Search results for: particle velocity
128 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers
Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen
Abstract:
In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other.
As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.
Keywords: AIS, ANN, ECG, hybrid classifiers, PSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917127 Computational Analysis of Cavity Effect over Aircraft Wing
Authors: P. Booma Devi, Dilip A. Shah
Abstract:
This paper seeks the potentials of studying aerodynamic characteristics of inward cavities called dimples, as an alternative to the classical vortex generators. Increasing stalling angle is a greater challenge in wing design. But our examination is primarily focused on increasing lift. In this paper, enhancement of lift is mainly done by introduction of dimple or cavity in a wing. In general, aircraft performance can be enhanced by increasing aerodynamic efficiency that is lift to drag ratio of an aircraft wing. Efficiency improvement can be achieved by improving the maximum lift co-efficient or by reducing the drag co-efficient. At the time of landing aircraft, high angle of attack may lead to stalling of aircraft. To avoid this kind of situation, increase in the stalling angle is warranted. Hence, improved stalling characteristic is the best way to ease landing complexity. Computational analysis is done for the wing segment made of NACA 0012. Simulation is carried out for 30 m/s free stream velocity over plain airfoil and different types of cavities. The wing is modeled in CATIA V5R20 and analyses are carried out using ANSYS CFX. Triangle and square shapes are used as cavities for analysis. Simulations revealed that cavity placed on wing segment shows an increase of maximum lift co-efficient when compared to normal wing configuration. Flow separation is delayed at downstream of the wing by the presence of cavities up to a particular angle of attack.Keywords: Lift, square and rectangle dimples, enhancement of stall angle, cavity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872126 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity
Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Mujeeb Ur Rehman, Saifur Rahman Sabuj
Abstract:
This paper examines relationships between solar activity and earthquakes, it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity, and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to effect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth
.Keywords: K-Nearest Neighbour, Support Vector Regression, Random Forest Regression, Long Short-Term Memory Network, earthquakes, solar activity, sunspot number, solar wind, solar flares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205125 Performance Evaluation of an ANC-based Hybrid Algorithm for Multi-target Wideband Active Sonar Echolocation System
Authors: Jason Chien-Hsun Tseng
Abstract:
This paper evaluates performances of an adaptive noise cancelling (ANC) based target detection algorithm on a set of real test data supported by the Defense Evaluation Research Agency (DERA UK) for multi-target wideband active sonar echolocation system. The hybrid algorithm proposed is a combination of an adaptive ANC neuro-fuzzy scheme in the first instance and followed by an iterative optimum target motion estimation (TME) scheme. The neuro-fuzzy scheme is based on the adaptive noise cancelling concept with the core processor of ANFIS (adaptive neuro-fuzzy inference system) to provide an effective fine tuned signal. The resultant output is then sent as an input to the optimum TME scheme composed of twogauge trimmed-mean (TM) levelization, discrete wavelet denoising (WDeN), and optimal continuous wavelet transform (CWT) for further denosing and targets identification. Its aim is to recover the contact signals in an effective and efficient manner and then determine the Doppler motion (radial range, velocity and acceleration) at very low signal-to-noise ratio (SNR). Quantitative results have shown that the hybrid algorithm have excellent performance in predicting targets- Doppler motion within various target strength with the maximum false detection of 1.5%.Keywords: Wideband Active Sonar Echolocation, ANC Neuro-Fuzzy, Wavelet Denoise, CWT, Hybrid Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059124 Door Fan Test in Data Processing Center at Portopalo Test Site
Authors: F. Noto, M. Castro, R. Garraffo, An. Mirabella, A. Rizzo, G. Cuttone
Abstract:
The door fan test is a verification procedure on the tightness of a room, necessary following the installation of saturation extinguishing systems and made mandatory according to the UNI 15004-1: 2019 standard whenever a gas extinguishing system is designed and installed. The door fan test was carried out at the Portopalo di Capo Passero headquarters of the Southern National Laboratories and highlighted how the Data Processing Center (CED) is perfectly up to standard, passing the door fan test in an excellent way. The Southern National Laboratories constitute a solid research reality, well established in the international scientific panorama. The CED in the Portopalo site has been expanded, so the extinguishing system has been expanded according to a detailed design. After checking the correctness of the design to verify the absence of air leaks, we carried out the door fan test. The activities of the Laboratori Nazionali del Sud (LNS) are mainly aimed at basic research in the field of Nuclear Physics, Nuclear and Particle Astrophysics. The Portopalo site will host some of the largest submarine wired scientific research infrastructures built in Europe and in the world, such as KM3NeT and EMSO ERIC; in particular, the site research laboratory in Portopalo will host the power supply and data acquisition systems of the underwater infrastructures, and a technological backbone will be created, unique in the Mediterranean, capable of allowing the connection, at abyssal depths, of dozens of real-time surveying and research structures of the marine environment deep.
Keywords: KM3Net, fire protection, door fan test, CED.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 245123 Vibration Analysis of a Solar Powered UAV
Authors: Kevin Anderson, Sukhwinder Singh Sandhu, Nouh Anies, Shilpa Ravichandra, Steven Dobbs, Donald Edberg
Abstract:
This paper presents the results of a Finite Element based vibration analysis of a solar powered Unmanned Aerial Vehicle (UAV). The purpose of this paper was to quantify the free vibration, forced vibration response due to differing point inputs in order to predict the relative response magnitudes and frequencies at various wing locations of vibration induced power generators (magnet in coil) excited by gust and/or control surface pulse-decays used to help power the flight of the electric UAV. A Fluid Structure Interaction (FSI) study was performed in order to ascertain pertinent design stresses and deflections as well as aerodynamic parameters of the UAV airfoil. The 10 ft span airfoil is modeled using Mylar as the primary material. Results show that the free mode in bending is 4.8 Hz while the first forced bending mode is on range of 16.2 to 16.7 Hz depending on the location of excitation. The free torsional bending mode is 28.3 Hz, and the first forced torsional mode is range of 26.4 to 27.8 Hz, depending on the location of excitation. The FSI results predict the coefficients of aerodynamic drag and lift of 0.0052 and 0.077, respectively, which matches hand-calculations used to validate the Finite Element based results. FSI based maximum von Mises stresses and deflections were found to be 0.282 MPa and 3.4 mm, respectively. Dynamic pressures on the airfoil range from 1.04 to 1.23 kPa corresponding to velocity magnitudes in range of 22 to 66 m/s.Keywords: ANSYS, finite element, FSI, UAV, vibrations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2752122 ANN based Multi Classifier System for Prediction of High Energy Shower Primary Energy and Core Location
Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta
Abstract:
Cosmic showers, during the transit through space, produce sub - products as a result of interactions with the intergalactic or interstellar medium which after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of High Energy Particle Showers involve a plethora of theoretical and experimental works with a host of constraints resulting in inaccuracies in measurements. Therefore, there exist a necessity to develop a readily available system based on soft-computational approaches which can be used for EAS analysis. This is due to the fact that soft computational tools such as Artificial Neural Network (ANN)s can be trained as classifiers to adapt and learn the surrounding variations. But single classifiers fail to reach optimality of decision making in many situations for which Multiple Classifier System (MCS) are preferred to enhance the ability of the system to make decisions adjusting to finer variations. This work describes the formation of an MCS using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN) with data inputs from correlation mapping Self Organizing Map (SOM) blocks and the output optimized by another SOM. The results show that the setup can be adopted for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.Keywords: EAS, Shower, Core, ANN, Location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302121 Experimental and CFD Simulation of the Jet Pump for Air Bubbles Formation
Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski
Abstract:
A jet pump is a type of pump that accelerates the flow of a secondary fluid (driven fluid) by introducing a motive fluid with high velocity into a converging-diverging nozzle. Jet pumps are also known as adductors or ejectors depending on the motivator phase. The ejector's motivator is of a gaseous nature, usually steam or air, while the educator's motivator is a liquid, usually water. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. In this work, we will discuss about the characteristics of the jet pump and the computational simulation of this device. To find the optimal angle and depth for the air pipe, so as to achieve the maximal air volumetric flow rate, an experimental apparatus was constructed to ascertain the best geometrical configuration for this new type of jet pump. By using 3D printing technology, a series of jet pumps was printed and tested whilst aspiring to maximize air flow rate dependent on angle and depth of the air pipe insertion. The experimental results show a major difference of up to 300% in performance between the different pumps (ratio of air flow rate to supplied power) where the optimal geometric model has an insertion angle of 600 and air pipe insertion depth ending at the center of the mixing chamber. The differences between the pumps were further explained by using CFD for better understanding the reasons that affect the airflow rate. The validity of the computational simulation and the corresponding assumptions have been proved experimentally. The present research showed high degree of congruence with the results of the laboratory tests. This study demonstrates the potential of using of the jet pump in many practical applications.
Keywords: Air bubbles, CFD simulation, jet pump, practical applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018120 Mixed Convection in a Vertical Heated Channel: Influence of the Aspect Ratio
Authors: Ameni Mokni , Hatem Mhiri , Georges Le Palec , Philippe Bournot
Abstract:
In mechanical and environmental engineering, mixed convection is a frequently encountered thermal fluid phenomenon which exists in atmospheric environment, urban canopy flows, ocean currents, gas turbines, heat exchangers, and computer chip cooling systems etc... . This paper deals with a numerical investigation of mixed convection in a vertical heated channel. This flow results from the mixing of the up-going fluid along walls of the channel with the one issued from a flat nozzle located in its entry section. The fluiddynamic and heat-transfer characteristics of vented vertical channels are investigated for constant heat-flux boundary conditions, a Rayleigh number equal to 2.57 1010, for two jet Reynolds number Re=3 103 and 2104 and the aspect ratio in the 8-20 range. The system of governing equations is solved with a finite volumes method and an implicit scheme. The obtained results show that the turbulence and the jet-wall interaction activate the heat transfer, as does the drive of ambient air by the jet. For low Reynolds number Re=3 103, the increase of the aspect Ratio enhances the heat transfer of about 3%, however; for Re=2 104, the heat transfer enhancement is of about 12%. The numerical velocity, pressure and temperature fields are post-processed to compute the quantities of engineering interest such as the induced mass flow rate, and average Nusselt number, in terms of Rayleigh, Reynolds numbers and dimensionless geometric parameters are presented.Keywords: Aspect Ratio, Channel, Jet, Mixed convection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178119 Mechanical Properties of Cement Slurry by Partially Substitution of Industry Waste Natural Pozzolans
Authors: R. Ziaie Moayed, S. P. Emadoleslami Oskoei, S. D. Beladi Mousavi, A. Taleb Beydokhti
Abstract:
There have been many reports of the destructive effects of cement on the environment in recent years. In the present research, it has been attempted to reduce the destructive effects of cement by replacing silica fume as adhesive materials instead of cement. The present study has attempted to improve the mechanical properties of cement slurry by using waste material from a glass production factory, located in Qazvin city of Iran, in which accumulation volume has become an environmental threat. The chemical analysis of the waste material indicates that this material contains about 94% of SiO2 and AL2O3 and has a close structure to silica fume. Also, the particle grain size test was performed on the mentioned waste. Then, the unconfined compressive strength test of the slurry was performed by preparing a mixture of water and adhesives with different percentages of cement and silica fume. The water to an adhesive ratio of this mixture is 1:3, and the curing process last 28 days. It was found that the sample had an unconfined compressive strength of about 300 kg/cm2 in a mixture with equal proportions of cement and silica fume. Besides, the sample had a brittle fracture in the slurry sample made of pure cement, however, the fracture in cement-silica fume slurry mixture is flexible and the structure of the specimen remains coherent after fracture. Therefore, considering the flexibility that is achieved by replacing this waste, it can be used to stabilize soils with cracking potential.
Keywords: Cement replacement, cement slurry, environmental threat, natural pozzolan, silica fume, waste material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 671118 The Effect of Development of Two-Phase Flow Regimes on the Stability of Gas Lift Systems
Authors: Khalid. M. O. Elmabrok, M. L. Burby, G. G. Nasr
Abstract:
Flow instability during gas lift operation is caused by three major phenomena – the density wave oscillation, the casing heading pressure and the flow perturbation within the two-phase flow region. This paper focuses on the causes and the effect of flow instability during gas lift operation and suggests ways to control it in order to maximise productivity during gas lift operations. A laboratory-scale two-phase flow system to study the effects of flow perturbation was designed and built. The apparatus is comprised of a 2 m long by 66 mm ID transparent PVC pipe with air injection point situated at 0.1 m above the base of the pipe. This is the point where stabilised bubbles were visibly clear after injection. Air is injected into the water filled transparent pipe at different flow rates and pressures. The behavior of the different sizes of the bubbles generated within the two-phase region was captured using a digital camera and the images were analysed using the advanced image processing package. It was observed that the average maximum bubbles sizes increased with the increase in the length of the vertical pipe column from 29.72 to 47 mm. The increase in air injection pressure from 0.5 to 3 bars increased the bubble sizes from 29.72 mm to 44.17 mm and then decreasing when the pressure reaches 4 bars. It was observed that at higher bubble velocity of 6.7 m/s, larger diameter bubbles coalesce and burst due to high agitation and collision with each other. This collapse of the bubbles causes pressure drop and reverse flow within two phase flow and is the main cause of the flow instability phenomena.Keywords: Gas lift instability, bubble forming, bubble collapsing, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475117 Boundary Layer Flow of a Casson Nanofluid past a Vertical Exponentially Stretching Cylinder in the Presence of a Transverse Magnetic Field with Internal Heat Generation/Absorption
Authors: G. Sarojamma, K. Vendabai
Abstract:
An analysis is carried out to investigate the effect of magnetic field and heat source on the steady boundary layer flow and heat transfer of a Casson nanofluid over a vertical cylinder stretching exponentially along its radial direction. Using a similarity transformation, the governing mathematical equations, with the boundary conditions are reduced to a system of coupled, non –linear ordinary differential equations. The resulting system is solved numerically by the fourth order Runge – Kutta scheme with shooting technique. The influence of various physical parameters such as Reynolds number, Prandtl number, magnetic field, Brownian motion parameter, thermophoresis parameter, Lewis number and the natural convection parameter are presented graphically and discussed for non – dimensional velocity, temperature and nanoparticle volume fraction. Numerical data for the skin – friction coefficient, local Nusselt number and the local Sherwood number have been tabulated for various parametric conditions. It is found that the local Nusselt number is a decreasing function of Brownian motion parameter Nb and the thermophoresis parameter Nt.
Keywords: Casson nanofluid, Boundary layer flow, Internal heat generation/absorption, Exponentially stretching cylinder, Heat transfer, Brownian motion, Thermophoresis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2822116 An Automated Approach to the Nozzle Configuration of Polycrystalline Diamond Compact Drill Bits for Effective Cuttings Removal
Authors: R. Suresh, Pavan Kumar Nimmagadda, Ming Zo Tan, Shane Hart, Sharp Ugwuocha
Abstract:
Polycrystalline diamond compact (PDC) drill bits are extensively used in the oil and gas industry as well as the mining industry. Industry engineers continually improve upon PDC drill bit designs and hydraulic conditions. Optimized injection nozzles play a key role in improving the drilling performance and efficiency of these ever changing PDC drill bits. In the first part of this study, computational fluid dynamics (CFD) modelling is performed to investigate the hydrodynamic characteristics of drilling fluid flow around the PDC drill bit. An Open-source CFD software – OpenFOAM simulates the flow around the drill bit, based on the field input data. A specifically developed console application integrates the entire CFD process including, domain extraction, meshing, and solving governing equations and post-processing. The results from the OpenFOAM solver are then compared with that of the ANSYS Fluent software. The data from both software programs agree. The second part of the paper describes the parametric study of the PDC drill bit nozzle to determine the effect of parameters such as number of nozzles, nozzle velocity, nozzle radial position and orientations on the flow field characteristics and bit washing patterns. After analyzing a series of nozzle configurations, the best configuration is identified and recommendations are made for modifying the PDC bit design.
Keywords: ANSYS Fluent, computational fluid dynamics, nozzle configuration, OpenFOAM, PDC dill bit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 987115 The Effect of Motor Learning Based Computer-Assisted Practice for Children with Handwriting Deficit – Comparing with the Effect of Traditional Sensorimotor Approach
Authors: Shao-Hsia Chang, Nan-Ying Yu
Abstract:
The objective of this study was to test how advanced digital technology enables a more effective training on the handwriting of children with handwriting deficit. This study implemented the graphomotor apparatuses to a computer-assisted instruction system. In a randomized controlled trial, the experiments for verifying the intervention effect were conducted. Forty two children with handwriting deficit were assigned to computer-assisted instruction, sensorimotor training or control (no intervention) group. Handwriting performance was measured using the Elementary reading/writing test and computerized handwriting evaluation before and after 6 weeks of intervention. Analysis of variance of change scores were conducted to show whether statistically significant difference across the three groups. Significant difference was found among three groups. Computer group shows significant difference from the other two groups. Significance was denoted in near-point, far-point copy, dictation test, and writing from phonetic symbols. Writing speed and mean stroke velocity in near-, far-point and short paragraph copy were found significantly difference among three groups. Computer group shows significant improvement from the other groups. For clinicians and school teachers, the results of this study provide a motor control based insight for the improvement of handwriting difficulties.
Keywords: Dysgraphia, computerized handwriting evaluation, sensorimotor program, computer assisted program.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088114 The Effect of Zeolite on Sandy-Silt Soil Mechanical Properties
Authors: Shahryar Aftabi, Saeed Fathi, Mohammad H. Aminfar
Abstract:
It is well known that cemented sand is one of the best approaches for soil stabilization. In some cases, a blend of sand, cement and other pozzolan materials such as zeolite, nano-particles and fiber can be widely (commercially) available and be effectively used in soil stabilization, especially in road construction. In this research, we investigate the effects of CaO which is based on the geotechnical characteristics of zeolite composition with sandy silt soil. Zeolites have low amount of CaO in their structures, that is, varying from 3% to 10%, and by removing the cement paste, we want to investigate the effect of zeolite pozzolan without any activator on soil samples strength. In this research, experiments are concentrated on various weight percentages of zeolite in the soil to examine the effect of the zeolite on drainage shear strength and California Bearing Ratio (CBR) both with and without curing. The study also investigates their liquid limit and plastic limit behavior and makes a comparative result by using Feng's and Wroth-Wood's methods in fall cone (cone penetrometer) device; in the final the SEM images have been presented. The results show that by increasing the percentage of zeolite in without-curing samples, the fine zeolite particles increase some soil's strength, but in the curing-state we can see a relatively higher strength toward without-curing state, since the zeolites have no plastic behavior, the pozzolanic property of zeolites plays a much higher role than cementing properties. Indeed, it is better to combine zeolite particle with activator material such as cement or lime to gain better results.
Keywords: CBR, direct shear, fall-cone, sandy-silt, SEM, zeolite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 616113 Synthesis and Electrochemical Characterization of Iron Oxide / Activated Carbon Composite Electrode for Symmetrical Supercapacitor
Authors: PoiSim Khiew, MuiYen Ho, ThianKhoonTan, WeeSiong Chiu, Roslinda Shamsudin, Muhammad Azmi Abd-Hamid, ChinHua Chia
Abstract:
In the present work, we have developed a symmetric electrochemical capacitor based on the nanostructured iron oxide (Fe3O4)-activated carbon (AC) nanocomposite materials. The physical properties of the nanocomposites were characterized by Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The electrochemical performances of the composite electrode in 1.0 M Na2SO3 and 1.0 M Na2SO4 aqueous solutions were evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The composite electrode with 4 wt% of iron oxide nanomaterials exhibits the highest capacitance of 86 F/g. The experimental results clearly indicate that the incorporation of iron oxide nanomaterials at low concentration to the composite can improve the capacitive performance, mainly attributed to the contribution of the pseudocapacitance charge storage mechanism and the enhancement on the effective surface area of the electrode. Nevertheless, there is an optimum threshold on the amount of iron oxide that needs to be incorporated into the composite system. When this optimum threshold is exceeded, the capacitive performance of the electrode starts to deteriorate, as a result of the undesired particle aggregation, which is clearly indicated in the SEM analysis. The electrochemical performance of the composite electrode is found to be superior when Na2SO3 is used as the electrolyte, if compared to the Na2SO4 solution. It is believed that Fe3O4 nanoparticles can provide favourable surface adsorption sites for sulphite (SO3 2-) anions which act as catalysts for subsequent redox and intercalation reactions.
Keywords: Metal oxide nanomaterials, Electrochemical Capacitor, Double Layer Capacitance, Pseduocapacitance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5645112 Preparation of Fe3Si/Ferrite Micro- and Nano-Powder Composite
Authors: R. Bures, M. Streckova, M. Faberova, P. Kurek
Abstract:
Composite material based on Fe3Si micro-particles and Mn-Zn nano-ferrite was prepared using powder metallurgy technology. The sol-gel followed by autocombustion process was used for synthesis of Mn0.8Zn0.2Fe2O4 ferrite. 3 wt.% of mechanically milled ferrite was mixed with Fe3Si powder alloy. Mixed micro-nano powder system was homogenized by the Resonant Acoustic Mixing using ResodynLabRAM Mixer. This non-invasive homogenization technique was used to preserve spherical morphology of Fe3Si powder particles. Uniaxial cold pressing in the closed die at pressure 600 MPa was applied to obtain a compact sample. Microwave sintering of green compact was realized at 800°C, 20 minutes, in air. Density of the powders and composite was measured by Hepycnometry. Impulse excitation method was used to measure elastic properties of sintered composite. Mechanical properties were evaluated by measurement of transverse rupture strength (TRS) and Vickers hardness (HV). Resistivity was measured by 4 point probe method. Ferrite phase distribution in volume of the composite was documented by metallographic analysis. It has been found that nano-ferrite particle distributed among micro- particles of Fe3Si powder alloy led to high relative density (~93%) and suitable mechanical properties (TRS >100 MPa, HV ~1GPa, E-modulus ~140 GPa) of the composite. High electric resistivity (R~6.7 ohm.cm) of prepared composite indicate their potential application as soft magnetic material at medium and high frequencies.
Keywords: Micro- and nano-composite, soft magnetic materials, microwave sintering, mechanical and electric properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3794111 An Analysis of Collapse Mechanism of Thin- Walled Circular Tubes Subjected to Bending
Authors: Somya Poonaya, Chawalit Thinvongpituk, Umphisak Teeboonma
Abstract:
Circular tubes have been widely used as structural members in engineering application. Therefore, its collapse behavior has been studied for many decades, focusing on its energy absorption characteristics. In order to predict the collapse behavior of members, one could rely on the use of finite element codes or experiments. These tools are helpful and high accuracy but costly and require extensive running time. Therefore, an approximating model of tubes collapse mechanism is an alternative for early step of design. This paper is also aimed to develop a closed-form solution of thin-walled circular tube subjected to bending. It has extended the Elchalakani et al.-s model (Int. J. Mech. Sci.2002; 44:1117-1143) to include the rate of energy dissipation of rolling hinge in the circumferential direction. The 3-D geometrical collapse mechanism was analyzed by adding the oblique hinge lines along the longitudinal tube within the length of plastically deforming zone. The model was based on the principal of energy rate conservation. Therefore, the rates of internal energy dissipation were calculated for each hinge lines which are defined in term of velocity field. Inextensional deformation and perfect plastic material behavior was assumed in the derivation of deformation energy rate. The analytical result was compared with experimental result. The experiment was conducted with a number of tubes having various D/t ratios. Good agreement between analytical and experiment was achieved.Keywords: Bending, Circular tube, Energy, Mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3512110 Coupling Heat and Mass Transfer for Hydrogen-Assisted Self-Ignition Behaviors of Propane-Air Mixtures in Catalytic Micro-Channels
Authors: Junjie Chen, Deguang Xu
Abstract:
Transient simulation of the hydrogen-assisted self-ignition of propane-air mixtures were carried out in platinum-coated micro-channels from ambient cold-start conditions, using a two-dimensional model with reduced-order reaction schemes, heat conduction in the solid walls, convection and surface radiation heat transfer. The self-ignition behavior of hydrogen-propane mixed fuel is analyzed and compared with the heated feed case. Simulations indicate that hydrogen can successfully cause self-ignition of propane-air mixtures in catalytic micro-channels with a 0.2 mm gap size, eliminating the need for startup devices. The minimum hydrogen composition for propane self-ignition is found to be in the range of 0.8-2.8% (on a molar basis), and increases with increasing wall thermal conductivity, and decreasing inlet velocity or propane composition. Higher propane-air ratio results in earlier ignition. The ignition characteristics of hydrogen-assisted propane qualitatively resemble the selectively inlet feed preheating mode. Transient response of the mixed hydrogen- propane fuel reveals sequential ignition of propane followed by hydrogen. Front-end propane ignition is observed in all cases. Low wall thermal conductivities cause earlier ignition of the mixed hydrogen-propane fuel, subsequently resulting in low exit temperatures. The transient-state behavior of this micro-scale system is described, and the startup time and minimization of hydrogen usage are discussed.
Keywords: Micro-combustion, Self-ignition, Hydrogen addition, Heat transfer, Catalytic combustion, Transient simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885109 Analysis of the Energetic Feature of the Loaded Gait with Variation of the Trunk Flexion Angle
Authors: Ji-il Park, Hyungtae Seo, Jihyuk Park, Kwang jin Choi, Kyung-Soo Kim, Soohyun Kim
Abstract:
The purpose of the research is to investigate the energetic feature of the backpack load on soldier’s gait with variation of the trunk flexion angle. It is believed that the trunk flexion variation of the loaded gait may cause a significant difference in the energy cost which is often in practice in daily life. To this end, seven healthy Korea military personnel participated in the experiment and are tested under three different walking postures comprised of the small, natural and large trunk flexion. There are around 5 degree differences of waist angle between each trunk flexion. The ground reaction forces were collected from the force plates and motion kinematic data are measured by the motion capture system. Based on these data, the impulses, momentums and mechanical works done on the center of body mass (COM) during the double support phase were computed. The result shows that the push-off and heel strike impulse are not relevant to the trunk flexion change, however the mechanical work by the push-off and heel strike were changed by the trunk flexion variation. It is because the vertical velocity of the COM during the double support phase is increased significantly with an increase in the trunk flexion. Therefore, we can know that the gait efficiency of the loaded gait depends on the trunk flexion angle. Also, even though the gravitational impulse and pre-collision momentum are changed by the trunk flexion variation, the after-collision momentum is almost constant regardless of the trunk flexion variation.
Keywords: Loaded gait, collision, impulse, gravity, heel strike, push-off, gait analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842108 A Theoretical Analysis of Air Cooling System Using Thermal Ejector under Variable Generator Pressure
Authors: Mohamed Ouzzane, Mahmoud Bady
Abstract:
Due to energy and environment context, research is looking for the use of clean and energy efficient system in cooling industry. In this regard, the ejector represents one of the promising solutions. The thermal ejector is a passive component used for thermal compression in refrigeration and cooling systems, usually activated by heat either waste or solar. The present study introduces a theoretical analysis of the cooling system which uses a gas ejector thermal compression. A theoretical model is developed and applied for the design and simulation of the ejector, as well as the whole cooling system. Besides the conservation equations of mass, energy and momentum, the gas dynamic equations, state equations, isentropic relations as well as some appropriate assumptions are applied to simulate the flow and mixing in the ejector. This model coupled with the equations of the other components (condenser, evaporator, pump, and generator) is used to analyze profiles of pressure and velocity (Mach number), as well as evaluation of the cycle cooling capacity. A FORTRAN program is developed to carry out the investigation. Properties of refrigerant R134a are calculated using real gas equations. Among many parameters, it is thought that the generator pressure is the cornerstone in the cycle, and hence considered as the key parameter in this investigation. Results show that the generator pressure has a great effect on the ejector and on the whole cooling system. At high generator pressures, strong shock waves inside the ejector are created, which lead to significant condenser pressure at the ejector exit. Additionally, at higher generator pressures, the designed system can deliver cooling capacity for high condensing pressure (hot season).
Keywords: Air cooling system, refrigeration, thermal ejector, thermal compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 601107 Molecular Dynamics Simulation of the Effect of the Solid Gas Interface Nanolayer on Enhanced Thermal Conductivity of Copper-CO2 Nanofluid
Authors: Zeeshan Ahmed, Ajinkya Sarode, Pratik Basarkar, Atul Bhargav, Debjyoti Banerjee
Abstract:
The use of CO2 in oil recovery and in CO2 capture and storage is gaining traction in recent years. These applications involve heat transfer between CO2 and the base fluid, and hence, there arises a need to improve the thermal conductivity of CO2 to increase the process efficiency and reduce cost. One way to improve the thermal conductivity is through nanoparticle addition in the base fluid. The nanofluid model in this study consisted of copper (Cu) nanoparticles in varying concentrations with CO2 as a base fluid. No experimental data are available on thermal conductivity of CO2 based nanofluid. Molecular dynamics (MD) simulations are an increasingly adopted tool to perform preliminary assessments of nanoparticle (NP) fluid interactions. In this study, the effect of the formation of a nanolayer (or molecular layering) at the gas-solid interface on thermal conductivity is investigated using equilibrium MD simulations by varying NP diameter and keeping the volume fraction (1.413%) of nanofluid constant to check the diameter effect of NP on the nanolayer and thermal conductivity. A dense semi-solid fluid layer was seen to be formed at the NP-gas interface, and the thickness increases with increase in particle diameter, which also moves with the NP Brownian motion. Density distribution has been done to see the effect of nanolayer, and its thickness around the NP. These findings are extremely beneficial, especially to industries employed in oil recovery as increased thermal conductivity of CO2 will lead to enhanced oil recovery and thermal energy storage.
Keywords: Copper-CO2 nanofluid, molecular interfacial layer, thermal conductivity, molecular dynamic simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1111106 Probability-Based Damage Detection of Structures Using Model Updating with Enhanced Ideal Gas Molecular Movement Algorithm
Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee
Abstract:
Model updating method has received increasing attention in damage detection structures based on measured modal parameters. Therefore, a probability-based damage detection (PBDD) procedure based on a model updating procedure is presented in this paper, in which a one-stage model-based damage identification technique based on the dynamic features of a structure is investigated. The presented framework uses a finite element updating method with a Monte Carlo simulation that considers the uncertainty caused by measurement noise. Enhanced ideal gas molecular movement (EIGMM) is used as the main algorithm for model updating. Ideal gas molecular movement (IGMM) is a multiagent algorithm based on the ideal gas molecular movement. Ideal gas molecules disperse rapidly in different directions and cover all the space inside. This is embedded in the high speed of molecules, collisions between them and with the surrounding barriers. In IGMM algorithm to accomplish the optimal solutions, the initial population of gas molecules is randomly generated and the governing equations related to the velocity of gas molecules and collisions between those are utilized. In this paper, an enhanced version of IGMM, which removes unchanged variables after specified iterations, is developed. The proposed method is implemented on two numerical examples in the field of structural damage detection. The results show that the proposed method can perform well and competitive in PBDD of structures.Keywords: Enhanced ideal gas molecular movement, ideal gas molecular movement, model updating method, probability-based damage detection, uncertainty quantification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1077105 Geotechnical Properties and Compressibility Behavior of Organic Dredged Soils
Authors: Inci Develioglu, Hasan Firat Pulat
Abstract:
Sustainable development is one of the most important topics in today's world, and it is also an important research topic for geoenvironmental engineering. Dredging process is performed to expand the river and port channel, flood control and accessing harbors. Every year large amount of sediment are dredged for these purposes. Dredged marine soils can be reused as filling materials, road and foundation embankments, construction materials and wildlife habitat developments. In this study, geotechnical engineering properties and compressibility behavior of dredged soil obtained from the Izmir Bay were investigated. The samples with four different organic matter contents were obtained and particle size distributions, consistency limits, pH and specific gravity tests were performed. The consolidation tests were conducted to examine organic matter content (OMC) effects on compressibility behavior of dredged soil. This study has shown that the OMC has an important effect on the engineering properties of dredged soils. The liquid and plastic limits increased with increasing OMC. The lowest specific gravity belonged to sample which has the maximum OMC. The specific gravity values ranged between 2.76 and 2.52. The maximum void ratio difference belongs to sample with the highest OMC (De11% = 0.38). As the organic matter content of the samples increases, the change in the void ratio has also increased. The compression index increases with increasing OMC.
Keywords: Compressibility, consolidation, geotechnical properties, organic matter content, organic soils.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958104 Ballistics of Main Seat Ejection Cartridges for Aircraft Application
Authors: B. A. Parate, K. D. Deodhar, V. K. Dixit, V. Venkateswara Rao
Abstract:
This article outlines the ballistics of main seat ejection cartridges for aircraft application. The ballistics of main seat ejection cartridges plays a vital role during the ejection of the pilot in an emergency. The ballistic parameters such as maximum pressure, time to reach the maximum pressure, and time required to reach half the maximum pressure that responsible to the spinal injury of the pilot are assessed. Therefore, the evaluations of these parameters are very critical during various stages of development. Elaborate testing is carried out for main seat ejection cartridges on seat ejection tower (SET) at different operating temperatures considering physiological limits. As these trials are cumbersome in nature, a vented vessel (VV) testing facility is devised to lay down the performance parameters at hot and cold temperature conditions. Single base (SB) propellant having hepta-tubular configuration is selected as the main filling. Gun powder plays the role of a booster based on ballistic requirements. The evaluation methodology of various performance parameters of main seat ejection cartridges is explained in this paper. Physiological parameters such as maximum seat ejection velocity, acceleration, and rate of rising of acceleration are also experimentally determined on SET. All the parameters are observed well within physiological limits. This paper addresses the internal ballistic of main seat ejection cartridges, propellant selection, its calculation, and evaluation of various performance parameters for aircraft application.
Keywords: Ballistics of seat ejection, ejection seat, gas generator, gun propulsion, main seat ejection cartridges, maximum pressure, performance parameters, propellant, progressive burning and vented vessel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770103 Effect of Initial Conditions on Aerodynamic and Acoustic Characteristics of High Subsonic Jets from Sharp Edged Circular Orifice
Authors: Murugan, K. N. Sharma, S. D.
Abstract:
The present work involves measurements to examine the effects of initial conditions on aerodynamic and acoustic characteristics of a Jet at M=0.8 by changing the orientation of sharp edged orifice plate. A thick plate with chamfered orifice presented divergent and convergent openings when it was flipped over. The centerline velocity was found to decay more rapidly for divergent orifice and that was consistent with the enhanced mass entrainment suggesting quicker spread of the jet compared with that from the convergent orifice. The mixing layer region elucidated this effect of initial conditions at an early stage – the growth was found to be comparatively more pronounced for the divergent orifice resulting in reduced potential core size. The acoustic measurements, carried out in the near field noise region outside the jet within potential core length, showed the jet from the divergent orifice to be less noisy. The frequency spectra of the noise signal exhibited that in the initial region of comparatively thin mixing layer for the convergent orifice, the peak registered a higher SPL and a higher frequency as well. The noise spectra and the mixing layer development suggested a direct correlation between the coherent structures developing in the initial region of the jet and the noise captured in the surrounding near field.Keywords: Convergent orifice jet, Divergent orifice jet, Mass entrainment, mixing layer, near field noise, frequency spectrum, SPL, Strouhal number, wave number, reactive pressure field, propagating pressure field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559102 ZnS and Graphene Quantum Dots Nanocomposite as Potential Electron Acceptor for Photovoltaics
Authors: S. M. Giripunje, Shikha Jindal
Abstract:
Zinc sulphide (ZnS) quantum dots (QDs) were synthesized successfully via simple sonochemical method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) analysis revealed the average size of QDs of the order of 3.7 nm. The band gap of the QDs was tuned to 5.2 eV by optimizing the synthesis parameters. UV-Vis absorption spectra of ZnS QD confirm the quantum confinement effect. Fourier transform infrared (FTIR) analysis confirmed the formation of single phase ZnS QDs. To fabricate the diode, blend of ZnS QDs and P3HT was prepared and the heterojunction of PEDOT:PSS and the blend was formed by spin coating on indium tin oxide (ITO) coated glass substrate. The diode behaviour of the heterojunction was analysed, wherein the ideality factor was found to be 2.53 with turn on voltage 0.75 V and the barrier height was found to be 1.429 eV. ZnS-Graphene QDs nanocomposite was characterised for the surface morphological study. It was found that the synthesized ZnS QDs appear as quasi spherical particles on the graphene sheets. The average particle size of ZnS-graphene nanocomposite QDs was found to be 8.4 nm. From voltage-current characteristics of ZnS-graphene nanocomposites, it is observed that the conductivity of the composite increases by 104 times the conductivity of ZnS QDs. Thus the addition of graphene QDs in ZnS QDs enhances the mobility of the charge carriers in the composite material. Thus, the graphene QDs, with high specific area for a large interface, high mobility and tunable band gap, show a great potential as an electron-acceptors in photovoltaic devices.
Keywords: Graphene, mobility, nanocomposites, photovoltaics, quantum dots, zinc sulphide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404101 Experimental and Numerical Study of the Effect of Lateral Wind on the Feeder Airship
Authors: A. Suñol, D. Vucinic, S.Vanlanduit, T. Markova, A. Aksenov, I. Moskalyov
Abstract:
Feeder is one of the airships of the Multibody Advanced Airship for Transport (MAAT) system, under development within the EU FP7 project. MAAT is based on a modular concept composed of two different parts that have the possibility to join; respectively they are the so-called Cruiser and Feeder, designed on the lighter than air principle. Feeder, also named ATEN (Airship Transport Elevator Network), is the smaller one which joins the bigger one, Cruiser, also named PTAH (Photovoltaic modular Transport Airship for High altitude),envisaged to happen at 15km altitude. During the MAAT design phase, the aerodynamic studies of the both airships and their interactions are analyzed. The objective of these studies is to understand the aerodynamic behavior of all the preselected configurations, as an important element in the overall MAAT system design. The most of these configurations are only simulated by CFD, while the most feasible one is experimentally analyzed in order to validate and thrust the CFD predictions. This paper presents the numerical and experimental investigation of the Feeder “conical like" shape configuration. The experiments are focused on the aerodynamic force coefficients and the pressure distribution over the Feeder outer surface, while the numerical simulation cover also the analysis of the velocity and pressure distribution. Finally, the wind tunnel experiment is compared with its CFD model in order to validate such specific simulations with respective experiments and to better understand the difference between the wind tunnel and in-flight circumstances.
Keywords: MAAT project Feeder, CFD simulations, wind tunnel experiments, lateral wind influence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2573100 Unsteady Flow of an Incompressible Viscous Electrically Conducting Fluid in Tube of Elliptical Cross Section under the Influence of Magnetic Field
Authors: Sanjay Baburao Kulkarni
Abstract:
Exact solution of an unsteady flow of elastico-viscous electrically conducting fluid through a porous media in a tube of elliptical cross section under the influence of constant pressure gradient and magnetic field has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of elliptical cross section by taking into account of the transverse magnetic field and porosity factor of the bounding surface is investigated. The problem is solved in twostages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a nondimensional porosity parameter (K), magnetic parameter (m) and elastico-viscosity parameter (β), which depends on the Non- Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter and magnetic parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter, magnetic parameter and the porosity parameter of the bounding surface has significant effect on the velocity parameter.
Keywords: Elastico-viscous fluid, Elliptic cross-section, Porous media, Second order fluids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193299 Adaptive Shape Parameter (ASP) Technique for Local Radial Basis Functions (RBFs) and Their Application for Solution of Navier Strokes Equations
Authors: A. Javed, K. Djidjeli, J. T. Xing
Abstract:
The concept of adaptive shape parameters (ASP) has been presented for solution of incompressible Navier Strokes equations using mesh-free local Radial Basis Functions (RBF). The aim is to avoid ill-conditioning of coefficient matrices of RBF weights and inaccuracies in RBF interpolation resulting from non-optimized shape of basis functions for the cases where data points (or nodes) are not distributed uniformly throughout the domain. Unlike conventional approaches which assume globally similar values of RBF shape parameters, the presented ASP technique suggests that shape parameter be calculated exclusively for each data point (or node) based on the distribution of data points within its own influence domain. This will ensure interpolation accuracy while still maintaining well conditioned system of equations for RBF weights. Performance and accuracy of ASP technique has been tested by evaluating derivatives and laplacian of a known function using RBF in Finite difference mode (RBFFD), with and without the use of adaptivity in shape parameters. Application of adaptive shape parameters (ASP) for solution of incompressible Navier Strokes equations has been presented by solving lid driven cavity flow problem on mesh-free domain using RBF-FD. The results have been compared for fixed and adaptive shape parameters. Improved accuracy has been achieved with the use of ASP in RBF-FD especially at regions where larger gradients of field variables exist.
Keywords: CFD, Meshless Particle Method, Radial Basis Functions, Shape Parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2831