Search results for: Support vector data description
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9250

Search results for: Support vector data description

7900 Automatic Moment-Based Texture Segmentation

Authors: Tudor Barbu

Abstract:

An automatic moment-based texture segmentation approach is proposed in this paper. First, we describe the related work in this computer vision domain. Our texture feature extraction, the first part of the texture recognition process, produces a set of moment-based feature vectors. For each image pixel, a texture feature vector is computed as a sequence of area moments. Then, an automatic pixel classification approach is proposed. The feature vectors are clustered using an unsupervised classification algorithm, the optimal number of clusters being determined using a measure based on validation indexes. From the resulted pixel classes one determines easily the desired texture regions of the image.

Keywords: Image segmentation, moment-based texture analysis, automatic classification, validity indexes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379
7899 Model Order Reduction for Frequency Response and Effect of Order of Method for Matching Condition

Authors: Aref Ghafouri, Mohammad Javad Mollakazemi, Farhad Asadi

Abstract:

In this paper, model order reduction method is used for approximation in linear and nonlinearity aspects in some experimental data. This method can be used for obtaining offline reduced model for approximation of experimental data and can produce and follow the data and order of system and also it can match to experimental data in some frequency ratios. In this study, the method is compared in different experimental data and influence of choosing of order of the model reduction for obtaining the best and sufficient matching condition for following the data is investigated in format of imaginary and reality part of the frequency response curve and finally the effect and important parameter of number of order reduction in nonlinear experimental data is explained further.

Keywords: Frequency response, Order of model reduction, frequency matching condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058
7898 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R

Authors: Jaya Mathew

Abstract:

Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.

Keywords: Predictive maintenance, machine learning, big data, cloud, on premise SQL, R.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
7897 A Small-Scale Knowledge Management System for a Service-Oriented Department

Authors: Eliza Mazmee Mazlan, K.S. Savita, Amir Hamzah Zalfakhar

Abstract:

This paper demonstrates an effort of a serviceoriented engineering department in improving the sharing and transfer of knowledge. Although the department consist of only six employees, but it provides services in various chemical application in an oil and gas business. The services provided span across Asia Pacific region mainly Indonesia, Myanmar, Vietnam, Brunei, Thailand and Singapore. Currently there are no effective tools or integrated systems that support the sharing or transfer and maintenance of knowledge so the department has considered preserving this valuable knowledge by developing a Knowledge Management System (KMS). This paper presents the development of a KMS to support the sharing of knowledge in a service-oriented engineering department of an oil and gas company. The embedded features in the KMS like blog and forum will encourage iterative process of knowledge sharing among the employees in the department. The information and knowledge being shared, discussed and communicated will be then achieved for future re-use. The re-use of the knowledge allows the department to reduce redundant efforts in providing consistent, up-to-date and cost effective of the best solution to the its clients.

Keywords: Knowledge management, knowledge managementsystem, knowledge barrier, knowledge sharing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
7896 Decision Support System for Hospital Selection in Emergency Medical Services: A Discrete Event Simulation Approach

Authors: D. Tedesco, G. Feletti, P. Trucco

Abstract:

The present study aims to develop a Decision Support System (DSS) to support operational decisions in Emergency Medical Service (EMS) systems regarding the assignment of medical emergency requests to Emergency Departments (ED). This problem is called “hospital selection” and concerns the definition of policies for the selection of the ED to which patients who require further treatment are transported by ambulance. The employed research methodology consists of a first phase of review of the technical-scientific literature concerning DSSs to support the EMS management and, in particular, the hospital selection decision. From the literature analysis, it emerged that current studies mainly focused on the EMS phases related to the ambulance service and consider a process that ends when the ambulance is available after completing a mission. Therefore, all the ED-related issues are excluded and considered as part of a separate process. Indeed, the most studied hospital selection policy turned out to be proximity, thus allowing to minimize the travelling time and to free-up the ambulance in the shortest possible time. The purpose of the present study consists in developing an optimization model for assigning medical emergency requests to the EDs also considering the expected time performance in the subsequent phases of the process, such as the case mix, the expected service throughput times, and the operational capacity of different EDs in hospitals. To this end, a Discrete Event Simulation (DES) model was created to compare different hospital selection policies. The model was implemented with the AnyLogic software and finally validated on a realistic case. The hospital selection policy that returned the best results was the minimization of the Time To Provider (TTP), considered as the time from the beginning of the ambulance journey to the ED at the beginning of the clinical evaluation by the doctor. Finally, two approaches were further compared: a static approach, based on a retrospective estimation of the TTP, and a dynamic approach, focused on a predictive estimation of the TTP which is determined with a constantly updated Winters forecasting model. Findings reveal that considering the minimization of TTP is the best hospital selection policy. It allows to significantly reducing service throughput times in the ED with a negligible increase in travel time. Furthermore, an immediate view of the saturation state of the ED is produced and the case mix present in the ED structures (i.e., the different triage codes) is considered, as different severity codes correspond to different service throughput times. Besides, the use of a predictive approach is certainly more reliable in terms on TTP estimation, than a retrospective approach. These considerations can support decision-makers in introducing different hospital selection policies to enhance EMSs performance.

Keywords: Emergency medical services, hospital selection, discrete event simulation, forecast model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 233
7895 Working with Children and Young People as a much Neglected Area of Education within the Social Studies Curriculum in Poland

Authors: Marta Czechowska-Bieluga

Abstract:

Social work education in Poland focuses mostly on developing competencies that address the needs of individuals and families affected by a variety of life's problems. As a result of the ageing of the Polish population, much attention is equally devoted to adults, including the elderly. However, social work with children and young people is the area of education which should be given more consideration. Social work students are mostly trained to cater to the needs of families and the competencies aimed to respond to the needs of children and young people do not receive enough attention and are only offered as elective classes. This paper strives to review the social work programmes offered by the selected higher education institutions in Poland in terms of social work training aimed at helping children and young people to address their life problems. The analysis conducted in this study indicates that university education for social work focuses on training professionals who will provide assistance only to adults. Due to changes in the social and political situation, including, in particular, changes in social policy implemented for the needy, it is necessary to extend this area of education to include the specificity of the support for children and young people; especially, in the light of the appearance of new support professions within the area of social work. For example, family assistants, whose task is to support parents in performing their roles as guardians and educators, also assist children. Therefore, it becomes necessary to equip social work professionals with competencies which include issues related to the quality of life of underage people living in families. Social work curricula should be extended to include the issues of child and young person development and the patterns governing this phase of life.

Keywords: Social work education, social work programmes, social worker, university.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 649
7894 Negative Emotions and Ways of Overcoming them in Prison

Authors: Katarzyna Czubak

Abstract:

The aim of this paper is description of the notion of the death for prisoners and the ways of deal with. They express indifference, coldness, inability to accept the blame, they have no shame and no empathy. Is it enough to perform acts verging on the death. In this paper we described mechanisms and regularities of selfdestructive behaviour in the view of the relevant literature? The explanation of the phenomenon is of a biological and sociopsychological nature. It must be clearly stated that all forms of selfdestructive behaviour result from various impulses, conflicts and deficits. That is why they should be treated differently in terms of motivation and functions which they perform in a given group of people. Behind self-destruction there seems to be a motivational mechanism which forces prisoners to rebel and fight against the hated law and penitentiary systems. The imprisoned believe that pain and suffering inflicted on them by themselves are better than passive acceptance of repression. The variety of self-destruction acts is wide, and some of them take strange forms. We assume that a life-death barrier is a kind of game for them. If they cannot change the degrading situation, their life loses sense.

Keywords: Self- destruction, Simulation, Negative emotions, Consequences of conviction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
7893 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle

Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores, Valentin Soloiu

Abstract:

This work describes a system that uses electromyography (EMG) signals obtained from muscle sensors and an Artificial Neural Network (ANN) for signal classification and pattern recognition that is used to control a small unmanned aerial vehicle using specific arm movements. The main objective of this endeavor is the development of an intelligent interface that allows the user to control the flight of a drone beyond direct manual control. The sensor used were the MyoWare Muscle sensor which contains two EMG electrodes used to collect signals from the posterior (extensor) and anterior (flexor) forearm, and the bicep. The collection of the raw signals from each sensor was performed using an Arduino Uno. Data processing algorithms were developed with the purpose of classifying the signals generated by the arm’s muscles when performing specific movements, namely: flexing, resting, and motion of the arm. With these arm motions roll control of the drone was achieved. MATLAB software was utilized to condition the signals and prepare them for the classification. To generate the input vector for the ANN and perform the classification, the root mean square and the standard deviation were processed for the signals from each electrode. The neuromuscular information was trained using an ANN with a single 10 neurons hidden layer to categorize the four targets. The result of the classification shows that an accuracy of 97.5% was obtained. Afterwards, classification results are used to generate the appropriate control signals from the computer to the drone through a Wi-Fi network connection. These procedures were successfully tested, where the drone responded successfully in real time to the commanded inputs.

Keywords: Biosensors, electromyography, Artificial Neural Network, Arduino, drone flight control, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 556
7892 Online Metacognitive Reading Strategies Use by Postgraduate Libyan EFL Students

Authors: Najwa Alsayed Omar

Abstract:

With the increasing popularity of the Internet, online reading has become an essential source for EFL readers. Using strategies to comprehend information on online reading texts play a crucial role in students’ academic success. Metacognitive reading strategies are effective factors that enhance EFL learners reading comprehension. This study aimed at exploring the use of online metacognitive reading strategies by postgraduate Libyan EFL students. Quantitative data was collected using the Survey of Online Reading Strategies (OSORS). The findings revealed that the participants were moderate users of metacognitive online reading strategies. Problem solving strategies were the most frequently reported used strategies, while support reading strategies were the least. The five most and least frequently reported strategies were identified. Based on the findings, some future research recommendations were presented.

Keywords: Metacognitive strategies, Online reading, Online reading strategies, Postgraduate students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3104
7891 Development of Subjective Measures of Interestingness: From Unexpectedness to Shocking

Authors: Eiad Yafi, M. A. Alam, Ranjit Biswas

Abstract:

Knowledge Discovery of Databases (KDD) is the process of extracting previously unknown but useful and significant information from large massive volume of databases. Data Mining is a stage in the entire process of KDD which applies an algorithm to extract interesting patterns. Usually, such algorithms generate huge volume of patterns. These patterns have to be evaluated by using interestingness measures to reflect the user requirements. Interestingness is defined in different ways, (i) Objective measures (ii) Subjective measures. Objective measures such as support and confidence extract meaningful patterns based on the structure of the patterns, while subjective measures such as unexpectedness and novelty reflect the user perspective. In this report, we try to brief the more widely spread and successful subjective measures and propose a new subjective measure of interestingness, i.e. shocking.

Keywords: Shocking rules (SHR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
7890 The Use of Voltage Stability Indices and Proposed Instability Prediction to Coordinate with Protection Systems

Authors: R. Leelaruji, V. Knazkins

Abstract:

This paper proposes a methodology for mitigating the occurrence of cascading failure in stressed power systems. The methodology is essentially based on predicting voltage instability in the power system using a voltage stability index and then devising a corrective action in order to increase the voltage stability margin. The paper starts with a brief description of the cascading failure mechanism which is probable root cause of severe blackouts. Then, the voltage instability indices are introduced in order to evaluate stability limit. The aim of the analysis is to assure that the coordination of protection, by adopting load shedding scheme, capable of enhancing performance of the system after the major location of instability is determined. Finally, the proposed method to generate instability prediction is introduced.

Keywords: Blackouts, cascading failure, voltage stability indices, singular value decomposition, load shedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
7889 Accelerating Sparse Matrix Vector Multiplication on Many-Core GPUs

Authors: Weizhi Xu, Zhiyong Liu, Dongrui Fan, Shuai Jiao, Xiaochun Ye, Fenglong Song, Chenggang Yan

Abstract:

Many-core GPUs provide high computing ability and substantial bandwidth; however, optimizing irregular applications like SpMV on GPUs becomes a difficult but meaningful task. In this paper, we propose a novel method to improve the performance of SpMV on GPUs. A new storage format called HYB-R is proposed to exploit GPU architecture more efficiently. The COO portion of the matrix is partitioned recursively into a ELL portion and a COO portion in the process of creating HYB-R format to ensure that there are as many non-zeros as possible in ELL format. The method of partitioning the matrix is an important problem for HYB-R kernel, so we also try to tune the parameters to partition the matrix for higher performance. Experimental results show that our method can get better performance than the fastest kernel (HYB) in NVIDIA-s SpMV library with as high as 17% speedup.

Keywords: GPU, HYB-R, Many-core, Performance Tuning, SpMV

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
7888 Big Data Strategy for Telco: Network Transformation

Authors: F. Amin, S. Feizi

Abstract:

Big data has the potential to improve the quality of services; enable infrastructure that businesses depend on to adapt continually and efficiently; improve the performance of employees; help organizations better understand customers; and reduce liability risks. Analytics and marketing models of fixed and mobile operators are falling short in combating churn and declining revenue per user. Big Data presents new method to reverse the way and improve profitability. The benefits of Big Data and next-generation network, however, are more exorbitant than improved customer relationship management. Next generation of networks are in a prime position to monetize rich supplies of customer information—while being mindful of legal and privacy issues. As data assets are transformed into new revenue streams will become integral to high performance.

Keywords: Big Data, Next Generation Networks, Network Transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2516
7887 The Effects of Mobile Phones in Mitigating Cultural Shock Amongst Refugees: Case of South Africa

Authors: Sarah Vuningoma, Maria Rosa Lorini, Wallace Chigona

Abstract:

The potential of mobile phones is evident in their ability to address isolation and loneliness, support the improvement of interpersonal relations, and contribute to the facilitation of assimilation processes. Mobile phones can play a role in facilitating the integration of refugees into a new environment. This study aims to evaluate the impact of mobile phone use on helping refugees navigate the challenges posed by cultural differences in the host country. Semi-structured interviews were employed to collect data for the study, involving a sample size of 27 participants. Participants in the study were refugees based in South Africa, and thematic analysis was the chosen method for data analysis. The research highlights the numerous challenges faced by refugees in their host nation, including a lack of local cultural skills, the separation of family and friends from their countries of origin, hurdles in acquiring legal documentation, and the complexities of assimilating into the unfamiliar community. The use of mobile phones by refugees comes with several advantages, such as the advancement of language and cultural understanding, seamless integration into the host country, streamlined communication, and the exploration of diverse opportunities. Concurrently, mobile phones allow refugees in South Africa to manage the impact of culture shock.

Keywords: Mobile phones, culture shock, refugees, South Africa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 194
7886 Jointly Learning Python Programming and Analytic Geometry

Authors: Cristina-Maria Păcurar

Abstract:

The paper presents an original Python-based application that outlines the advantages of combining some elementary notions of mathematics with the study of a programming language. The application support refers to some of the first lessons of analytic geometry, meaning conics and quadrics and their reduction to a standard form, as well as some related notions. The chosen programming language is Python, not only for its closer to an everyday language syntax – and therefore, enhanced readability – but also for its highly reusable code, which is of utmost importance for a mathematician that is accustomed to exploit already known and used problems to solve new ones. The purpose of this paper is, on one hand, to support the idea that one of the most appropriate means to initiate one into programming is throughout mathematics, and reciprocal, one of the most facile and handy ways to assimilate some basic knowledge in the study of mathematics is to apply them in a personal project. On the other hand, besides being a mean of learning both programming and analytic geometry, the application subject to this paper is itself a useful tool for it can be seen as an independent original Python package for analytic geometry.

Keywords: Analytic geometry, conics, Python programming language, quadrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
7885 Collaborative Education Practice in a Data Structure E-Learning Course

Authors: Gang Chen, Ruimin Shen

Abstract:

This paper presented a collaborative education model, which consists four parts: collaborative teaching, collaborative working, collaborative training and interaction. Supported by an e-learning platform, collaborative education was practiced in a data structure e-learning course. Data collected shows that most of students accept collaborative education. This paper goes one step attempting to determine which aspects appear to be most important or helpful in collaborative education.

Keywords: Collaborative work, education, data structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
7884 A Framework to Support Reuse in Object-Oriented Software Development

Authors: Fathi Taibi

Abstract:

Reusability is a quality desired attribute in software products. Generally, it could be achieved through adopting development methods that promote it and achieving software qualities that have been linked with high reusability proneness. With the exponential growth in mobile application development, software reuse became an integral part in a substantial number of projects. Similarly, software reuse has become widely practiced in start-up companies. However, this has led to new emerging problems. Firstly, the reused code does not meet the required quality and secondly, the reuse intentions are dubious. This work aims to propose a framework to support reuse in Object-Oriented (OO) software development. The framework comprises a process that uses a proposed reusability assessment metric and a formal foundation to specify the elements of the reused code and the relationships between them. The framework is empirically evaluated using a wide range of open-source projects and mobile applications. The results are analyzed to help understand the reusability proneness of OO software and the possible means to improve it.

Keywords: Software reusability, software metrics, object-oriented software, modularity, low complexity, understandability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 379
7883 Generic Data Warehousing for Consumer Electronics Retail Industry

Authors: S. Habte, K. Ouazzane, P. Patel, S. Patel

Abstract:

The dynamic and highly competitive nature of the consumer electronics retail industry means that businesses in this industry are experiencing different decision making challenges in relation to pricing, inventory control, consumer satisfaction and product offerings. To overcome the challenges facing retailers and create opportunities, we propose a generic data warehousing solution which can be applied to a wide range of consumer electronics retailers with a minimum configuration. The solution includes a dimensional data model, a template SQL script, a high level architectural descriptions, ETL tool developed using C#, a set of APIs, and data access tools. It has been successfully applied by ASK Outlets Ltd UK resulting in improved productivity and enhanced sales growth.

Keywords: Consumer electronics retail, dimensional data model, data analysis, generic data warehousing, reporting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
7882 Control Configuration System as a Key Element in Distributed Control System

Authors: Goodarz Sabetian, Sajjad Moshfe

Abstract:

Control system for hi-tech industries could be realized generally and deeply by a special document. Vast heavy industries such as power plants with a large number of I/O signals are controlled by a distributed control system (DCS). This system comprises of so many parts from field level to high control level, and junior instrument engineers may be confused by this enormous information. The key document which can solve this problem is “control configuration system diagram” for each type of DCS. This is a road map that covers all of activities respect to control system in each industrial plant and inevitable to be studied by whom corresponded. It plays an important role from designing control system start point until the end; deliver the system to operate. This should be inserted in bid documents, contracts, purchasing specification and used in different periods of project EPC (engineering, procurement, and construction). Separate parts of DCS are categorized here in order of importance and a brief description and some practical plan is offered. This article could be useful for all instrument and control engineers who worked is EPC projects.

Keywords: Control, configuration, DCS, power plant, bus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1215
7881 An Algebra for Protein Structure Data

Authors: Yanchao Wang, Rajshekhar Sunderraman

Abstract:

This paper presents an algebraic approach to optimize queries in domain-specific database management system for protein structure data. The approach involves the introduction of several protein structure specific algebraic operators to query the complex data stored in an object-oriented database system. The Protein Algebra provides an extensible set of high-level Genomic Data Types and Protein Data Types along with a comprehensive collection of appropriate genomic and protein functions. The paper also presents a query translator that converts high-level query specifications in algebra into low-level query specifications in Protein-QL, a query language designed to query protein structure data. The query transformation process uses a Protein Ontology that serves the purpose of a dictionary.

Keywords: Domain-Specific Data Management, Protein Algebra, Protein Ontology, Protein Structure Data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
7880 Compensation Method Eliminating Voltage Distortions in PWM Inverter

Authors: H. Sediki, S. Djennoune

Abstract:

The switching lag-time and the voltage drop across the power devices cause serious waveform distortions and fundamental voltage drop in pulse width-modulated inverter output. These phenomenons are conspicuous when both the output frequency and voltage are low. To estimate the output voltage from the PWM reference signal it is essential to take account of these imperfections and to correct them. In this paper, on-line compensation method is presented. It needs three simple blocs to add at the ideal reference voltages. This method does not require any additional hardware circuit and off- line experimental measurement. The paper includes experimental results to demonstrate the validity of the proposed method. It is applied, finally, in case of indirect vector controlled induction machine and implemented using dSpace card.

Keywords: Dead time, field-oriented control, Induction motor, PWM inverter, voltage drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4583
7879 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study

Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng

Abstract:

MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.

Keywords: MicroRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
7878 Data Mining Classification Methods Applied in Drug Design

Authors: Mária Stachová, Lukáš Sobíšek

Abstract:

Data mining incorporates a group of statistical methods used to analyze a set of information, or a data set. It operates with models and algorithms, which are powerful tools with the great potential. They can help people to understand the patterns in certain chunk of information so it is obvious that the data mining tools have a wide area of applications. For example in the theoretical chemistry data mining tools can be used to predict moleculeproperties or improve computer-assisted drug design. Classification analysis is one of the major data mining methodologies. The aim of thecontribution is to create a classification model, which would be able to deal with a huge data set with high accuracy. For this purpose logistic regression, Bayesian logistic regression and random forest models were built using R software. TheBayesian logistic regression in Latent GOLD software was created as well. These classification methods belong to supervised learning methods. It was necessary to reduce data matrix dimension before construct models and thus the factor analysis (FA) was used. Those models were applied to predict the biological activity of molecules, potential new drug candidates.

Keywords: data mining, classification, drug design, QSAR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2849
7877 Enhancing Learning for Research Higher Degree Students

Authors: Jenny Hall, Alison Jaquet

Abstract:

Universities’ push toward the production of high quality research is not limited to academic staff and experienced researchers. In this environment of research rich agendas, Higher Degree Research (HDR) students are increasingly expected to engage in the publishing of good quality papers in high impact journals. IFN001: Advanced Information Research Skills (AIRS) is a credit bearing mandatory coursework requirement for Queensland University of Technology (QUT) doctorates. Since its inception in 1989, this unique blended learning program has provided the foundations for new researchers to produce original and innovative research. AIRS was redeveloped in 2012, and has now been evaluated with reference to the university’s strategic research priorities. Our research is the first comprehensive evaluation of the program from the learner perspective. We measured whether the program develops essential transferrable skills and graduate capabilities to ensure best practice in the areas of publishing and data management. In particular, we explored whether AIRS prepares students to be agile researchers with the skills to adapt to different research contexts both within and outside academia. The target group for our study consisted of HDR students and supervisors at QUT. Both quantitative and qualitative research methods were used for data collection. Gathering data was by survey and focus groups with qualitative responses analyzed using NVivo. The results of the survey show that 82% of students surveyed believe that AIRS assisted their research process and helped them learn skills they need as a researcher. The 18% of respondents who expressed reservation about the benefits of AIRS were also examined to determine the key areas of concern. These included trends related to the timing of the program early in the candidature and a belief among some students that their previous research experience was sufficient for postgraduate study. New insights have been gained into how to better support HDR learners in partnership with supervisors and how to enhance learning experiences of specific cohorts, including international students and mature learners.

Keywords: Data management, enhancing learning experience, publishing, research higher degree students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
7876 Free Vibration Analysis of Gabled Frame Considering Elastic Supports and Semi-Rigid Connections

Authors: A. Shooshtari, A. R. Masoodi, S. Heyrani Moghaddam

Abstract:

Free vibration analysis of a gabled frame with elastic support and semi-rigid connections is performed by using a program in OpenSees software. Natural frequencies and mode shape details of frame are obtained for two states, which are semi-rigid connections and elastic supports, separately. The members of this structure are analyzed as a prismatic nonlinear beam-column element in software. The mass of structure is considered as two equal lumped masses at the head of two columns in horizontal and vertical directions. Note that the degree of freedom, allocated to all nodes, is equal to three. Furthermore, the mode shapes of frame are achieved. Conclusively, the effects of connections and supports flexibility on the natural frequencies and mode shapes of structure are investigated.  

Keywords: Natural frequency, mode shape, gabled frame, semi-rigid connection, elastic support, OpenSees software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3018
7875 Personalization and the Universal Communications Identifier Concept

Authors: Françoise Petersen, Mike Pluke, Tatiana Kovacikova, Giovanni Bartolomeo

Abstract:

As communications systems and technology become more advanced and complex, it will be increasingly important to focus on users- individual needs. Personalization and effective user profile management will be necessary to ensure the uptake and success of new services and devices and it is therefore important to focus on the users- requirements in this area and define solutions that meet these requirements. The work on personalization and user profiles emerged from earlier ETSI work on a Universal Communications Identifier (UCI) which is a unique identifier of the user rather than a range of identifiers of the many of communication devices or services (e.g. numbers of fixed phone at home/work, mobile phones, fax and email addresses). This paper describes work on personalization including standardized information and preferences and an architectural framework providing a description of how personalization can be integrated in Next Generation Networks, together with the UCI concept.

Keywords: Interoperability, Next Generation Network (NGN), Personalization, Universal Communications Identifier (UCI), User Profile Management (UPM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
7874 EPR Hiding in Medical Images for Telemedicine

Authors: K. A. Navas, S. Archana Thampy, M. Sasikumar

Abstract:

Medical image data hiding has strict constrains such as high imperceptibility, high capacity and high robustness. Achieving these three requirements simultaneously is highly cumbersome. Some works have been reported in the literature on data hiding, watermarking and stegnography which are suitable for telemedicine applications. None is reliable in all aspects. Electronic Patient Report (EPR) data hiding for telemedicine demand it blind and reversible. This paper proposes a novel approach to blind reversible data hiding based on integer wavelet transform. Experimental results shows that this scheme outperforms the prior arts in terms of zero BER (Bit Error Rate), higher PSNR (Peak Signal to Noise Ratio), and large EPR data embedding capacity with WPSNR (Weighted Peak Signal to Noise Ratio) around 53 dB, compared with the existing reversible data hiding schemes.

Keywords: Biomedical imaging, Data security, Datacommunication, Teleconferencing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2754
7873 A Robust Method for Encrypted Data Hiding Technique Based on Neighborhood Pixels Information

Authors: Ali Shariq Imran, M. Younus Javed, Naveed Sarfraz Khattak

Abstract:

This paper presents a novel method for data hiding based on neighborhood pixels information to calculate the number of bits that can be used for substitution and modified Least Significant Bits technique for data embedding. The modified solution is independent of the nature of the data to be hidden and gives correct results along with un-noticeable image degradation. The technique, to find the number of bits that can be used for data hiding, uses the green component of the image as it is less sensitive to human eye and thus it is totally impossible for human eye to predict whether the image is encrypted or not. The application further encrypts the data using a custom designed algorithm before embedding bits into image for further security. The overall process consists of three main modules namely embedding, encryption and extraction cm.

Keywords: Data hiding, image processing, information security, stagonography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2341
7872 Unsupervised Outlier Detection in Streaming Data Using Weighted Clustering

Authors: Yogita, Durga Toshniwal

Abstract:

Outlier detection in streaming data is very challenging because streaming data cannot be scanned multiple times and also new concepts may keep evolving. Irrelevant attributes can be termed as noisy attributes and such attributes further magnify the challenge of working with data streams. In this paper, we propose an unsupervised outlier detection scheme for streaming data. This scheme is based on clustering as clustering is an unsupervised data mining task and it does not require labeled data, both density based and partitioning clustering are combined for outlier detection. In this scheme partitioning clustering is also used to assign weights to attributes depending upon their respective relevance and weights are adaptive. Weighted attributes are helpful to reduce or remove the effect of noisy attributes. Keeping in view the challenges of streaming data, the proposed scheme is incremental and adaptive to concept evolution. Experimental results on synthetic and real world data sets show that our proposed approach outperforms other existing approach (CORM) in terms of outlier detection rate, false alarm rate, and increasing percentages of outliers.

Keywords: Concept Evolution, Irrelevant Attributes, Streaming Data, Unsupervised Outlier Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2637
7871 Plaque Formation of Toxoplasma gondii in Vero Cells using Carboxymethylcellulose

Authors: L. Fonseca-Géigel, M. Alvarez, G. García, R. Cox, L. Morier, L. Fonte, M. G. Guzmán

Abstract:

Toxoplasma gondii is an intracellular parasite capable of infecting all nucleated cells in a diverse array of species. Toxoplasma plaque assay have been described using Bacto Agar. Because of its experimental advantages carboxymethyl cellulose overlay, medium viscosity was choosing and the aim of this work was to develop alternative method for formation of T. gondii plaques. Tachyzoites were inoculated onto monolayers of Vero cells and cultured at 37° C under 5 % CO2. The cultures were followed up by microscopy inspection. Small plaques were visible by naphtol blue stain 4 days after infection. Larger plaques could be observed by day 10 of culture. The carboxymethyl cellulose is a cheap reagent and the methodology is easier, faster than assays under agar overlay. This is the first description of the carboxymethyl cellulose overlay use for obtaining the formation of T. gondii plaques and may be useful in consequent obtaining tachyzoites for detailed studies.

Keywords: Carboxymethyl cellulose, Cell culture, Plaque assay, Toxoplasma gondii.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2746