications are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four types of texture features GLCM texture, GLRLM texture, fractal texture and spectral texture features for the regions of suspicion are extracted. Support vector machine has been used as classifier in this study. The proposed system yielded an overall sensitivity of 96.47% and an accuracy of 96% for mammogram images collected from digital database for screening mammography database.Keywords: Architecture Distortion, GLCM Texture features, GLRLM Texture Features, Mammograms, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264