Search results for: Aerospace applications
1218 The Preparation of Silicon and Aluminum Extracts from Tuncbilek and Orhaneli Fly Ashes by Alkali Fusion
Authors: M. Sari Yilmaz, N. Karamahmut Mermer
Abstract:
Coal fly ash is formed as a solid waste product from the combustion of coal in coal fired power stations. Huge amounts of fly ash are produced globally every year and are predicted to increase. Nowadays, less than half of the fly ash is used as a raw material for cement manufacturing, construction and the rest of it is disposed as a waste causing yet another environmental concern. For this reason, the recycling of this kind of slurries into useful materials is quite important in terms of economical and environmental aspects. The purpose of this study is to evaluate the Orhaneli and Tuncbilek coal fly ashes for utilization in some industrial applications. Therefore the mineralogical and chemical compositions of these fly ashes were analyzed by X-ray fluorescence spectroscopy, ourier-transform infrared spectrometer, and X-ray diffraction. The silicon (Si) and aluminum (Al) in the fly ashes were activated by alkali fusion technique with sodium hydroxide. The obtained extracts were analyzed for Si and Al content by inductively coupled plasma optical emission spectrometry.Keywords: Extraction, Fly ash, Fusion, XRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18921217 Adaptive Hierarchical Key Structure Generation for Key Management in Wireless Sensor Networks using A*
Authors: Jin Myoung Kim, Tae Ho Cho
Abstract:
Wireless Sensor networks have a wide spectrum of civil and military applications that call for secure communication such as the terrorist tracking, target surveillance in hostile environments. For the secure communication in these application areas, we propose a method for generating a hierarchical key structure for the efficient group key management. In this paper, we apply A* algorithm in generating a hierarchical key structure by considering the history data of the ratio of addition and eviction of sensor nodes in a location where sensor nodes are deployed. Thus generated key tree structure provides an efficient way of managing the group key in terms of energy consumption when addition and eviction event occurs. A* algorithm tries to minimize the number of messages needed for group key management by the history data. The experimentation with the tree shows efficiency of the proposed method.
Keywords: Heuristic search, key management, security, sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16841216 Day/Night Detector for Vehicle Tracking in Traffic Monitoring Systems
Authors: M. Taha, Hala H. Zayed, T. Nazmy, M. Khalifa
Abstract:
Recently, traffic monitoring has attracted the attention of computer vision researchers. Many algorithms have been developed to detect and track moving vehicles. In fact, vehicle tracking in daytime and in nighttime cannot be approached with the same techniques, due to the extreme different illumination conditions. Consequently, traffic-monitoring systems are in need of having a component to differentiate between daytime and nighttime scenes. In this paper, a HSV-based day/night detector is proposed for traffic monitoring scenes. The detector employs the hue-histogram and the value-histogram on the top half of the image frame. Experimental results show that the extraction of the brightness features along with the color features within the top region of the image is effective for classifying traffic scenes. In addition, the detector achieves high precision and recall rates along with it is feasible for real time applications.Keywords: Day/night detector, daytime/nighttime classification, image classification, vehicle tracking, traffic monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45081215 Development of Quasi-Two-Dimensional Nb2O5 for Functional Electrodes of Advanced Electrochemical Systems
Authors: S. Zhuiykov, E. Kats
Abstract:
In recent times there has been a growing interest in the development of quasi-two-dimensional niobium pentoxide (Nb2O5) as a semiconductor for the potential electronic applications such as capacitors, filtration, dye-sensitised solar cells and gas sensing platforms. Therefore once the purpose is established, Nb2O5 can be prepared in a number of nano- and sub-micron-structural morphologies that include rods, wires, belts and tubes. In this study films of Nb2O5 were prepared on gold plated silicon substrate using spin-coating technique and subsequently by mechanical exfoliation. The reason this method was employed was to achieve layers of less than 15nm in thickness. The sintering temperature of the specimen was 800oC. The morphology and structural characteristics of the films were analyzed by Atomic Force Microscopy (AFM), Raman Spectroscopy, X-ray Photoelectron Spectroscopy (XPS).Keywords: Mechanical exfoliation, niobium pentoxide, quazitwo- dimensional, semiconductor, sol-gel, spin-coating, two dimensional semiconductors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23951214 Autonomously Determining the Parameters for SVDD with RBF Kernel from a One-Class Training Set
Authors: Andreas Theissler, Ian Dear
Abstract:
The one-class support vector machine “support vector data description” (SVDD) is an ideal approach for anomaly or outlier detection. However, for the applicability of SVDD in real-world applications, the ease of use is crucial. The results of SVDD are massively determined by the choice of the regularisation parameter C and the kernel parameter of the widely used RBF kernel. While for two-class SVMs the parameters can be tuned using cross-validation based on the confusion matrix, for a one-class SVM this is not possible, because only true positives and false negatives can occur during training. This paper proposes an approach to find the optimal set of parameters for SVDD solely based on a training set from one class and without any user parameterisation. Results on artificial and real data sets are presented, underpinning the usefulness of the approach.
Keywords: Support vector data description, anomaly detection, one-class classification, parameter tuning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29351213 Energy Map Construction using Adaptive Alpha Grey Prediction Model in WSNs
Authors: Surender Kumar Soni, Dhirendra Pratap Singh
Abstract:
Wireless Sensor Networks can be used to monitor the physical phenomenon in such areas where human approach is nearly impossible. Hence the limited power supply is the major constraint of the WSNs due to the use of non-rechargeable batteries in sensor nodes. A lot of researches are going on to reduce the energy consumption of sensor nodes. Energy map can be used with clustering, data dissemination and routing techniques to reduce the power consumption of WSNs. Energy map can also be used to know which part of the network is going to fail in near future. In this paper, Energy map is constructed using the prediction based approach. Adaptive alpha GM(1,1) model is used as the prediction model. GM(1,1) is being used worldwide in many applications for predicting future values of time series using some past values due to its high computational efficiency and accuracy.Keywords: Adaptive Alpha GM(1, 1) Model, Energy Map, Prediction Based Data Reduction, Wireless Sensor Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18011212 Facial Emotion Recognition with Convolutional Neural Network Based Architecture
Authors: Koray U. Erbas
Abstract:
Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.
Keywords: Convolutional Neural Network, Deep Learning, Deep Learning Based FER, Facial Emotion Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13711211 Framework for Government ICT Projects
Authors: Manal Rayes
Abstract:
In its efforts to utilize the information and communication technology to enhance the quality of public service delivery, national and local governments around the world are competing to introduce more ICT applications as tools to automate processes related to law enforcement or policy execution, increase citizen orientation, trust, and satisfaction, and create one-stop-shops for public services. In its implementation, e-Government ICTs need to maintain transparency, participation, and collaboration. Due to this diverse of mixed goals and requirements, e-Government systems need to be designed based on special design considerations in order to eliminate the risks of failure to compliance to government regulations, citizen dissatisfaction, or market repulsion. In this article we suggest a framework with guidelines for designing government information systems that takes into consideration the special requirements of the public sector. Then we introduce two case studies and show how applying those guidelines would result in a more solid system design.
Keywords: e-government, framework, guidelines, system design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16581210 Parametrization of Piezoelectric Vibration Energy Harvesters for Low Power Embedded Systems
Authors: Yannick Verbelen, Tim Dekegel, Ann Peeters, Klara Stinders, Niek Blondeel, Sam De Winne, An Braeken, Abdellah Touhafi
Abstract:
Matching an embedded electronic application with a cantilever vibration energy harvester remains a difficult endeavour due to the large number of factors influencing the output power. In the presented work, complementary balanced energy harvester parametrization is used as a methodology for simplification of harvester integration in electronic applications. This is achieved by a dual approach consisting of an adaptation of the general parametrization methodology in conjunction with a straight forward harvester benchmarking strategy. For this purpose, the design and implementation of a suitable user friendly cantilever energy harvester benchmarking platform is discussed. Its effectiveness is demonstrated by applying the methodology to a commercially available Mide V21BL vibration energy harvester, with excitation amplitude and frequency as variables.Keywords: Energy harvesting, vibrations, piezoelectric transducers, embedded systems, harvester parametrization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13101209 Artificial Neural Networks and Multi-Class Support Vector Machines for Classifying Magnetic Measurements in Tokamak Reactors
Authors: A. Greco, N. Mammone, F.C. Morabito, M.Versaci
Abstract:
This paper is mainly concerned with the application of a novel technique of data interpretation for classifying measurements of plasma columns in Tokamak reactors for nuclear fusion applications. The proposed method exploits several concepts derived from soft computing theory. In particular, Artificial Neural Networks and Multi-Class Support Vector Machines have been exploited to classify magnetic variables useful to determine shape and position of the plasma with a reduced computational complexity. The proposed technique is used to analyze simulated databases of plasma equilibria based on ITER geometry configuration. As well as demonstrating the successful recovery of scalar equilibrium parameters, we show that the technique can yield practical advantages compared with earlier methods.Keywords: Tokamak, Classification, Artificial Neural Network, Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12781208 Audio User Interface for Visually Impaired Computer Users: in a Two Dimensional Audio Environment
Authors: Ravihansa Rajapakse, Malshika Dias, Kanishka Weerasekara, Anuja Dharmaratne, Prasad Wimalaratne
Abstract:
In this paper we discuss a set of guidelines which could be adapted when designing an audio user interface for the visually impaired. It is based on an audio environment that is focused on audio positioning. Unlike current applications which only interpret Graphical User Interface (GUI) for the visually impaired, this particular audio environment bypasses GUI to provide a direct auditory output. It presents the capability of two dimensional (2D) navigation on audio interfaces. This paper highlights the significance of a 2D audio environment with spatial information in the context of the visually impaired. A thorough usability study has been conducted to prove the applicability of proposed design guidelines for these auditory interfaces. While proving these guidelines, previously unearthed design aspects have been revealed in this study.Keywords: Human Computer Interaction, Audio User Interfaces, 2D Audio Environment, Visually Impaired Users
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23061207 A New Method to Estimate the Low Income Proportion: Monte Carlo Simulations
Authors: Encarnación Álvarez, Rosa M. García-Fernández, Juan F. Muñoz
Abstract:
Estimation of a proportion has many applications in economics and social studies. A common application is the estimation of the low income proportion, which gives the proportion of people classified as poor into a population. In this paper, we present this poverty indicator and propose to use the logistic regression estimator for the problem of estimating the low income proportion. Various sampling designs are presented. Assuming a real data set obtained from the European Survey on Income and Living Conditions, Monte Carlo simulation studies are carried out to analyze the empirical performance of the logistic regression estimator under the various sampling designs considered in this paper. Results derived from Monte Carlo simulation studies indicate that the logistic regression estimator can be more accurate than the customary estimator under the various sampling designs considered in this paper. The stratified sampling design can also provide more accurate results.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19401206 Development of an Autonomous Friction Gripper for Industrial Robots
Authors: Majid Tolouei-Rad, Peter Kalivitis
Abstract:
Industrial robots become useless without end-effectors that for many instances are in the form of friction grippers. Commonly friction grippers apply frictional forces to different objects on the basis of programmers- experiences. This puts a limitation on the effectiveness of gripping force that may result in damaging the object. This paper describes various stages of design and development of a low cost sensor-based robotic gripper that would facilitate the task of applying right gripping forces to different objects. The gripper is also equipped with range sensors in order to avoid collisions of the gripper with objects. It is a fully functional automated pick and place gripper which can be used in many industrial applications. Yet it can also be altered or further developed in order to suit a larger number of industrial activities. The current design of gripper could lead to designing completely automated robot grippers able to improve the efficiency and productivity of industrial robots.Keywords: Control system, end-effector, robot, sensor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28911205 A New Approach For Ranking Of Generalized Trapezoidal Fuzzy Numbers
Authors: Amit Kumar, Pushpinder Singh, Parampreet Kaur, Amarpreet Kaur
Abstract:
Ranking of fuzzy numbers play an important role in decision making, optimization, forecasting etc. Fuzzy numbers must be ranked before an action is taken by a decision maker. In this paper, with the help of several counter examples it is proved that ranking method proposed by Chen and Chen (Expert Systems with Applications 36 (2009) 6833-6842) is incorrect. The main aim of this paper is to propose a new approach for the ranking of generalized trapezoidal fuzzy numbers. The main advantage of the proposed approach is that the proposed approach provide the correct ordering of generalized and normal trapezoidal fuzzy numbers and also the proposed approach is very simple and easy to apply in the real life problems. It is shown that proposed ranking function satisfies all the reasonable properties of fuzzy quantities proposed by Wang and Kerre (Fuzzy Sets and Systems 118 (2001) 375-385).Keywords: Ranking function, Generalized trapezoidal fuzzy numbers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27171204 Optimal Aggregate Production Planning with Fuzzy Data
Authors: Wen-Lung Huang, Shih-Pin Chen
Abstract:
This paper investigates the optimization problem of multi-product aggregate production planning (APP) with fuzzy data. From a comprehensive viewpoint of conserving the fuzziness of input information, this paper proposes a method that can completely describe the membership function of the performance measure. The idea is based on the well-known Zadeh-s extension principle which plays an important role in fuzzy theory. In the proposed solution procedure, a pair of mathematical programs parameterized by possibility level a is formulated to calculate the bounds of the optimal performance measure at a . Then the membership function of the optimal performance measure is constructed by enumerating different values of a . Solutions obtained from the proposed method contain more information, and can offer more chance to achieve the feasible disaggregate plan. This is helpful to the decision-maker in practical applications.Keywords: fuzzy data, aggregate production planning, membership function, parametric programming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17431203 Grouping-Based Job Scheduling Model In Grid Computing
Authors: Vishnu Kant Soni, Raksha Sharma, Manoj Kumar Mishra
Abstract:
Grid computing is a high performance computing environment to solve larger scale computational applications. Grid computing contains resource management, job scheduling, security problems, information management and so on. Job scheduling is a fundamental and important issue in achieving high performance in grid computing systems. However, it is a big challenge to design an efficient scheduler and its implementation. In Grid Computing, there is a need of further improvement in Job Scheduling algorithm to schedule the light-weight or small jobs into a coarse-grained or group of jobs, which will reduce the communication time, processing time and enhance resource utilization. This Grouping strategy considers the processing power, memory-size and bandwidth requirements of each job to realize the real grid system. The experimental results demonstrate that the proposed scheduling algorithm efficiently reduces the processing time of jobs in comparison to others.Keywords: Grid computing, Job grouping and Jobscheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19481202 Speech Enhancement Using Kalman Filter in Communication
Authors: Eng. Alaa K. Satti Salih
Abstract:
Revolutions Applications such as telecommunications, hands-free communications, recording, etc. which need at least one microphone, the signal is usually infected by noise and echo. The important application is the speech enhancement, which is done to remove suppressed noises and echoes taken by a microphone, beside preferred speech. Accordingly, the microphone signal has to be cleaned using digital signal processing DSP tools before it is played out, transmitted, or stored. Engineers have so far tried different approaches to improving the speech by get back the desired speech signal from the noisy observations. Especially Mobile communication, so in this paper will do reconstruction of the speech signal, observed in additive background noise, using the Kalman filter technique to estimate the parameters of the Autoregressive Process (AR) in the state space model and the output speech signal obtained by the MATLAB. The accurate estimation by Kalman filter on speech would enhance and reduce the noise then compare and discuss the results between actual values and estimated values which produce the reconstructed signals.
Keywords: Autoregressive Process, Kalman filter, Matlab and Noise speech.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40251201 Confidence Intervals for the Difference of Two Normal Population Variances
Authors: Suparat Niwitpong
Abstract:
Motivated by the recent work of Herbert, Hayen, Macaskill and Walter [Interval estimation for the difference of two independent variances. Communications in Statistics, Simulation and Computation, 40: 744-758, 2011.], we investigate, in this paper, new confidence intervals for the difference between two normal population variances based on the generalized confidence interval of Weerahandi [Generalized Confidence Intervals. Journal of the American Statistical Association, 88(423): 899-905, 1993.] and the closed form method of variance estimation of Zou, Huo and Taleban [Simple confidence intervals for lognormal means and their differences with environmental applications. Environmetrics 20: 172-180, 2009]. Monte Carlo simulation results indicate that our proposed confidence intervals give a better coverage probability than that of the existing confidence interval. Also two new confidence intervals perform similarly based on their coverage probabilities and their average length widths.
Keywords: Confidence interval, generalized confidence interval, the closed form method of variance estimation, variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27781200 Thermal and Flammability Properties of Paraffin/Nanoclay Composite Phase Change Materials Incorporated in Building Materials for Thermal Energy Storage
Authors: Awni H. Alkhazaleh, Baljinder K. Kandola
Abstract:
In this study, a form-stable composite Paraffin/Nanoclay (PA-NC) has been prepared by absorbing PA into porous particles of NC to be used for low-temperature latent heat thermal energy storage. The leakage test shows that the maximum mass fraction of PA that can be incorporated in NC without leakage is 60 wt.%. Differential scanning calorimetry (DSC) has been used to measure the thermal properties of the PA and PA-NC both before and after incorporation in plasterboard (PL). The mechanical performance of the samples has been evaluated in flexural mode. The thermal energy storage performance has been studied using a small test chamber (100 mm × 100 mm × 100 mm) made from 10 mm thick PL and measuring the temperatures using thermocouples. The flammability of the PL+PL-NC has been discussed using a cone calorimeter. The results indicate that the form composite PA has good potential for use as thermal energy storage materials in building applications.
Keywords: Flammability, paraffin, plasterboard, thermal energy storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10381199 Gasifier System Identification for Biomass Power Plants using Neural Network
Authors: Jittarat Satonsaowapak, Thanatchai. Kulworawanichpong., Ratchadaporn Oonsivilai, Anant Oonsivilai
Abstract:
The use of renewable energy sources becomes more necessary and interesting. As wider applications of renewable energy devices at domestic, commercial and industrial levels has not only resulted in greater awareness, but also significantly installed capacities. In addition, biomass principally is in the form of woods, which is a form of energy by humans for a long time. Gasification is a process of conversion of solid carbonaceous fuel into combustible gas by partial combustion. Many gasifier models have various operating conditions; the parameters kept in each model are different. This study applied experimental data, which has three inputs, which are; biomass consumption, temperature at combustion zone and ash discharge rate. One output is gas flow rate. For this paper, neural network was used to identify the gasifier system suitable for the experimental data. In the result,neural networkis usable to attain the answer.Keywords: Gasifier System, Identification, Neural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14431198 Multivariate Analysis of Spectroscopic Data for Agriculture Applications
Authors: Asmaa M. Hussein, Amr Wassal, Ahmed Farouk Al-Sadek, A. F. Abd El-Rahman
Abstract:
In this study, a multivariate analysis of potato spectroscopic data was presented to detect the presence of brown rot disease or not. Near-Infrared (NIR) spectroscopy (1,350-2,500 nm) combined with multivariate analysis was used as a rapid, non-destructive technique for the detection of brown rot disease in potatoes. Spectral measurements were performed in 565 samples, which were chosen randomly at the infection place in the potato slice. In this study, 254 infected and 311 uninfected (brown rot-free) samples were analyzed using different advanced statistical analysis techniques. The discrimination performance of different multivariate analysis techniques, including classification, pre-processing, and dimension reduction, were compared. Applying a random forest algorithm classifier with different pre-processing techniques to raw spectra had the best performance as the total classification accuracy of 98.7% was achieved in discriminating infected potatoes from control.
Keywords: Brown rot disease, NIR spectroscopy, potato, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8851197 Assessing and Visualizing the Stability of Feature Selectors: A Case Study with Spectral Data
Authors: R.Guzman-Martinez, Oscar Garcia-Olalla, R.Alaiz-Rodriguez
Abstract:
Feature selection plays an important role in applications with high dimensional data. The assessment of the stability of feature selection/ranking algorithms becomes an important issue when the dataset is small and the aim is to gain insight into the underlying process by analyzing the most relevant features. In this work, we propose a graphical approach that enables to analyze the similarity between feature ranking techniques as well as their individual stability. Moreover, it works with whatever stability metric (Canberra distance, Spearman's rank correlation coefficient, Kuncheva's stability index,...). We illustrate this visualization technique evaluating the stability of several feature selection techniques on a spectral binary dataset. Experimental results with a neural-based classifier show that stability and ranking quality may not be linked together and both issues have to be studied jointly in order to offer answers to the domain experts.
Keywords: Feature Selection Stability, Spectral data, Data visualization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15261196 Seismic Performance Assessment of Pre-70 RC Frame Buildings with FEMA P-58
Authors: D. Cardone
Abstract:
Past earthquakes have shown that seismic events may incur large economic losses in buildings. FEMA P-58 provides engineers a practical tool for the performance seismic assessment of buildings. In this study, FEMA P-58 is applied to two typical Italian pre-1970 reinforced concrete frame buildings, characterized by plain rebars as steel reinforcement and masonry infills and partitions. Given that suitable tools for these buildings are missing in FEMA P- 58, specific fragility curves and loss functions are first developed. Next, building performance is evaluated following a time-based assessment approach. Finally, expected annual losses for the selected buildings are derived and compared with past applications to old RC frame buildings representative of the US building stock.Keywords: FEMA P-58, RC frame buildings, plain rebars, masonry infills, fragility functions, loss functions, expected annual loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19251195 Carbon Nanotubes–A Successful Hydrogen Storage Medium
Authors: Vijaya Ilango, Avika Gupta
Abstract:
Hydrogen fuel is a zero-emission fuel which uses electrochemical cells or combustion in internal engines, to power vehicles and electric devices. Methods of hydrogen storage for subsequent use span many approaches, including high pressures, cryogenics and chemical compounds that reversibly release H2 upon heating. Most research into hydrogen storage is focused on storing hydrogen as a lightweight, compact energy carrier for mobile applications. With the accelerating demand for cleaner and more efficient energy sources, hydrogen research has attracted more attention in the scientific community. Until now, full implementation of a hydrogen-based energy system has been hindered in part by the challenge of storing hydrogen gas, especially onboard an automobile. New techniques being researched may soon make hydrogen storage more compact, safe and efficient. In this overview, few hydrogen storage methods and mechanism of hydrogen uptake in carbon nanotubes are summarized.
Keywords: Carbon nanotubes, Chemisorption, Hydrogen storage, Physisorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31541194 Performance Analysis of Parallel Client-Server Model Versus Parallel Mobile Agent Model
Authors: K. B. Manwade, G. A. Patil
Abstract:
Mobile agent has motivated the creation of a new methodology for parallel computing. We introduce a methodology for the creation of parallel applications on the network. The proposed Mobile-Agent parallel processing framework uses multiple Javamobile Agents. Each mobile agent can travel to the specified machine in the network to perform its tasks. We also introduce the concept of master agent, which is Java object capable of implementing a particular task of the target application. Master agent is dynamically assigns the task to mobile agents. We have developed and tested a prototype application: Mobile Agent Based Parallel Computing. Boosted by the inherited benefits of using Java and Mobile Agents, our proposed methodology breaks the barriers between the environments, and could potentially exploit in a parallel manner all the available computational resources on the network. This paper elaborates performance issues of a mobile agent for parallel computing.Keywords: Parallel Computing, Mobile Agent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16531193 Modeling of Bisphenol A (BPA) Removal from Aqueous Solutions by Adsorption Using Response Surface Methodology (RSM)
Authors: Mohammad Ali Zazouli, Farzaneh Veisi, Amir Veisi
Abstract:
Bisphenol A (BPA) is an organic synthetic compound that has many applications in various industries and is known as persistent pollutant. The aim of this research was to evaluate the efficiency of bone ash and banana peel as adsorbents for BPA adsorption from aqueous solution by using Response Surface Methodology. The effects of some variables such as sorbent dose, detention time, solution pH, and BPA concentration on the sorption efficiency was examined. All analyses were carried out according to Standard Methods. The sample size was performed using Box-Benken design and also optimization of BPA removal was done using response surface methodology (RSM). The results showed that the BPA adsorption increases with increasing of contact time and BPA concentration. However, it decreases with higher pH. More adsorption efficiency of a banana peel is very smaller than a bone ash so that BPA removal for bone ash and banana peel is 62 and 28 percent, respectively. It is concluded that a bone ash has a good ability for the BPA adsorption.
Keywords: Adsorbent, banana peel, bisphenol A (BPA), bone ash, wastewater treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16531192 Various Modifications of Electrochemical Barrier Layer Thinning of Anodic Aluminum Oxide
Authors: W. J. Stępniowski, W. Florkiewicz, M. Norek, M. Michalska-Domańska, E. Kościuczyk, T. Czujko
Abstract:
In this paper, two options of anodic alumina barrier layer thinning have been demonstrated. The approaches varied with the duration of the voltage step. It was found that too long step of the barrier layer thinning process leads to chemical etching of the nanopores on their top. At the bottoms pores are not fully opened what is disadvantageous for further applications in nanofabrication. On the other hand, while the duration of the voltage step is controlled by the current density (value of the current density cannot exceed 75% of the value recorded during previous voltage step) the pores are fully opened. However, pores at the bottom obtained with this procedure have smaller diameter, nevertheless this procedure provides electric contact between the bare aluminum (substrate) and electrolyte, what is suitable for template assisted electrodeposition, one of the most cost-efficient synthesis method in nanotechnology.
Keywords: Anodic aluminum oxide, anodization, barrier layer thinning, nanopores.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26331191 Image Segmentation Based on Graph Theoretical Approach to Improve the Quality of Image Segmentation
Authors: Deepthi Narayan, Srikanta Murthy K., G. Hemantha Kumar
Abstract:
Graph based image segmentation techniques are considered to be one of the most efficient segmentation techniques which are mainly used as time & space efficient methods for real time applications. How ever, there is need to focus on improving the quality of segmented images obtained from the earlier graph based methods. This paper proposes an improvement to the graph based image segmentation methods already described in the literature. We contribute to the existing method by proposing the use of a weighted Euclidean distance to calculate the edge weight which is the key element in building the graph. We also propose a slight modification of the segmentation method already described in the literature, which results in selection of more prominent edges in the graph. The experimental results show the improvement in the segmentation quality as compared to the methods that already exist, with a slight compromise in efficiency.Keywords: Graph based image segmentation, threshold, Weighted Euclidean distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15631190 Modeling the Transport of Charge Carriers in the Active Devices MESFET, Based of GaInP by the Monte Carlo Method
Authors: N. Massoum, A. Guen. Bouazza, B. Bouazza, A. El Ouchdi
Abstract:
The progress of industry integrated circuits in recent years has been pushed by continuous miniaturization of transistors. With the reduction of dimensions of components at 0.1 micron and below, new physical effects come into play as the standard simulators of two dimensions (2D) do not consider. In fact the third dimension comes into play because the transverse and longitudinal dimensions of the components are of the same order of magnitude. To describe the operation of such components with greater fidelity, we must refine simulation tools and adapted to take into account these phenomena. After an analytical study of the static characteristics of the component, according to the different operating modes, a numerical simulation is performed of field-effect transistor with submicron gate MESFET GaInP. The influence of the dimensions of the gate length is studied. The results are used to determine the optimal geometric and physical parameters of the component for their specific applications and uses.
Keywords: Monte Carlo simulation, transient electron transport, MESFET device.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16651189 Development of Single Layer of WO3 on Large Spatial Resolution by Atomic Layer Deposition Technique
Authors: S. Zhuiykov, Zh. Hai, H. Xu, C. Xue
Abstract:
Unique and distinctive properties could be obtained on such two-dimensional (2D) semiconductor as tungsten trioxide (WO3) when the reduction from multi-layer to one fundamental layer thickness takes place. This transition without damaging single-layer on a large spatial resolution remained elusive until the atomic layer deposition (ALD) technique was utilized. Here we report the ALD-enabled atomic-layer-precision development of a single layer WO3 with thickness of 0.77±0.07 nm on a large spatial resolution by using (tBuN)2W(NMe2)2 as tungsten precursor and H2O as oxygen precursor, without affecting the underlying SiO2/Si substrate. Versatility of ALD is in tuning recipe in order to achieve the complete WO3 with desired number of WO3 layers including monolayer. Governed by self-limiting surface reactions, the ALD-enabled approach is versatile, scalable and applicable for a broader range of 2D semiconductors and various device applications.Keywords: Atomic layer deposition, tungsten oxide, WO3, two-dimensional semiconductors, single fundamental layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623