
 

 

  
Abstract—This paper investigates the optimization problem of 

multi-product aggregate production planning (APP) with fuzzy data. 
From a comprehensive viewpoint of conserving the fuzziness of input 
information, this paper proposes a method that can completely 
describe the membership function of the performance measure. The 
idea is based on the well-known Zadeh’s extension principle which 
plays an important role in fuzzy theory. In the proposed solution 
procedure, a pair of mathematical programs parameterized by 
possibility level α  is formulated to calculate the bounds of the 
optimal performance measure at α . Then the membership function of 
the optimal performance measure is constructed by enumerating 
different values of α . Solutions obtained from the proposed method 
contain more information, and can offer more chance to achieve the 
feasible disaggregate plan. This is helpful to the decision-maker in 
practical applications. 
 

Keywords—fuzzy data, aggregate production planning, 
membership function, parametric programming 

I. INTRODUCTION 

NTERPRISES around the world have increasingly 
emphasized aggregate production planning (APP) for 

deciding an appropriate way to match many controllable factors, 
such as capacity to forecast demand, varying customer orders 
over the medium term by adjusting regular and overtime 
production rates, and subcontracting and backordering rates 
[4,13,20]. Much effort has been expended in existing decision 
models for APP problem [21], such as linear decision rule 
(LDR), transportation method, linear programming (LP), 
management coefficient approach, simulation, and search 
decision rule. More recent studies include, for example, Jain 
and Palekar [9], Leung et al. [16], and Gomes da Silva et al. [8]. 
Most of the above models were developed under crisp 
environments, and can be categorized as deterministic 
optimization and stochastic programming models [6,19,20]. 
However, in many practical applications, the imprecise 
information embedded in APP can be obtained subjectively 
[10,27]. For example, the uncertain demand may be more 
suitably described by linguistic terms rather than by a 
probability distribution. Zadeh [28] introduced fuzzy set theory 
to handle uncertainties of this type. There have been relatively 
few studies of fuzzy APP problems [14], For example, Tang et 
al. [22] proposed a method for multi-product APP problems 
with fuzzy demands and capacities.  
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Afterward, Tang et al. [23] conducted the simulation study of 

the APP problems of this kind; and Fung et al. [7] additionally 
considered financial constraints in similar APP problems. There 
are several other related studies, including Wang and Fang 
[24,25], and Wang and Liang [26,27]. More recently, Aliev et 
al. [1] proposed a fuzzy integrated multi-period and 
multi-product aggregate production-distribution planning 
model in supply chain. Jamalnia and Soukhakian [10] proposed 
a hybrid fuzzy multi-objective nonlinear programming 
(H-FMONLP) model with different goal priorities for the APP 
problem. Leung and Chan [15] constructed a preemptive goal 
programming model to investigate the APP problem with 
different operational constraints. 

It is clear that if there are some fuzzy parameters in an APP 
model, then its performance measures will be fuzzy. To 
completely conserve the fuzziness of input information of APP, 
they should be described by membership functions. If the 
membership function of performance measures for an APP 
model can be derived, more reasonable and realistic 
performance measures can be obtained because it maintains the 
fuzziness of input information which can be used to represent 
the fuzzy APP more accurately. Thus an effective APP and the 
feasible disaggregate plan can be obtained. In this paper, an 
APP model with fuzzy parameters is proposed, and a solution 
procedure that is able to find the membership function of the 
fuzzy objective value is developed. The basic idea is to apply 
the α -cuts and Zadeh’s extension principle [29,30] to 
transform the fuzzy APP into a family of crisp APPs. A pair of 
two-level mathematical programs is formulated to calculate the 
bounds of the α -cut of the fuzzy minimum total cost, and then 
the membership function of the fuzzy minimum total cost is 
derived numerically by enumerating different values of α . 
Since the proposed approach is based on the Zadeh’s extension 
principle, it is significantly different from several related studies 
which may fail to compute the sets of possible values of the 
fuzzy minimum total cost such [14]. 

II. MODELING APP WITH FUZZY DATA 

First we address the issue of single-product fuzzy APP 
problem. Consider a company manufacturing one type of 
products to satisfy the market demand over a medium planning 
horizon T. For satisfying forecasted demands, the management 
adopts APP to find the most effective way to determine output 
rates, hiring and layoffs, inventory levels, overtime work, 
subcontracting, backorders and other controllable factors. In 
fuzzy environments, the problem is to determine a feasible way 
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of adjusting the appropriate amounts of the above factors to 
satisfy the demand at the right time that minimizes the total cost. 
Note that, as Lai and Hwang [14] pointed out, the forecasted 
demand in a period could either be met or backordered; 
however, the backorder must be fulfilled within the subsequent 
period. To solve this problem, a model is constructed under the 
assumptions following Lai and Hwang [14]: 
(1) Initial inventory is about the inventory level required for 
initiating an order. 
(2) The decision maker knows the initial workforce level for the 
production. 
(3) The quantity of the product includes that of regular-time 
production, overtime production, production due to hiring more 
employees, and to meet the demands. 
(4) The production costs excluding labor cost regarding to 
regular-time production and overtime production in any period 
are the same. 
(5) There exists no setup cost if successive orders are being 
processed. 
(6) Inventory storage space is large enough to store the finished 
goods in processes. 
(7) There exists a reliable work force pool. The new employees 
are assumed to be fully productive as are the old employees, 
when they begin to work. 

Without loss of generality, assume that the maximum 

workforce ( max

t
W% ) is fuzzy. The parameters of the model are 

introduced in Table 1, and the decision variables are as follows: 

rt
P , the regular-time production in period t (units); 

ot
P , the 

overtime production in period t (units); 
t

I , the inventory level 

in period t (units); 
t

W , the workforce level in period t 

(man-day); 
t

B , the backorder level in period t (units); 
t

H , the 

worker hired in period t (man-day); and 
t

L , the worker layoff in 

period t (man-day). 
 

TABLE I 
PARAMETERS OF THE FUZZY APP MODEL 

Parameters Definition 

it
C  

inventory carrying cost in period t 
($/unit-period) 

ot
C  overtime labor cost in period t ($/man-hour) 

rt
C  labor cost in period t ($/man-day) 

ht
C  

cost to hire one worker in period t 
($/man-day) 

lt
C  

cost to layoff one worker in period t 
($/man-day) 

bt
C  unit backorder cost in period t ($/unit) 

k  
conversion factor in hours of labor per unit of 
production (man-hour/unit) 

δ  
regular working hours per worker per day 
(man-hour/man-day) 

t
β  

fraction of working hours available for 
overtime production 

T  planning horizon or number of periods 

0
I  initial inventory level (units) 

0
W  initial work force level (man-day) 

0
B  initial backorder level(units) 

max

t
W%  

maximum workforce available in period t 
(man-day) 

t
F  forecasted demand in period t (units) 

mint
F  minimum demand in period t (units) 

 
The objective function is to minimize the total cost that is the 

summation of the following terms: (1) the total production cost, 

( )
1

T

pt rt ot

t

C P P
=

+∑ ; (2) the total labor cost, 

( )
T T

rt t ot ot

t 1 t 1

C W C kP
= =

+∑ ∑ , where k is a conversion factor for 

transforming the unit of 
ot

P  to man-hour (referring to Table 1); 

(3) the total inventory carrying cost, 
1

T

it t

t

C I
=

∑ ; (4) the total 

backorder cost, 
1

T

bt t

t

C B
=

∑ ; (5) the total costs of changes in labor 

levels, including the costs to hire and layoff workers, 

1

( )
T

ht t lt t

t

C H C L
=

+∑ , where 0,  ,
t t

H L t= ∀  indicating that either 

net hiring or net firing of labor occurs during a period, but not 
both [14]. 

The following constraints are considered for each time 

period: (1) labor level constraints include (a) max,   ,
t t

W W t≤ ∀%  

indicating the workforce level should not be greater than the 
maximum available workforce level during any period; (b) 

1
,   ,

t t - t t
W W H L t= + − ∀  where 0,  ,

t t
H L t= ∀  indicating the 

workforce level in period t should equal the workforce level in 

period (t-1) plus the new hires (
t

H ) minus the layoffs (
t

L ); (c) 

,   ,
rt t

kP W tδ≤ ∀  where k and δ  are conversion factors for 

transforming the unit of 
rt

P  and 
t

W  to man-hour, respectively 

(referring to Table 1), indicating the regular time production 
capacity should not be greater than the available labor capacity; 

(d) ,   ,
ot t t

kP W tβ δ≤ ∀  indicating the variation of a workforce 

should not exceed the permitted level of a company’s policy 
during any period. (2) capacity constraints include 

min

-1 -1
,   ,

rt ot t t t
P P I B F t+ + − ≥ ∀  where 0,   ,

t t
I B t= ∀  

indicating that demand over a particular period can be either 
met or backordered, but not both. (3) inventory level 
constraints, according to a fundamental material quantity 

balance, include  
-1 -1

,   ,
t t rt ot t t t

I B P P I B F t− + + − + = ∀  where 

0,   .
t t

I B t= ∀  This indicates that the inventory level or 

backorder level in period t is equal to what it was in period 
( 1)t −  plus the regular-time and overtime production and minus 
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the forecasted demand. This equation ensures that the amount 
sold of each product in a period plus the inventory (or 
backorder) at the end of the period equals the total supply 
consisting of inventory (or backorder) from the previous period 
plus the regular and overtime production in the current period 
[18]. (4) nonnegative constraints on decision variables, 

, , , , , , 0,   .
rt ot t t t t t

P P W I B H L t≥ ∀  

By incorporating the objective function and all the above 
constraints, the fuzzy APP linear model can be formulated as 
follows [14]: 

[ ]
1

max

1

min .  ( ) ( )

        s.t.    ,   ;

                 0,  ;

                 0,   ;

                 0,   

T

pt rt ot rt t ot ot it t bt t ht t lt t

t

t t

t t - t t

rt t

ot t t

Z C P P C W C kP C I C B C H C L

W W t

W W H L t

kP W t

kP W

δ

β δ

=

= + + + + + + +

≤ ∀

− − + = ∀

− ≤ ∀

− ≤

∑%

%

min

-1 -1

-1 -1

;

                 ,   ;

                 ,   ;

                 , , , , , , 0,   .

rt ot t t t

t t rt ot t t

rt ot t t t t t

t

t

P P I B F t

I B P P I B F t

P P W I B H L t

∀

+ + − ≥ ∀

− + + − + = ∀

≥ ∀  
(1) 

Note that it is not necessary to impose the two sets of 

constraints, 0
t t

I B =  and 0,  ,
t t

H L t= ∀  on Model (1), since 

according to the theory of LP, a basic solution to Model (1) 

having the special structure cannot include both  and 
t t

I B , 

 and 
t t

H L , simultaneously [2]. 

III.  THE SOLUTION METHOD 

In Model (1), the maximum workforce ( max

t
W% ) is 

approximately known, and is represented by the following fuzzy 
number: 

max

max max max max max{( , ( ) },    ,
t

t t t t tW
W w w w W tµ= ∈ ∀

%

%  

where max

t
W  is the universal sets of the maximum workforce, 

and max

max( )
t

tW
wµ

%
 is its corresponding membership function. 

On the basis of Zadeh’s extension principle [29,30], when 
max

t
W%  is a fuzzy number, the minimum total cost Z%  is also a 

fuzzy number with membership function 
Z

µ %
 defined as 

follows: 

max

max max

max max( ) sup { ( ), ( )},
t

t t

Z t tW
w W

z w t z Z wµ µ
∈

= ∀ =% %
     (2) 

where max( )
t

Z w  is the crisp objective value of Model (1) with 

a fuzzy parameter degenerated to the crisp value max

t
w . 

Although the membership function defined in (2) is 
theoretically correct, it is not in the usual form for practical use 
and is very complicated; it is even very difficult to imagine its 
shape. 

In this paper the above difficult problem is tackled using 
parametric mathematical programming. A pair of mathematical 

programs is developed to find the α -cuts of 
Z

µ %  based on 

Zadeh’s extension principle. This procedure is explained in the 
next section. 

Clearly, from Definition (2) the membership function 
Z

µ %  is 

also parameterized by α . Thus one approach for constructing 

Z
µ %  is to derive the α -cuts of Z% . The α -cuts of max

t
W%  are 

defined as follow [12,29]: 

max

max max max max( ) { ( ) },   .
t

t t t tW
W w W w tα µ α= ∈ ≥ ∀

%
     (3) 

Note that max( )
t

W α  are crisp sets rather than fuzzy sets. On 

the basis of the convexity of fuzzy numbers, the α -cuts defined 
in Equations (3) can be expressed in the following form: 

max
max max

max
max max

max max max max

max max max max L max U

( ) [ min { ( ) } ,

max { ( ) } [( ) , ( ) ].

t
t t

t
t t

t t t tw
w W

t t t t α t αw
w W

W w W w  

w W w α w w

α µ α

µ

∈

∈

= ∈ ≥

∈ ≥ =

%

%

   

(4) 
These intervals respectively indicate where the forecasted 

demands and the maximum workforce lie at possibility level α . 

According to the Definition (2), 
Z

µ %  is the supermum of 

max

max( )
t

tw
wµ

%

 for all t. One needs 
max

max( )
t

tw
wµ α≥

%

, and at least 

one of 
max

max( )
t

tw
wµ

%

, for all t, to be equal to α  such that 

max( )
t

z Z w=  to satisfy ( )
Z

zµ α=% . To derive the α -cuts of 

Z% , it is sufficient to find the left and right shape function of 

Z
~µ . This is equivalent to find the lower bound LZα  and the 

upper bound UZα  of 
Z

µ % . Clearly, LZα  is the minimum of 

max( )
t

z Z w=  and UZα  is the maximum of max( )
t

z Z w= , which 

can be expressed as follows: 
L max max L max max Umin { ( ) ( ) ( ) }

t t t t
Z Z w W w Wα α α= ≤ ≤ ,     (5a) 

U max max L max max Umax { ( ) ( ) ( ) }
t t t t

Z Z w W w Wα α α= ≤ ≤ .    (5b) 

These two expressions can be formulated as a pair of 
two-level mathematical programs as follows:.  
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( )
( )

max max max

1

max

L 1

( )    ( )

t

1

min   

s.t. 0

0
min

0,

0

[

           

           ]

L U

t t t

T

pt rt ot rt tt

ot ot it t

bt t ht t lt t

t t

t t - t t
α

W w W

rt t

ot t

rt ot t-

C P P C W

C kP C I

C B C H C L

W w  , t,

W W H L  , t,
Z

kP W t,

kP W , t,

P P I -

α α δ

β δ

=

≤ ≤

+ +

+ +

+ + +

− ≤ ∀

− − + = ∀=
− ≤ ∀

− ≤ ∀

+ +

∑

min

1

1 1
  

, , , , , , 0, .

t - t

t - t - rt ot t t t

rt ot t t t t t

B F , t,

I B P P I B F , t,

P P W I B H L t

≥ ∀

− + + − + = ∀

≥ ∀



















    

                                                                                         (6a) 
 

( )
( )

max max max

1

max

U 1

( )    ( )

t

1

min   

s.t. 0

0
max

0,

0

[

           

           ]

L U

t t t

T

pt rt ot rt tt

ot ot it t

bt t ht t lt t

t t

t t - t t
α

W w W

rt t

ot t

rt ot t-

C P P C W

C kP C I

C B C H C L

W w  , t,

W W H L  , t,
Z

kP W t,

kP W , t,

P P I -

α α δ

β δ

=

≤ ≤

+ +

+ +

+ + +

− ≤ ∀

− − + = ∀=
− ≤ ∀

− ≤ ∀

+ +

∑

min

1

1 1
  

, , , , , , 0, .

t - t

t - t- rt ot t t t

rt ot t t t t t

B F , t,

I B P P I B F , t,

P P W I B H L t

≥ ∀

− + + − + = ∀

≥ ∀



















 

(6b) 

Note that to satisfy ( )
Z

zµ α=%
 required by Definition (2), at 

least one of max

t
w  must hit the boundary of their α -cuts. 

Note that to satisfy ( )
Z

zµ α=%  required by (2), at least one of 

t
f  must hit the boundary of their α -cuts. 

To derive the lower bound of the objective value in Model 

(6a), max

t
w  can be directly set to its upper bound max U( )

t
W α  for all 

t, since it defines the largest feasible region as 
max L max max U( ) ( )

t t t
W w Wα α≤ ≤ . Moreover, since the aim of this 

model is to find the minimum of all minimum objective values, 
the constraints of the first level can be inserted into the second 
level to transfer the two-level mathematical program of Model 
(6a) to the following classical one-level mathematical 
programs: 

 

( ) ( )L

1

max U

-1

min

-1 -1

1 1

 

min   [

]

s.t. ( ) 0, ,

0 , ,

0, ,

0, ,

- , ,

                  

T

α pt rt ot rt t ot ot it t

t

bt t ht t lt t

t t

t t t t

rt t

ot t t

rt ot t t t

t - t- rt

Z C P P C W C kP C I

C B C H C L

W W  t

W W H L  t

kP W t

kP W t

P P I B  F t

I B P

α

δ

β δ

=

= + + + +

+ + +

− ≤ ∀

− − + = ∀

− ≤ ∀

− ≤ ∀

+ + ≥ ∀

− + +

∑

.

,

, , , , , , 0,

ot t t t

rt ot t t t t t

P I B F , t

P P W I B H L t

− + = ∀

≥ ∀

           (7) 

 
This model is a conventional linear program which can be 

solved easily. Since all max

t
w , t∀ , have been set to the upper 

bounds of their α -cuts in this model, ( )
Z

zµ α=%
, as required 

by (2) based on Zadeh’s extension principle, is guaranteed. 
On the other hand, since the second level of Model (6b) is a 

minimization problem which is inconsistent with the 
maximization operation of the first level, it is not possible to 
insert the constraints of the first level directly into the second 
level. To tackle this, the dual of the second-level problem, 
which is a maximization problem, is formulated to be consistent 
with the maximization operation of the first level. It is 
well-known from the duality theorem of linear programming 
that the primal model and the dual model have the same 

objective value [2]. Since max L max max U( ) ( ) ,
t t t

W w W   tα α≤ ≤ ∀ , the 

upper bound of the objective value can be derived by setting  
max max L( ) ,
t t

w W  tα= ∀ , which gives the largest feasible region. 

Moreover, since both the first level and the second level perform 
the same maximization operation, their constraints can be 
combined to form a classical mathematical program. 
Consequently, Model (6b) can be reformulated as: 

U max L min

0 1

1

1

1

max   ( )

          s.t. ,  , ,

         ,  1, 2,..., 1,

         ,

         

T

α t t t t t t

t

t t t pt t t t pt ot

t t t t t t rt

T T T T T rT

t t t

Z W A W N F G FM

kD G M C kE G M C kC t

A N B D E C t T

A N D E C

G M M

α

δ β δ

δ β δ

=

+

+ +

= − − + +

+ + ≤ + + ≤ + ∀

− − + + + ≤ = −

− − + + ≤

− +

  ∑

1

1 1

   

, 1, 2,..., 1,

        ,  ,

        ,   1, 2,..., 1,          

         ,  ,  ,

         0,  , unrestricted,   ,, , ,

it

T iT T bT

t t t bt

t ht t lt

t t t t t t

C  t T

M C  G C

G M M C t T

N C N C t

A D E G N  M  t

+ +

≤ = −

− ≤ ≤

− + − ≤ = −

≤ − ≤ ∀

≥ ∀

                                                  

(8) 
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where ,  ,  ,  ,
t t t t t

A N D E G , and, 
t

M , 1, 2,..., ,t T=  are the sets 

of dual variables defined for the first to sixth sets of constraints 
in Model (6b), respectively. Model (8) is a linearly constrained 
nonlinear program that can be solved by several efficient and 

effective approaches [3]. Since all max

t
w , t∀ , have been set to 

the lower bounds of their α -cut in this model, this guarantees 

that ( )
Z

zµ α=%  as required by (2). 

Solving Models (7) and (8) gives the crisp interval L U[ , ]Z Zα α , 

which is the α -cut of Z% . An attractive feature of the α -cut 
approach is that all α -cuts form a nested structure with respect 
to α  [11]. According to Zadeh’s extension principle [29,30], 

Z%  defined in (2) is a fuzzy number which possesses convexity 

[12]. That is, given 
1 2
,  [0,1]α α ∈  with 

1 2
α α> , the feasible 

regions defined by 
1

α  in Models (7a) and (7c) are smaller than 

those defined by 
2

α . Consequently, 
1 2

L LZ Zα α≥  and 
1 2

U UZ Zα α≥ , 

i.e., LZα  is non-decreasing with respect to α , and UZα  is 

non-increasing with respect to α . Consequently, the 

membership function Z%  can be constructed from the solutions 
of Models (7) and (8). 

In most cases Models (7) and (8) are so complicated that they 
cannot be solved analytically, the set of intervals 

L U{[ , ] [0,1]}Z Zα α α ∈ , which can be obtained numerically, 

shows the shape of 
Z

µ %  by enumerating different value of α . 

The modeling and solution procedure  proposed in this paper 
can be expanded to multi-product fuzzy APP. Here we briefly 

describe the modeling. For example, the parameter of 
rt

P , the 

regular-time production in period t (units) becomes n
rtP , 

indicating the regular-time production of the nth product in 
period t (units). Consequently, Model (1) becomes 

1 1

max

1

min.  ( ) ( )

        s.t.    ( ) ,   ,  ;

                 0,  ,  ;

                 

N T
n n n n n n n n n n n n
pt rt ot rt t ot n ot it t bt t ht t lt t

n t

n
t t n

n n n n
t t t t

n n
n rt t

Z C P P C W C k P C I C B C H C L

W W t n

W W H L t n

k P W

= =

−

 = + + + + + + + 

≤ ∀

− − + = ∀

−

∑∑%

%

% δ

min
1 1

1 1

0,   ,  ;

                 0,   ,  ;

                 ( ) ,   ,  ;

                 ,   ,  ;

                 , , ,

n n n
n ot t t

n n n n
rt ot t t t n

n n n n n n n
t t rt ot t t t

n n n
rt ot t

t n

k P W t n

P P I B F t n

I B P P I B F t n

P P W

− −

− −

≤ ∀

− ≤ ∀

+ + − ≥ ∀

− + + − + = ∀

% β δ

, , , 0,   ,  .n n n n
t t t tI B H L t n≥ ∀

 

Then it can be solved by using the proposed approach. 
Note that the minimum total cost derived by using the 

proposed approach is expressed by a membership function 
rather than by a crisp value; i.e., it is a fuzzy performance 
measure. The benefit and significance of such a fuzzy 
performance measure are that it maintains the fuzziness of input 
information completely, thus it can represent the vague systems 
more accurately. This indicates that the proposed approach can 
obtain more realistic performance measures when some data in 
the APP model are ambiguous. Furthermore, following Lai and 

Hwang [14], only two parameters are assumed to be fuzzy; it is 
clear that the proposed approach is also applicable to APP 
problems with more fuzzy parameters. 

Although both of the proposed approach and Chanas’s 
approach are based on FLP, they are significantly different on 
methodology and obtained results. Aiming at completely 
conserving all the fuzziness of fuzzy parameters such as market 
demands and maximum workforces, the proposed approach is 
developed based on a combination of Zadeh’s extension 
principle, LP formulation of the APP problem, α -cut 
representation, two-level mathematical programming, and 
parametric programming. The results obtained from Chanas’s 
approach only showed a crisp minimum total cost for each 
different possibility level, and the corresponding values of 
decision variables [14]. Since the crisp solution could be 
underestimated, it might be happened that the over-optimistic 
solution provided let the decision maker make a wrong decision, 
and vice versa. As Tang et al. [22] pointed out, the sole optimal 
solution to APP is no guarantee of achieving the feasible 
disaggregate plan. On the contrary, much more important 
information is obtained by the proposed approach, including the 
lower and upper bounds of the minimum total costs and the 
corresponding values of decision variables for each possibility 
level α . Compared with Chanas’s approach, the results shown 
in this paper are more reasonable according to fuzzy sets, and 
conserve the fuzziness of market demands and maximum 
workforces completely. 

IV. CONCLUSION AND FUTURE WORK 

From a different viewpoint, this paper proposes a method to 
finding the membership function of the fuzzy minimum total 
cost of APP problems with fuzzy parameters. The idea is based 
on the concept of α -cuts and Zadeh’s extension principle to 
transform the fuzzy APP model to a family of crisp APP models 
which can be described by a pair of mathematical programs. The 
bounds of the α -cuts of the fuzzy minimum total cost for 
different possibility levels α  are calculated to derive the 
approximated membership function, and the corresponding 
optimal aggregate production plans are also provided. 
Compared with other studies, the proposed approach can obtain 
more reasonable solution for imprecise/fuzzy parameters, and 
so more wide-range decision information on alternative 
strategies for overtime, inventory, backorder, and hiring and 
layoffs workers is provided for decision-makers in response to 
variations in fuzzy environments. Thus the feasible disaggregate 
plan can be achieved afterwards. Although single-product APP 
models with one fuzzy parameter were investigated in this 
paper, it is clear that the proposed solution procedure is not 
confined to APP models of this type. Future research directions 
include applying this method to APP models with multiple 
products and more fuzzy parameters, and other APP models 
with different structures, such as multi-site, multiple objectives, 
different goal priorities, resource utilization constraint, 
aggregate production–distribution planning in SCM. 
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