Search results for: network protocol.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3022

Search results for: network protocol.

1702 Personal Information Classification Based on Deep Learning in Automatic Form Filling System

Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao

Abstract:

Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.

Keywords: Personal information, deep learning, auto fill, NLP, document analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 861
1701 Using Ferry Access Points to Improve the Performance of Message Ferrying in Delay-Tolerant Networks

Authors: Farzana Yasmeen, Md. Nurul Huda, Md. Enamul Haque, Michihiro Aoki, Shigeki Yamada

Abstract:

Delay-Tolerant Networks (DTNs) are sparse, wireless networks where disconnections are common due to host mobility and low node density. The Message Ferrying (MF) scheme is a mobilityassisted paradigm to improve connectivity in DTN-like networks. A ferry or message ferry is a special node in the network which has a per-determined route in the deployed area and relays messages between mobile hosts (MHs) which are intermittently connected. Increased contact opportunities among mobile hosts and the ferry improve the performance of the network, both in terms of message delivery ratio and average end-end delay. However, due to the inherent mobility of mobile hosts and pre-determined periodicity of the message ferry, mobile hosts may often -miss- contact opportunities with a ferry. In this paper, we propose the combination of stationary ferry access points (FAPs) with MF routing to increase contact opportunities between mobile hosts and the MF and consequently improve the performance of the DTN. We also propose several placement models for deploying FAPs on MF routes. We evaluate the performance of the FAP placement models through comprehensive simulation. Our findings show that FAPs do improve the performance of MF-assisted DTNs and symmetric placement of FAPs outperforms other placement strategies.

Keywords: Service infrastructure, delay-tolerant network, messageferry routing, placement models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
1700 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour

Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale

Abstract:

Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.

Keywords: Artificial neural network, back-propagation, tide data, training algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
1699 Using Simulation for Prediction of Units Movements in Case of Communication Failure

Authors: J. Hodicky, P. Frantis

Abstract:

Command and Control (C2) system and its interfacethe Common Operational Picture (COP) are main means that supports commander in its decision making process. COP contains information about friendly and enemy unit positions. The friendly position is gathered via tactical network. In the case of tactical network failure the information about units are not available. The tactical simulator can be used as a tool that is capable to predict movements of units in respect of terrain features. Article deals with an experiment that was based on Czech C2 system that is in the case of connectivity lost fed by VR Forces simulator. Article analyzes maximum time interval in which the position created by simulator is still usable and truthful for commander in real time.

Keywords: command and control system, movement prediction, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280
1698 Application of ANN for Estimation of Power Demand of Villages in Sulaymaniyah Governorate

Authors: A. Majeed, P. Ali

Abstract:

Before designing an electrical system, the estimation of load is necessary for unit sizing and demand-generation balancing. The system could be a stand-alone system for a village or grid connected or integrated renewable energy to grid connection, especially as there are non–electrified villages in developing countries. In the classical model, the energy demand was found by estimating the household appliances multiplied with the amount of their rating and the duration of their operation, but in this paper, information exists for electrified villages could be used to predict the demand, as villages almost have the same life style. This paper describes a method used to predict the average energy consumed in each two months for every consumer living in a village by Artificial Neural Network (ANN). The input data are collected using a regional survey for samples of consumers representing typical types of different living, household appliances and energy consumption by a list of information, and the output data are collected from administration office of Piramagrun for each corresponding consumer. The result of this study shows that the average demand for different consumers from four villages in different months throughout the year is approximately 12 kWh/day, this model estimates the average demand/day for every consumer with a mean absolute percent error of 11.8%, and MathWorks software package MATLAB version 7.6.0 that contains and facilitate Neural Network Toolbox was used.

Keywords: Artificial neural network, load estimation, regional survey, rural electrification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359
1697 Nine-Level Shunt Active Power Filter Associated with a Photovoltaic Array Coupled to the Electrical Distribution Network

Authors: Zahzouh Zoubir, Bouzaouit Azzeddine, Gahgah Mounir

Abstract:

The use of more and more electronic power switches with a nonlinear behavior generates non-sinusoidal currents in distribution networks, which causes damage to domestic and industrial equipment. The multi-level shunt power active filter is subsequently shown to be an adequate solution to the problem raised. Nevertheless, the difficulty of adjusting the active filter DC supply voltage requires another technology to ensure it. In this article, a photovoltaic generator is associated with the DC bus power terminals of the active filter. The proposed system consists of a field of solar panels, three multi-level voltage inverters connected to the power grid and a non-linear load consisting of a six-diode rectifier bridge supplying a resistive-inductive load. Current control techniques of active and reactive power are used to compensate for both harmonic currents and reactive power as well as to inject active solar power into the distribution network. An algorithm of the search method of the maximum power point of type Perturb and observe is applied. Simulation results of the system proposed under the MATLAB/Simulink environment shows that the performance of control commands that reassure the solar power injection in the network, harmonic current compensation and power factor correction.

Keywords: MPPT, active power filter, PV array, perturb and observe algorithm, PWM-control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 754
1696 Net-Trainer-ST: A Swiss Army Knife for Pentesting, Based on Single Board Computer, for Cybersecurity Professionals and Hobbyists

Authors: K. Hołda, D. Śliwa, K. Daniec

Abstract:

This article was created as part of the developed master's thesis. It attempts to present a developed device, which will support the work of specialists dealing with broadly understood cybersecurity terms. The device is contrived to automate security tests. In addition, it simulates potential cyberattacks in the most realistic way possible, without causing permanent damage to the network, in order to maximize the quality of the subsequent corrections to the tested network systems. The proposed solution is a fully operational prototype created from commonly available electronic components and a single board computer. The focus of the article is not only put on the hardware part of the device but also on the theoretical and applicatory way in which implemented cybersecurity tests operate and examples of their results.

Keywords: Raspberry Pi, ethernet, automated cybersecurity tests, ARP, DNS, backdoor, TCP, password sniffing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 776
1695 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network

Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang

Abstract:

‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.

Keywords: Deep learning network, smart metering, water end use, water-energy data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363
1694 Choosing Search Algorithms in Bayesian Optimization Algorithm

Authors: Hao Wu, Jonathan L. Shapiro

Abstract:

The Bayesian Optimization Algorithm (BOA) is an algorithm based on the estimation of distributions. It uses techniques from modeling data by Bayesian networks to estimating the joint distribution of promising solutions. To obtain the structure of Bayesian network, different search algorithms can be used. The key point that BOA addresses is whether the constructed Bayesian network could generate new and useful solutions (strings), which could lead the algorithm in the right direction to solve the problem. Undoubtedly, this ability is a crucial factor of the efficiency of BOA. Varied search algorithms can be used in BOA, but their performances are different. For choosing better ones, certain suitable method to present their ability difference is needed. In this paper, a greedy search algorithm and a stochastic search algorithm are used in BOA to solve certain optimization problem. A method using Kullback-Leibler (KL) Divergence to reflect their difference is described.

Keywords: Bayesian optimization algorithm, greedy search, KL divergence, stochastic search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
1693 Finding Viable Pollution Routes in an Urban Network under a Predefined Cost

Authors: Dimitra Alexiou, Stefanos Katsavounis, Ria Kalfakakou

Abstract:

In an urban area the determination of transportation routes should be planned so as to minimize the provoked pollution taking into account the cost of such routes. In the sequel these routes are cited as pollution routes.

The transportation network is expressed by a weighted graph G=(V,E,D,P) where every vertex represents a location to be served and contains unordered pairs (edges) of elements in V that indicate a simple road. The distances / cost and a weight that depict the provoked air pollution by a vehicle transition at every road are assigned to each road as well. These are the items of set D andrespectively.

Furthermore the investigated pollution routes must not exceed predefined corresponding values concerning the route cost and the route pollution level during the vehicle transition.

In this paper we present an algorithm that generates such routes in order that the decision maker selects the most appropriate one. 

Keywords: bi-criteria, pollution, shortest paths.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
1692 Improving Co-integration Trading Rule Profitability with Forecasts from an Artificial Neural Network

Authors: Paul Lajbcygier, Seng Lee

Abstract:

Co-integration models the long-term, equilibrium relationship of two or more related financial variables. Even if cointegration is found, in the short run, there may be deviations from the long run equilibrium relationship. The aim of this work is to forecast these deviations using neural networks and create a trading strategy based on them. A case study is used: co-integration residuals from Australian Bank Bill futures are forecast and traded using various exogenous input variables combined with neural networks. The choice of the optimal exogenous input variables chosen for each neural network, undertaken in previous work [1], is validated by comparing the forecasts and corresponding profitability of each, using a trading strategy.

Keywords: Artificial neural networks, co-integration, forecasting, trading rule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
1691 ANFIS Modeling of the Surface Roughness in Grinding Process

Authors: H. Baseri, G. Alinejad

Abstract:

The objective of this study is to design an adaptive neuro-fuzzy inference system (ANFIS) for estimation of surface roughness in grinding process. The Used data have been generated from experimental observations when the wheel has been dressed using a rotary diamond disc dresser. The input parameters of model are dressing speed ratio, dressing depth and dresser cross-feed rate and output parameter is surface roughness. In the experimental procedure the grinding conditions are constant and only the dressing conditions are varied. The comparison of the predicted values and the experimental data indicates that the ANFIS model has a better performance with respect to back-propagation neural network (BPNN) model which has been presented by the authors in previous work for estimation of the surface roughness.

Keywords: Grinding, ANFIS, Neural network, Disc dressing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415
1690 ATC in Competitive Electricity Market Using TCSC

Authors: S. K. Gupta, Richa Bansal

Abstract:

In a deregulated power system structure, power producers and customers share a common transmission network for wheeling power from the point of generation to the point of consumption. All parties in this open access environment may try to purchase the energy from the cheaper source for greater profit margins, which may lead to overloading and congestion of certain corridors of the transmission network. This may result in violation of line flow, voltage and stability limits and thereby undermine the system security. Utilities therefore need to determine adequately their available transfer capability (ATC) to ensure that system reliability is maintained while serving a wide range of bilateral and multilateral transactions. This paper presents power transfer distribution factor based on AC load flow for the determination and enhancement of ATC. The study has been carried out for IEEE 24 bus Reliability Test System.

Keywords: Available Transfer Capability, FACTS devices, Power Transfer Distribution Factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2356
1689 Evaluation of Fuzzy ARTMAP with DBSCAN in VLSI Application

Authors: K. A. Sumithradevi, Vijayalakshmi. M. N., Annamma Abraham., Dr. Vasanta

Abstract:

The various applications of VLSI circuits in highperformance computing, telecommunications, and consumer electronics has been expanding progressively, and at a very hasty pace. This paper describes a new model for partitioning a circuit using DBSCAN and fuzzy ARTMAP neural network. The first step is concerned with feature extraction, where we had make use DBSCAN algorithm. The second step is the classification and is composed of a fuzzy ARTMAP neural network. The performance of both approaches is compared using benchmark data provided by MCNC standard cell placement benchmark netlists. Analysis of the investigational results proved that the fuzzy ARTMAP with DBSCAN model achieves greater performance then only fuzzy ARTMAP in recognizing sub-circuits with lowest amount of interconnections between them The recognition rate using fuzzy ARTMAP with DBSCAN is 97.7% compared to only fuzzy ARTMAP.

Keywords: VLSI, Circuit partitioning, DBSCAN, fuzzyARTMAP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
1688 A Neural Network Based Facial Expression Analysis using Gabor Wavelets

Authors: Praseeda Lekshmi.V, Dr.M.Sasikumar

Abstract:

Facial expression analysis is rapidly becoming an area of intense interest in computer science and human-computer interaction design communities. The most expressive way humans display emotions is through facial expressions. In this paper we present a method to analyze facial expression from images by applying Gabor wavelet transform (GWT) and Discrete Cosine Transform (DCT) on face images. Radial Basis Function (RBF) Network is used to classify the facial expressions. As a second stage, the images are preprocessed to enhance the edge details and non uniform down sampling is done to reduce the computational complexity and processing time. Our method reliably works even with faces, which carry heavy expressions.

Keywords: Face Expression, Radial Basis Function, GaborWavelet Transform, Human Computer Interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
1687 An Analysis of Compression Methods and Implementation of Medical Images in Wireless Network

Authors: C. Rajan, K. Geetha, S. Geetha

Abstract:

The motivation of image compression technique is to reduce the irrelevance and redundancy of the image data in order to store or pass data in an efficient way from one place to another place. There are several types of compression methods available. Without the help of compression technique, the file size is knowingly larger, usually several megabytes, but by doing the compression technique, it is possible to reduce file size up to 10% as of the original without noticeable loss in quality. Image compression can be lossless or lossy. The compression technique can be applied to images, audio, video and text data. This research work mainly concentrates on methods of encoding, DCT, compression methods, security, etc. Different methodologies and network simulations have been analyzed here. Various methods of compression methodologies and its performance metrics has been investigated and presented in a table manner.

Keywords: Image compression techniques, encoding, DCT, lossy compression, lossless compression, JPEG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1188
1686 A Survey of Job Scheduling and Resource Management in Grid Computing

Authors: Raksha Sharma, Vishnu Kant Soni, Manoj Kumar Mishra, Prachet Bhuyan

Abstract:

Grid computing is a form of distributed computing that involves coordinating and sharing computational power, data storage and network resources across dynamic and geographically dispersed organizations. Scheduling onto the Grid is NP-complete, so there is no best scheduling algorithm for all grid computing systems. An alternative is to select an appropriate scheduling algorithm to use in a given grid environment because of the characteristics of the tasks, machines and network connectivity. Job and resource scheduling is one of the key research area in grid computing. The goal of scheduling is to achieve highest possible system throughput and to match the application need with the available computing resources. Motivation of the survey is to encourage the amateur researcher in the field of grid computing, so that they can understand easily the concept of scheduling and can contribute in developing more efficient scheduling algorithm. This will benefit interested researchers to carry out further work in this thrust area of research.

Keywords: Grid Computing, Job Scheduling, ResourceScheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3410
1685 A Software-Supported Methodology for Designing General-Purpose Interconnection Networks for Reconfigurable Architectures

Authors: Kostas Siozios, Dimitrios Soudris, Antonios Thanailakis

Abstract:

Modern applications realized onto FPGAs exhibit high connectivity demands. Throughout this paper we study the routing constraints of Virtex devices and we propose a systematic methodology for designing a novel general-purpose interconnection network targeting to reconfigurable architectures. This network consists of multiple segment wires and SB patterns, appropriately selected and assigned across the device. The goal of our proposed methodology is to maximize the hardware utilization of fabricated routing resources. The derived interconnection scheme is integrated on a Virtex style FPGA. This device is characterized both for its high-performance, as well as for its low-energy requirements. Due to this, the design criterion that guides our architecture selections was the minimal Energy×Delay Product (EDP). The methodology is fully-supported by three new software tools, which belong to MEANDER Design Framework. Using a typical set of MCNC benchmarks, extensive comparison study in terms of several critical parameters proves the effectiveness of the derived interconnection network. More specifically, we achieve average Energy×Delay Product reduction by 63%, performance increase by 26%, reduction in leakage power by 21%, reduction in total energy consumption by 11%, at the expense of increase of channel width by 20%.

Keywords: Design Methodology, FPGA, Interconnection, Low-Energy, High-Performance, CAD tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
1684 Remote Control Software for Rohde and Schwarz Instruments

Authors: Tomas Shejbal, Matej Petkov, Tomas Zalabsky, Jan Pidanic, Zdenek Nemec

Abstract:

The paper describes software for remote control and measuring with new Graphical User Interface for Rohde & Schwarz instruments. Software allows remote control through Ethernet and supports basic and advanced functions for control various type of instruments like network and spectrum analyzers, power meters, signal generators and oscilloscopes. Standard Commands for Programmable Instruments (SCPI) and Virtual Instrument Software Architecture (VISA) are used for remote control and setup of instruments. Developed software is modular with user friendly graphic user interface for each instrument with automatic identification of instruments.

Keywords: Remote control, Rohde&Schwarz, SCPI, VISA, MATLAB, spectum analyzer, network analyzer, oscilloscope, signal generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5403
1683 Design and Implementation a New Energy Efficient Clustering Algorithm using Genetic Algorithm for Wireless Sensor Networks

Authors: Moslem Afrashteh Mehr

Abstract:

Wireless Sensor Networks consist of small battery powered devices with limited energy resources. once deployed, the small sensor nodes are usually inaccessible to the user, and thus replacement of the energy source is not feasible. Hence, One of the most important issues that needs to be enhanced in order to improve the life span of the network is energy efficiency. to overcome this demerit many research have been done. The clustering is the one of the representative approaches. in the clustering, the cluster heads gather data from nodes and sending them to the base station. In this paper, we introduce a dynamic clustering algorithm using genetic algorithm. This algorithm takes different parameters into consideration to increase the network lifetime. To prove efficiency of proposed algorithm, we simulated the proposed algorithm compared with LEACH algorithm using the matlab

Keywords: Wireless Sensor Networks, Clustering, Geneticalgorithm, Energy Consumption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2884
1682 A Logic Based Framework for Planning for Mobile Agents

Authors: Rajdeep Niyogi

Abstract:

The objective of the paper is twofold. First, to develop a formal framework for planning for mobile agents. A logical language based on a temporal logic is proposed that can express a type of tasks which often arise in network management. Second, to design a planning algorithm for such tasks. The aim of this paper is to study the importance of finding plans for mobile agents. Although there has been a lot of research in mobile agents, not much work has been done to incorporate planning ideas for such agents. This paper makes an attempt in this direction. A theoretical study of finding plans for mobile agents is undertaken. A planning algorithm (based on the paradigm of mobile computing) is proposed and its space, time, and communication complexity is analyzed. The algorithm is illustrated by working out an example in detail.

Keywords: Acting, computer network, mobile agent, mobile computing, planning, temporal logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
1681 Controlling of Multi-Level Inverter under Shading Conditions Using Artificial Neural Network

Authors: Abed Sami Qawasme, Sameer Khader

Abstract:

This paper describes the effects of photovoltaic voltage changes on Multi-level inverter (MLI) due to solar irradiation variations, and methods to overcome these changes. The irradiation variation affects the generated voltage, which in turn varies the switching angles required to turn-on the inverter power switches in order to obtain minimum harmonic content in the output voltage profile. Genetic Algorithm (GA) is used to solve harmonics elimination equations of eleven level inverters with equal and non-equal dc sources. After that artificial neural network (ANN) algorithm is proposed to generate appropriate set of switching angles for MLI at any level of input dc sources voltage causing minimization of the total harmonic distortion (THD) to an acceptable limit. MATLAB/Simulink platform is used as a simulation tool and Fast Fourier Transform (FFT) analyses are carried out for output voltage profile to verify the reliability and accuracy of the applied technique for controlling the MLI harmonic distortion. According to the simulation results, the obtained THD for equal dc source is 9.38%, while for variable or unequal dc sources it varies between 10.26% and 12.93% as the input dc voltage varies between 4.47V nd 11.43V respectively. The proposed ANN algorithm provides satisfied simulation results that match with results obtained by alternative algorithms.

Keywords: Multi level inverter, genetic algorithm, artificial neural network, total harmonic distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 617
1680 Pilot Scale Production and Compatibility Criteria of New Self-Cleaning Materials

Authors: J. Ranogajec, O. Rudic, S. Pasalic, S. Vucetic, D. Cjepa

Abstract:

The paper involves a chain of activities from synthesis, establishment of the methodology for characterization and testing of novel protective materials through the pilot production and application on model supports. It summarizes the results regarding the development of the pilot production protocol for newly developed self-cleaning materials. The optimization of the production parameters was completed in order to improve the most important functional properties (mineralogy characteristics, particle size, self-cleaning properties and photocatalytic activity) of the newly designed nanocomposite material.

Keywords: Cultural heritage. Materials compatibility. Pilot production. Self-cleaning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
1679 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle

Authors: S. Chahba, R. Sehab, A. Akrad, C. Morel

Abstract:

Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.

Keywords: Electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit fault diagnosis, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 451
1678 Slime Mould Optimization Algorithms for Optimal Distributed Generation Integration in Distribution Electrical Network

Authors: F. Fissou Amigue, S. Ndjakomo Essiane, S. Pérabi Ngoffé, G. Abessolo Ondoa, G. Mengata Mengounou, T. P. Nna Nna

Abstract:

This document proposes a method for determining the optimal point of integration of distributed generation (DG) in distribution grid. Slime mould optimization is applied to determine best node in case of one and two injection point. Problem has been modeled as an optimization problem where the objective is to minimize joule loses and main constraint is to regulate voltage in each point. The proposed method has been implemented in MATLAB and applied in IEEE network 33 and 69 nodes. Comparing results obtained with other algorithms showed that slime mould optimization algorithms (SMOA) have the best reduction of power losses and good amelioration of voltage profile.

Keywords: Optimization, distributed generation, integration, slime mould algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 644
1677 Developing Pedotransfer Functions for Estimating Some Soil Properties using Artificial Neural Network and Multivariate Regression Approaches

Authors: Fereydoon Sarmadian, Ali Keshavarzi

Abstract:

Study of soil properties like field capacity (F.C.) and permanent wilting point (P.W.P.) play important roles in study of soil moisture retention curve. Although these parameters can be measured directly, their measurement is difficult and expensive. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. In this investigation, 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. The data set was divided into two subsets for calibration (80%) and testing (20%) of the models and their normality were tested by Kolmogorov-Smirnov method. Both multivariate regression and artificial neural network (ANN) techniques were employed to develop the appropriate PTFs for predicting soil parameters using easily measurable characteristics of clay, silt, O.C, S.P, B.D and CaCO3. The performance of the multivariate regression and ANN models was evaluated using an independent test data set. In order to evaluate the models, root mean square error (RMSE) and R2 were used. The comparison of RSME for two mentioned models showed that the ANN model gives better estimates of F.C and P.W.P than the multivariate regression model. The value of RMSE and R2 derived by ANN model for F.C and P.W.P were (2.35, 0.77) and (2.83, 0.72), respectively. The corresponding values for multivariate regression model were (4.46, 0.68) and (5.21, 0.64), respectively. Results showed that ANN with five neurons in hidden layer had better performance in predicting soil properties than multivariate regression.

Keywords: Artificial neural network, Field capacity, Permanentwilting point, Pedotransfer functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
1676 Impact of MAC Layer on the Performance of Routing Protocols in Mobile Ad hoc Networks

Authors: T.G. Basavaraju, Subir Kumar Sarkar, C Puttamadappa

Abstract:

Mobile Ad hoc Networks is an autonomous system of mobile nodes connected by multi-hop wireless links without centralized infrastructure support. As mobile communication gains popularity, the need for suitable ad hoc routing protocols will continue to grow. Efficient dynamic routing is an important research challenge in such a network. Bandwidth constrained mobile devices use on-demand approach in their routing protocols because of its effectiveness and efficiency. Many researchers have conducted numerous simulations for comparing the performance of these protocols under varying conditions and constraints. Most of them are not aware of MAC Protocols, which will impact the relative performance of routing protocols considered in different network scenarios. In this paper we investigate the choice of MAC protocols affects the relative performance of ad hoc routing protocols under different scenarios. We have evaluated the performance of these protocols using NS2 simulations. Our results show that the performance of routing protocols of ad hoc networks will suffer when run over different MAC Layer protocols.

Keywords: AODV, DSR, DSDV, MAC, MANETs, relativeperformance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2679
1675 Multi Task Scheme to Monitor Multivariate Environments Using Artificial Neural Network

Authors: K. Atashgar

Abstract:

When an assignable cause(s) manifests itself to a multivariate process and the process shifts to an out-of-control condition, a root-cause analysis should be initiated by quality engineers to identify and eliminate the assignable cause(s) affected the process. A root-cause analysis in a multivariate process is more complex compared to a univariate process. In the case of a process involved several correlated variables an effective root-cause analysis can be only experienced when it is possible to identify the required knowledge including the out-of-control condition, the change point, and the variable(s) responsible to the out-of-control condition, all simultaneously. Although literature addresses different schemes to monitor multivariate processes, one can find few scientific reports focused on all the required knowledge. To the best of the author’s knowledge this is the first time that a multi task model based on artificial neural network (ANN) is reported to monitor all the required knowledge at the same time for a multivariate process with more than two correlated quality characteristics. The performance of the proposed scheme is evaluated numerically when different step shifts affect the mean vector. Average run length is used to investigate the performance of the proposed multi task model. The simulated results indicate the multi task scheme performs all the required knowledge effectively.

Keywords: Artificial neural network, Multivariate process, Statistical process control, Change point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
1674 An Innovative Approach to the Formulation of Connection Admission Control Problem

Authors: Carlo Bruni, Francesco Delli Priscoli, Giorgio Koch, Ilaria Marchetti

Abstract:

This paper proposes an innovative approach for the Connection Admission Control (CAC) problem. Starting from an abstract network modelling, the CAC problem is formulated in a technology independent fashion allowing the proposed concepts to be applied to any wireless and wired domain. The proposed CAC is decoupled from the other Resource Management procedures, but cooperates with them in order to guarantee the desired QoS requirements. Moreover, it is based on suitable performance measurements which, by using proper predictors, allow to forecast the domain dynamics in the next future. Finally, the proposed CAC control scheme is based on a feedback loop aiming at maximizing a suitable performance index accounting for the domain throughput, whilst respecting a set of constraints accounting for the QoS requirements.

Keywords: Network Management, Quality of Service (QoS) requirements, Optimal Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287
1673 Securing Message in Wireless Sensor Network by using New Method of Code Conversions

Authors: Ahmed Chalak Shakir, GuXuemai, Jia Min

Abstract:

Recently, wireless sensor networks have been paid more interest, are widely used in a lot of commercial and military applications, and may be deployed in critical scenarios (e.g. when a malfunctioning network results in danger to human life or great financial loss). Such networks must be protected against human intrusion by using the secret keys to encrypt the exchange messages between communicating nodes. Both the symmetric and asymmetric methods have their own drawbacks for use in key management. Thus, we avoid the weakness of these two cryptosystems and make use of their advantages to establish a secure environment by developing the new method for encryption depending on the idea of code conversion. The code conversion-s equations are used as the key for designing the proposed system based on the basics of logic gate-s principals. Using our security architecture, we show how to reduce significant attacks on wireless sensor networks.

Keywords: logic gates, code conversions, Gray-code, and clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655