Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: Facial feature extraction

4 Fast Facial Feature Extraction and Matching with Artificial Face Models

Authors: Y. H. Tsai, Y. W. Chen

Abstract:

Facial features are frequently used to represent local properties of a human face image in computer vision applications. In this paper, we present a fast algorithm that can extract the facial features online such that they can give a satisfying representation of a face image. It includes one step for a coarse detection of each facial feature by AdaBoost and another one to increase the accuracy of the found points by Active Shape Models (ASM) in the regions of interest. The resulted facial features are evaluated by matching with artificial face models in the applications of physiognomy. The distance measure between the features and those in the fate models from the database is carried out by means of the Hausdorff distance. In the experiment, the proposed method shows the efficient performance in facial feature extractions and online system of physiognomy.

Keywords: adaboost, Hausdorff distance, Facial Feature Extraction, Active shapemodel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
3 Scale-Space Volume Descriptors for Automatic 3D Facial Feature Extraction

Authors: Daniel Chen, George Mamic, Clinton Fookes, Sridha Sridharan

Abstract:

An automatic method for the extraction of feature points for face based applications is proposed. The system is based upon volumetric feature descriptors, which in this paper has been extended to incorporate scale space. The method is robust to noise and has the ability to extract local and holistic features simultaneously from faces stored in a database. Extracted features are stable over a range of faces, with results indicating that in terms of intra-ID variability, the technique has the ability to outperform manual landmarking.

Keywords: Feature Extraction, Scale space volume descriptor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1108
2 Extraction of Craniofacial Landmarks for Preoperative to Intraoperative Registration

Authors: M. Gooroochurn, D. Kerr, K. Bouazza-Marouf, M. Vloeberghs

Abstract:

This paper presents the automated methods employed for extracting craniofacial landmarks in white light images as part of a registration framework designed to support three neurosurgical procedures. The intraoperative space is characterised by white light stereo imaging while the preoperative plan is performed on CT scans. The registration aims at aligning these two modalities to provide a calibrated environment to enable image-guided solutions. The neurosurgical procedures can then be carried out by mapping the entry and target points from CT space onto the patient-s space. The registration basis adopted consists of natural landmarks (eye corner and ear tragus). A 5mm accuracy is deemed sufficient for these three procedures and the validity of the selected registration basis in achieving this accuracy has been assessed by simulation studies. The registration protocol is briefly described, followed by a presentation of the automated techniques developed for the extraction of the craniofacial features and results obtained from tests on the AR and FERET databases. Since the three targeted neurosurgical procedures are routinely used for head injury management, the effect of bruised/swollen faces on the automated algorithms is assessed. A user-interactive method is proposed to deal with such unpredictable circumstances.

Keywords: Face Processing, Craniofacial Feature Extraction, Preoperative to Intraoperative Registration, Registration Basis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1102
1 Walsh-Hadamard Transform for Facial Feature Extraction in Face Recognition

Authors: M. Hassan, I. Osman, M. Yahia

Abstract:

This Paper proposes a new facial feature extraction approach, Wash-Hadamard Transform (WHT). This approach is based on correlation between local pixels of the face image. Its primary advantage is the simplicity of its computation. The paper compares the proposed approach, WHT, which was traditionally used in data compression with two other known approaches: the Principal Component Analysis (PCA) and the Discrete Cosine Transform (DCT) using the face database of Olivetti Research Laboratory (ORL). In spite of its simple computation, the proposed algorithm (WHT) gave very close results to those obtained by the PCA and DCT. This paper initiates the research into WHT and the family of frequency transforms and examines their suitability for feature extraction in face recognition applications.

Keywords: Face Recognition, Principal Component Analysis, Facial Feature Extraction, and Discrete Cosine Transform, Wash-Hadamard Transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226