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Optimal Aggregate Production Planning with
Fuzzy Data

Wen-Lung Huang and Shih-Pin Chen

Abstract—This paper investigates the optimization problem of
multi-product aggregate production planning (APP) with fuzzy data.
From a comprehensive viewpoint of conserving the fuzziness of input
information, this paper proposes a method that can completely
describe the membership function of the performance measure. The
idea is based on the well-known Zadeh's extension principle which
plays an important role in fuzzy theory. In the proposed solution
procedure, a pair of mathematical programs parameterized by
possibility level @ is formulated to calculate the bounds of the
optimal performance measureat & . Then the membership function of
the optimal performance measure is constructed by enumerating
different values of ¢ . Solutions obtained from the proposed method
contain more information, and can offer more chance to achieve the
feasible disaggregate plan. This is helpful to the decision-maker in
practical applications.

Keywords—fuzzy data, aggregate production
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planning,

|. INTRODUCTION

NTERPRISES around the world have increasingly

emphasized aggregate production planning (APP) for
deciding an appropriate way to match many controllablefactors,
such as capacity to forecast demand, varying customer orders
over the medium term by adjusting regular and overtime
production rates, and subcontracting and backordering rates
[4,13,20]. Much effort has been expended in existing decision
models for APP problem [21], such as linear decision rule
(LDR), transportation method, linear programming (LP),
management coefficient approach, simulation, and search
decision rule. More recent studies include, for example, Jain
and Palekar [9], Leung et al. [16], and Gomesda Silvaet al. [8].
Most of the above models were developed under crisp
environments, and can be categorized as deterministic
optimization and stochastic programming models [6,19,20].
However, in many practical applications, the imprecise
information embedded in APP can be obtained subjectively
[10,27]. For example, the uncertain demand may be more
suitably described by linguistic terms rather than by a
probability distribution. Zadeh [28] introduced fuzzy set theory
to handle uncertainties of this type. There have been relatively
few studies of fuzzy APP problems [14], For example, Tang et
al. [22] proposed a method for multi-product APP problems
with fuzzy demands and capacities.
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Afterward, Tang et al. [23] conducted the simulation study of
the APP problems of thiskind; and Fung et al. [7] additionally
considered financial constraintsin similar APP problems. There
are severa other related studies, including Wang and Fang
[24,25], and Wang and Liang [26,27]. More recently, Aliev et
al. [1] proposed a fuzzy integrated multi-period and
multi-product aggregate production-distribution  planning
model in supply chain. Jamalnia and Soukhakian [10] proposed
a hybrid fuzzy multi-objective nonlinear programming
(H-FMONLP) model with different goal priorities for the APP
problem. Leung and Chan [15] constructed a preemptive goal
programming model to investigate the APP problem with
different operational constraints.

It is clear that if there are some fuzzy parametersin an APP
model, then its performance measures will be fuzzy. To
completely conserve the fuzziness of input information of APP,
they should be described by membership functions. If the
membership function of performance measures for an APP
model can be derived, more reasonable and realistic
performance measures can be obtained because it maintains the
fuzziness of input information which can be used to represent
the fuzzy APP more accurately. Thus an effective APP and the
feasible disaggregate plan can be obtained. In this paper, an
APP model with fuzzy parameters is proposed, and a solution
procedure that is able to find the membership function of the
fuzzy objective value is developed. The basic idea is to apply
the a -cuts and Zadeh's extension principle [29,30] to
transform the fuzzy APP into afamily of crisp APPs. A pair of
two-level mathematical programsis formulated to calculate the
bounds of the a -cut of the fuzzy minimum total cost, and then
the membership function of the fuzzy minimum total cost is
derived numerically by enumerating different values of a .
Since the proposed approach is based on the Zadeh's extension
principle, itissignificantly different from several related studies
which may fail to compute the sets of possible values of the
fuzzy minimum total cost such [14].

II.MODELING APP WITH FUZZY DATA

First we address the issue of single-product fuzzy APP
problem. Consider a company manufacturing one type of
products to satisfy the market demand over a medium planning
horizon T. For satisfying forecasted demands, the management
adopts APP to find the most effective way to determine output
rates, hiring and layoffs, inventory levels, overtime work,
subcontracting, backorders and other controllable factors. In
fuzzy environments, the problem is to determine a feasible way
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of adjusting the appropriate amounts of the abaaofs to
satisfy the demand at the right time that minimibestotal cost.
Note that, as Lai and Hwang [14] pointed out, thee¢asted
demand in a period could either be met or backeder
however, the backorder must be fulfilled within twésequent
period. To solve this problem, a model is cons&dainder the
assumptions following Lai and Hwang [14]:

(1) Initial inventory is about the inventory levidquired for
initiating an order.

(2) The decision maker knows the initial workfoteeel for the
production.

(3) The quantity of the product includes that afular-time
production, overtime production, production duéiting more
employees, and to meet the demands.

(4) The production costs excluding labor cost rdiey to
regular-time production and overtime productioriy period
are the same.

(5) There exists no setup cost if successive ordersbeing
processed.

(6) Inventory storage space is large enough te sta finished
goods in processes.

(7) There exists a reliable work force pool. Thevmnployees
are assumed to be fully productive as are the oigl@yees,
when they begin to work.

V\/0 initial work force level (man-day)

B, initial backorder level(units)

W maximum workforce available in periad
t (mar-day,

E forecasted demand in period t (units)

F minimum demand in period t (units)

tmin

The objective function is to minimize the total tteat is the
summation of the following terms: (1) the total guation cost,
Zcm P+P) ; (2 the labor

total cost,

ZCHV\( +Z C,(kP), wherek is a conversion factor for
transforming the unit oP, to man-hour (referring to Table 1);

(3) the total inventory carrying COSEC

t=1

(4) the total

|tt’

backorder costz C_B ; (5) the total costs of changes in labor

t=1

htt’

levels, including the costs to hire and layoff wenk

Without loss of generality, assume that the maxmunz(c H,+C, L), whereH, L =0, Ot, indicating that either
workforce QN *) is fuzzy. The parameters of the model are=

introduced in Table 1, and the decision variabtessa follows:

P , the regular-time production in peridd(units); P, , the
overtime production in periot(units); | , the inventory level
in period t (units); W , the workforce level in period
(man-day); B, the backorder level in periddunits); H_, the

worker hired in period (man-day); and_, , the worker layoff in
periodt (man-day).

TABLE |
PARAMETERS OF THE FUZZYAPPMODEL
Parameters Definition
C inventory carrying cost in periad
it ($/unit-period
Cot overtime labor cost in peridd$/man-hour)
Crl labor cost in period ($/man-day)
C cost to hire one worker in periad
ht ($/mar-day)
C cost to layoff one worker in peridd
1t ($/man-day)
Cm unit backorder cost in peridd$/unit)
K conversion factor in hours of labor per unit of
production (man-hour/unit)
5 regular working hours per worker per day
(mar-hour/mar-day;
,3 fraction of working hours available for
t overtime productio
T planning horizon or number of periods

o

initial inventory level (units)
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net hiring or net firing of labor occurs during erjpd, but not
both [14].

The following constraints are considered for eathet
period: (1) labor level constraints include &)< W™, Ot,

indicating the workforce level should not be greaten the
maximum available workforce level during any peridt)

W =W, +H-L, Ot where HL =0, Ot, indicating the
workforce level in period should equal the workforce level in
period ¢-1) plus the new hiresH, ) minus the layoffs [ ); (c)

kP < oW, Ot wherek and § are conversion factors for

transforming the unit oP, andW to man-hour, respectively
(referring to Table 1), indicating the regular tirppeoduction
capacity should not be greater than the availatierl capacity;
(d) kP, < BoW, 0Ot, indicating the variation of a workforce
should not exceed the permitted level of a compapglicy
during any period. (2) capacity constraints include
Pr! + Pot + |t—l - Bt—l 2 thin’ Dt’ |tBt = 0’ Dt’
indicating that demand over a particular period baneither
met or backordered, but not both. (3) inventory elev
constraints, according to a fundamental materiahntjty

balance, includel , -B ,+P +P -1 +B =F, 0t where

where

1B, =0, 0Ot.
backorder level in period is equal to what it was in period
(t =1) plus the regular-time and overtime production iamlis

This indicates that the inventory level or

1SN1:0000000091950263



Open Science Index, Industrial and Manufacturing Engineering VVol:6, No:8, 2012 publications.waset.org/7854.pdf

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering
Vol:6, No:8, 2012

the forecasted demand. This equation ensuresttaarhount
sold of each product in a period plus the invent¢oy
backorder) at the end of the period equals thd wtpply
consisting of inventory (or backorder) from the\poeis period
plus the regular and overtime production in therenir period
[18]. (4) nonnegative constraints on decision \#d&s,

P.P.W.,1,B,H,L20 Ot
By incorporating the objective function and all #igove
constraints, the fuzzy APP linear model can be tdated as

follows [14]:

Z=min. Y[C,(R+R)+ GW+ G(KD)+ G+ ¢ Br €t £}

st W sW™ Ot;
W-W,-H+L=0 0t

Iirl_Birl+Pr( +E)z_ Il+Bl = Ft’ Dt;

REWLRAH Lz 00t.
1)

Note that it is not necessary to impose the twe st
constraints,| B, =0 and H,L, =0, Ot, on Model (1), since
according to the theory of LP, a basic solutiorModel (1)
having the special structure cannot include bbtlandB, ,

H, andL, , simultaneously [2].

Ill.  THE SOLUTION METHOD

In Model (1), the maximum workforce Y™ ) is

approximately known, and is represented by thefailg fuzzy
number:

W = (W™ 4 (W) WD W'Y Ot

max

whereW
and 4 ... (W™) is its corresponding membership function.

On the basis of Zadeh’s extension principle [29,3@en
W™ is a fuzzy number, the minimum total cdstis also a
fuzzy number with membership functiop/; defined as
follows:

()= sup {u,. (W™),01 2= Z(J )}, )

max

where Z(w™") is the crisp objective value of Model (1) with

a fuzzy parameter degenerated to the crisp vai(i€ .

Although the membership function defined in (2)
theoretically correct, it is not in the usual fofon practical use
and is very complicated,; it is even very diffictdtimagine its
shape.
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In this paper the above difficult problem is tacklasing
parametric mathematical programming. A pair of reathtical

programs is developed to find the-cuts of x4, based on

Zadeh'’s extension principle. This procedure is axgd in the
next section.

Clearly, from Definition (2) the membership funetigs, is
also parameterized by . Thus one approach for constructing

max

W, is to derive thea -cuts of Z. The a -cuts of W™ are
defined as follow [12,29]:
W™ (@) ={wW™ OW™| g.( W) 2a, Ot 3)

max

Note thatW ™ (a) are crisp sets rather than fuzzy sets. On

the basis of the convexity of fuzzy numbers, thecuts defined
in Equations (3) can be expressed in the folloviorgn:

Wmax(a) :[ muivr;m{ V\(nax 0 Wmax /lem( Vg\ax) > a},

max {Vvtmax D W max

‘N‘max ow

Mg (W) 2 0} =[(W™) S(w™) 1.
4)

These intervals respectively indicate where thedasted
demands and the maximum workforce lie at possiiéivel o .

According to the Definition (2)., is the supermum of

M (w™) for all t. One needﬁuwim (W™)=za, and at least

~ max
W,

one of y (W™), for all t, to be equal toa such that

max

z=Z(w") to satisfy i, (z) =a . To derive thea -cuts of

Z , it is sufficient to find the left and right shajfenction of
H5 . This is equivalent to find the lower bourib; and the

L

upper bounde of u, . Clearly, Z is the minimum of

z=2Z(W™) and Z, is the maximum ofz = Z(w™), which

is the universal sets of the maximum workforcegan pe expressed as follows:

Z, =min {Z(W™) (W™), < w"<(W™) ],

z¢ = max {Z(W™)|(W™), s W™ (W™, 3. (5b)
These two expressions can be formulated as a gdair o
two-level mathematical programs as follows:.

(5a)

is
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min > [C,(P+R)+CW
+C, (kR)+ G

it ot

+CB+GH+GL]
st. W-w™<0, Ot

W-W, - H+L=0, Ot
kP -oW<0, Ot

Z'=  min

W™= W™ (W™

Lt,
I"l_B"1+Pn+Pot_|t+Bt = E ,Dt,
PLRW.1,8.H, k20, Ot

+Cth+CmHt+qlr]
st. W-w¥<0, Ot
-W,-H+L=0, Ot
-owW<o0, Ot

z’ =

4

max
W™ W™s (W™,
kR

Ot
l"l_B"1+Pn + Pot - It + Bt = E ,Dt,
P.RP.W.,|,B,H,=0, Ot
(6b)
Note that to satisfyu, (z) = a required by Definition (2), at

max

least one ofw must hit the boundary of their -cuts.

(62)

+*GB+GH+GL
st. W-W™) <ot

W-W,-H+ L =00t

kP -owW<0,0t (7
kP - B3W<0,0t

P+R+1,-B,2F".0

|,-B,+P +P -1 +B =F [,
Pr‘!’Pot’W7 Itiall-lalrz O,Dt

This model is a conventional linear program whieim e

solved easily. Since al™, Ot, have been set to the upper

bounds of theirz -cuts in this modely;, (z) = a, as required

by (2) based on Zadeh'’s extension principle, iggutzed.

On the other hand, since the second level of M{gl&) is a
minimization problem which is inconsistent with the
maximization operation of the first level, it istnpossible to
insert the constraints of the first level diredtiyo the second
level. To tackle this, the dual of the second-lepsbblem,
which is a maximization problem, is formulated ®donsistent
with the maximization operation of the first levdk is
well-known from the duality theorem of linear pragiming
that the primal model and the dual model have tames

objective value [2]. SincdW™) <w™ < (W™).,0t, the
upper bound of the objective value can be derivedditing
W™ = (W™}, 0t, which gives the largest feasible region.

Moreover, since both the first level and the sederdl perform
the same maximization operation, their constracas be
combined to form a classical mathematical program.

Note that to satisfy; (z) = a required by (2), at least one ofConsequentIy, Model (6b) can be reformulated as:

f. must hit the boundary of their -cuts.
To derive the lower bound of the objective valueMindel

z! —maxZ[ W™ ) A-WN+ E" G+ FM]

st. kD+G+M<C, kE+ G+ M< C+ kGOt

(6a), W™ can be directly set to its upper bouw{™) for all

t, since it defines the largest feasible region as ~A-N+B,+oQ+[0E=<C, t=12,.,T
W™): < W™ < (W™). . Moreover, since the aim of this -A -N +0D,+BJ0E < C,

model is to find the minimum of all minimum objectivalues, G,-M+M, <C, t=12,..T-1

the constraints of the first level can be inseited the second M. <C <

level to transfer the two-level mathematical prograf Model <G . G=G,

(6a) to the following classical one-level mathemgiti -G,+M -M_,,=<C ,t=12.T-1
programs: N <C.,-NsG Ot
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A,D, E, G=0, N, Munrestricted,0t ,
(8)
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whereA, N, D, E,G, and,M_, t=1,2,...T ,are the sets Hwang [14], only two parameters are assumed taibeyf it is
clear that the proposed approach is also applicablaPP
problems with more fuzzy parameters.

Although both of the proposed approach and Chanas’s
approach are based on FLP, they are significariftigrent on
effective approaches [3]. Since af, Ot, have been set to methodology and obtained results. Aiming at conabyet
the lower bounds of theio -cut in this model, this guaranteesconserving all the fuzziness of fuzzy parametech sis market
demands and maximum workforces, the proposed agiprisa
developed based on a combination of Zadeh's exiensi
Solving Models (7) and (8) gives the crisp interf@}, Z'],  principle, LP formulation of the APP problemy -cut

representation, two-level mathematical programmimgnd
C;i)arametric programming. The results obtained framar@s’s
approach only showed a crisp minimum total costédach
~ _ . } _ _ different possibility level, and the correspondimglues of
Z defined in (2) is a fuzzy number which possessesexity  gecision variables [14]. Since the crisp solutioould be
[12]. That is, givena,, a,[0,1] with a, >a,, the feasible underestimated, it might be happened that the opémistic
. . . solution provided let the decision maker make angrdecision,
regions defined byr, in Models (7a) and (7c) are smaller thananol vice versa. As Tang et al. [22] pointed oud sble optimal
those defined by, . Consequentlyzz p] Z;Z and Z: > Z:Z, solution to APP is no guarantee of achieving thasifge
. . . ] v . disaggregate plan. On the contrary, much more itapor
e, Z, is non-decreasing with respect o, and Z, iS  jnformation is obtained by the proposed approattiyiling the
non-increasing with respect tar . Consequently, the lower and upper bounds of the minimum total costd the

membership functior? can be constructed from the solutionsforresponding values of decision variables for gam$sibility
of Models (7) and (8). level a . Compared with Chanas’s approach, the results show

In most cases Models (7) and (8) are so complictigtthey in this paper are more reasonable according toyfsets, and
cannot be solved analytically, the set of interval§onserve the fuzziness of market demands and maximu
1z 24 workforces completely.

of dual variables defined for the first to sixthssef constraints
in Model (6b), respectively. Model (8) is a lingadonstrained
nonlinear program that can be solved by severdaiefit and

that 1, (z) = a as required by (2).

which is thea -cut of Z . An attractive feature of the -cut
approach is that alr -cuts form a nested structure with respe
to a [11]. According to Zadeh's extension principle [29],

a 0,1} , which can be obtained numerically,

shows the shape qf, by enumerating different value af . IV. CONCLUSION AND FUTURE WORK

The modeling and solution procedure proposedisgaper From a different viewpoint, this paper proposesethod to
can be expanded to multi-product fuzzy APP. Herebriefly  finding the membership function of the fuzzy minimuotal
describe the modeling. For example, the paramétd®?, pthe cost of APP problems with fuzzy parameters. The iddased

i ) ) ) ) . on the concept ofr -cuts and Zadeh’'s extension principle to
regular-time production in period (units) becomesk;’, transform the fuzzy APP model to a family of criSpP models
indicating the regular-time production of timh product in which can be described by a pair of mathematicaj@ms. The
periodt (units). Consequently, Model (1) becomes bounds of thea -cuts of the fuzzy minimum total cost for
Z=min. ii[cgl(eﬁ RIFGW+ G(kR+ ¢+ ¢ B+ ¢ 1+ ¢l different possibility levelsa are calculated to derive the

ot V\;‘; W) Ot approximated membership function, and the corred;'qugh

V\;"—V\(" K+ =0, Ot n optimal aggregate proc:!ucﬂon plans are also pr@Mde

Rlp”—a;l/v"<o ot nf Y Compared with other studies, the proposed approacivbtain

A o more reasonable solution for imprecise/fuzzy patarse and

kP - BIOW'<0, Ot so more wide-range decision information on altémeat

Rt Rt - BL 2 (R, Ot strategies for overtime, inventory, backorder, diihg and

5 BL AR RI-ITH RIS R DL layoffs workers is provided for decision-makersé@sponse to

) RR W "'H'B‘H’H‘n"“nzoj Hen. variations in fuzzy environments. Thus the feasitidaggregate
Then it can be solved by using the proposed approac plan can be achieved afterwards. Although singtetpct APP

Note that the minimum total cost derived by usimg t yo4els with one fuzzy parameter were investigatechis
proposed approach is expressed by a membershigidnc haper it is clear that the proposed solution prace is not
rather than by a crisp value; i.e., it is a fuzarfprmance  onfined to APP models of this type. Future redeaitections

measure. The benefit and significance of such ayfuz; . de applying this method to APP models with tipig
performance measure are that it maintains theriessi of input products and more fuzzy parameters, and other AB&cln

information completely, thus it can represent tague systems it different structures, such as multi-site, riphét objectives,

more accurately. This indicates that the propoggmiaach can gitferent goal priorities, resource utilization sbraint,
obtain more realistic performance measures where stata in aggregate production—distribution planning in SCM.

the APP model are ambiguous. Furthermore, folloviagand
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