Search results for: Optimization Problem
3589 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh
Authors: S. M. Anowarul Haque, Md. Asiful Islam
Abstract:
Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.Keywords: Load forecasting, artificial neural network, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6883588 Optimization of Dissolution of Chevreul’s Salt in Ammonium Chloride Solutions
Authors: Mustafa Sertçelik, Hacali Necefoğlu, Turan Çalban, Soner Kuşlu
Abstract:
In this study, Chevreul’s salt was dissolved in ammonium chloride solutions. All experiments were performed in a batch reactor. The obtained results were optimized. Parameters used in the experiments were the reaction temperature, the ammonium chloride concentration, the reaction time and the solid-to-liquid ratio. The optimum conditions were determined by 24 factorial experimental design method. The best values of four parameters were determined as based on the experiment results. After the evaluation of experiment results, all parameters were found as effective in experiment conditions selected. The optimum conditions on the maximum Chevreul’s salt dissolution were the ammonium chloride concentration 4.5 M, the reaction time 13.2 min., the reaction temperature 25 oC, and the solid-to-liquid ratio 9/80 g.mL-1. The best dissolution yield in these conditions was 96.20%.Keywords: Ammonium chloride, Chevreul’s salt, copper, Factorial experimental design method, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16773587 An Effective Genetic Algorithm for a Complex Real-World Scheduling Problem
Authors: Anis Gharbi, Mohamed Haouari, Talel Ladhari, Mohamed Ali Rakrouki
Abstract:
We address a complex scheduling problem arising in the wood panel industry with the objective of minimizing a quadratic function of job tardiness. The proposed solution strategy, which is based on an effective genetic algorithm, has been coded and implemented within a major Tunisian company, leader in the wood panel manufacturing. Preliminary experimental results indicate significant decrease of delivery times.
Keywords: Genetic algorithm, heuristic, hybrid flowshop, total weighted squared tardiness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19413586 An Optimal Algorithm for Finding (r, Q) Policy in a Price-Dependent Order Quantity Inventory System with Soft Budget Constraint
Authors: S. Hamid Mirmohammadi, Shahrazad Tamjidzad
Abstract:
This paper is concerned with the single-item continuous review inventory system in which demand is stochastic and discrete. The budget consumed for purchasing the ordered items is not restricted but it incurs extra cost when exceeding specific value. The unit purchasing price depends on the quantity ordered under the all-units discounts cost structure. In many actual systems, the budget as a resource which is occupied by the purchased items is limited and the system is able to confront the resource shortage by charging more costs. Thus, considering the resource shortage costs as a part of system costs, especially when the amount of resource occupied by the purchased item is influenced by quantity discounts, is well motivated by practical concerns. In this paper, an optimization problem is formulated for finding the optimal (r, Q) policy, when the system is influenced by the budget limitation and a discount pricing simultaneously. Properties of the cost function are investigated and then an algorithm based on a one-dimensional search procedure is proposed for finding an optimal (r, Q) policy which minimizes the expected system costs.Keywords: (r, Q) policy, Stochastic demand, backorders, limited resource, quantity discounts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18643585 Value Index, a Novel Decision Making Approach for Waste Load Allocation
Authors: E. Feizi Ashtiani, S. Jamshidi, M.H Niksokhan, A. Feizi Ashtiani
Abstract:
Waste load allocation (WLA) policies may use multiobjective optimization methods to find the most appropriate and sustainable solutions. These usually intend to simultaneously minimize two criteria, total abatement costs (TC) and environmental violations (EV). If other criteria, such as inequity, need for minimization as well, it requires introducing more binary optimizations through different scenarios. In order to reduce the calculation steps, this study presents value index as an innovative decision making approach. Since the value index contains both the environmental violation and treatment costs, it can be maximized simultaneously with the equity index. It implies that the definition of different scenarios for environmental violations is no longer required. Furthermore, the solution is not necessarily the point with minimized total costs or environmental violations. This idea is testified for Haraz River, in north of Iran. Here, the dissolved oxygen (DO) level of river is simulated by Streeter-Phelps equation in MATLAB software. The WLA is determined for fish farms using multi-objective particle swarm optimization (MOPSO) in two scenarios. At first, the trade-off curves of TC-EV and TC-Inequity are plotted separately as the conventional approach. In the second, the Value-Equity curve is derived. The comparative results show that the solutions are in a similar range of inequity with lower total costs. This is due to the freedom of environmental violation attained in value index. As a result, the conventional approach can well be replaced by the value index particularly for problems optimizing these objectives. This reduces the process to achieve the best solutions and may find better classification for scenario definition. It is also concluded that decision makers are better to focus on value index and weighting its contents to find the most sustainable alternatives based on their requirements.Keywords: Waste load allocation (WLA), Value index, Multi objective particle swarm optimization (MOPSO), Haraz River, Equity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20273584 Developments for ''Virtual'' Monitoring and Process Simulation of the Cryogenic Pilot Plant
Authors: Carmen Maria Moraru, Iuliana Stefan, Ovidiu Balteanu, Ciprian Bucur, Liviu Stefan, Anisia Bornea, Ioan Stefanescu
Abstract:
The implementation of the new software and hardware-s technologies for tritium processing nuclear plants, and especially those with an experimental character or of new technology developments shows a coefficient of complexity due to issues raised by the implementation of the performing instrumentation and equipment into a unitary monitoring system of the nuclear technological process of tritium removal. Keeping the system-s flexibility is a demand of the nuclear experimental plants for which the change of configuration, process and parameters is something usual. The big amount of data that needs to be processed stored and accessed for real time simulation and optimization demands the achievement of the virtual technologic platform where the data acquiring, control and analysis systems of the technological process can be integrated with a developed technological monitoring system. Thus, integrated computing and monitoring systems needed for the supervising of the technological process will be executed, to be continued with the execution of optimization system, by choosing new and performed methods corresponding to the technological processes within the tritium removal processing nuclear plants. The developing software applications is executed with the support of the program packages dedicated to industrial processes and they will include acquisition and monitoring sub-modules, named “virtually" as well as the storage sub-module of the process data later required for the software of optimization and simulation of the technological process for tritium removal. The system plays and important role in the environment protection and durable development through new technologies, that is – the reduction of and fight against industrial accidents in the case of tritium processing nuclear plants. Research for monitoring optimisation of nuclear processes is also a major driving force for economic and social development.
Keywords: Monitoring system, process simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19733583 Probe Selection for Pathway-Specific Microarray Probe Design Minimizing Melting Temperature Variance
Authors: Fabian Horn, Reinhard Guthke
Abstract:
In molecular biology, microarray technology is widely and successfully utilized to efficiently measure gene activity. If working with less studied organisms, methods to design custom-made microarray probes are available. One design criterion is to select probes with minimal melting temperature variances thus ensuring similar hybridization properties. If the microarray application focuses on the investigation of metabolic pathways, it is not necessary to cover the whole genome. It is more efficient to cover each metabolic pathway with a limited number of genes. Firstly, an approach is presented which minimizes the overall melting temperature variance of selected probes for all genes of interest. Secondly, the approach is extended to include the additional constraints of covering all pathways with a limited number of genes while minimizing the overall variance. The new optimization problem is solved by a bottom-up programming approach which reduces the complexity to make it computationally feasible. The new method is exemplary applied for the selection of microarray probes in order to cover all fungal secondary metabolite gene clusters for Aspergillus terreus.
Keywords: bottom-up approach, gene clusters, melting temperature, metabolic pathway, microarray probe design, probe selection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15593582 Optimal Controllers with Actuator Saturation for Nonlinear Structures
Authors: M. Mohebbi, K. Shakeri
Abstract:
Since the actuator capacity is limited, in the real application of active control systems under sever earthquakes it is conceivable that the actuators saturate, hence the actuator saturation should be considered as a constraint in design of optimal controllers. In this paper optimal design of active controllers for nonlinear structures by considering actuator saturation, has been studied. The proposed method for designing optimal controllers is based on defining an optimization problem which the objective has been to minimize the maximum displacement of structure when a limited capacity for actuator has been used. To this end a single degree of freedom (SDF) structure with a bilinear hysteretic behavior has been simulated under a white noise ground acceleration of different amplitudes. Active tendon control mechanism, comprised of prestressed tendons and an actuator, and extended nonlinear Newmark method based instantaneous optimal control algorithm have been used. To achieve the best results, the weights corresponding to displacement, velocity, acceleration and control force in the performance index have been optimized by the Distributed Genetic Algorithm (DGA). Results show the effectiveness of the proposed method in considering actuator saturation. Also based on the numerical simulations it can be concluded that the actuator capacity and the average value of required control force are two important factors in designing nonlinear controllers which consider the actuator saturation.Keywords: Active control, Actuator Saturation, Distributedgeneticalgorithms, Nonlinear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16043581 Tracking Control of a Linear Parabolic PDE with In-domain Point Actuators
Authors: Amir Badkoubeh, Guchuan Zhu
Abstract:
This paper addresses the problem of asymptotic tracking control of a linear parabolic partial differential equation with indomain point actuation. As the considered model is a non-standard partial differential equation, we firstly developed a map that allows transforming this problem into a standard boundary control problem to which existing infinite-dimensional system control methods can be applied. Then, a combination of energy multiplier and differential flatness methods is used to design an asymptotic tracking controller. This control scheme consists of stabilizing state-feedback derived from the energy multiplier method and feed-forward control based on the flatness property of the system. This approach represents a systematic procedure to design tracking control laws for a class of partial differential equations with in-domain point actuation. The applicability and system performance are assessed by simulation studies.Keywords: Tracking Control, In-domain point actuation, PartialDifferential Equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20593580 Reduction of Linear Time-Invariant Systems Using Routh-Approximation and PSO
Authors: S. Panda, S. K. Tomar, R. Prasad, C. Ardil
Abstract:
Order reduction of linear-time invariant systems employing two methods; one using the advantages of Routh approximation and other by an evolutionary technique is presented in this paper. In Routh approximation method the denominator of the reduced order model is obtained using Routh approximation while the numerator of the reduced order model is determined using the indirect approach of retaining the time moments and/or Markov parameters of original system. By this method the reduced order model guarantees stability if the original high order model is stable. In the second method Particle Swarm Optimization (PSO) is employed to reduce the higher order model. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical examples.
Keywords: Model Order Reduction, Markov Parameters, Routh Approximation, Particle Swarm Optimization, Integral Squared Error, Steady State Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32883579 Specialized Reduced Models of Dynamic Flows in 2-Stroke Engines
Authors: S. Cagin, X. Fischer, E. Delacourt, N. Bourabaa, C. Morin, D. Coutellier, B. Carré, S. Loumé
Abstract:
The complexity of scavenging by ports and its impact on engine efficiency create the need to understand and to model it as realistically as possible. However, there are few empirical scavenging models and these are highly specialized. In a design optimization process, they appear very restricted and their field of use is limited. This paper presents a comparison of two methods to establish and reduce a model of the scavenging process in 2-stroke diesel engines. To solve the lack of scavenging models, a CFD model has been developed and is used as the referent case. However, its large size requires a reduction. Two techniques have been tested depending on their fields of application: The NTF method and neural networks. They both appear highly appropriate drastically reducing the model’s size (over 90% reduction) with a low relative error rate (under 10%). Furthermore, each method produces a reduced model which can be used in distinct specialized fields of application: the distribution of a quantity (mass fraction for example) in the cylinder at each time step (pseudo-dynamic model) or the qualification of scavenging at the end of the process (pseudo-static model).
Keywords: Diesel engine, Design optimization, Model reduction, Neural network, NTF algorithm, Scavenging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13303578 A Bi-Objective Stochastic Mathematical Model for Agricultural Supply Chain Network
Authors: Mohammad Mahdi Paydar, Armin Cheraghalipour, Mostafa Hajiaghaei-Keshteli
Abstract:
Nowadays, in advanced countries, agriculture as one of the most significant sectors of the economy, plays an important role in its political and economic independence. Due to farmers' lack of information about products' demand and lack of proper planning for harvest time, annually the considerable amount of products is corrupted. Besides, in this paper, we attempt to improve these unfavorable conditions via designing an effective supply chain network that tries to minimize total costs of agricultural products along with minimizing shortage in demand points. To validate the proposed model, a stochastic optimization approach by using a branch and bound solver of the LINGO software is utilized. Furthermore, to accumulate the data of parameters, a case study in Mazandaran province placed in the north of Iran has been applied. Finally, using ɛ-constraint approach, a Pareto front is obtained and one of its Pareto solutions as best solution is selected. Then, related results of this solution are explained. Finally, conclusions and suggestions for the future research are presented.Keywords: Perishable products, stochastic optimization, agricultural supply chain, ɛ-constraint.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10043577 Optimal Allocation of DG Units for Power Loss Reduction and Voltage Profile Improvement of Distribution Networks using PSO Algorithm
Authors: K. Varesi
Abstract:
This paper proposes a Particle Swarm Optimization (PSO) based technique for the optimal allocation of Distributed Generation (DG) units in the power systems. In this paper our aim is to decide optimal number, type, size and location of DG units for voltage profile improvement and power loss reduction in distribution network. Two types of DGs are considered and the distribution load flow is used to calculate exact loss. Load flow algorithm is combined appropriately with PSO till access to acceptable results of this operation. The suggested method is programmed under MATLAB software. Test results indicate that PSO method can obtain better results than the simple heuristic search method on the 30-bus and 33- bus radial distribution systems. It can obtain maximum loss reduction for each of two types of optimally placed multi-DGs. Moreover, voltage profile improvement is achieved.Keywords: Distributed Generation (DG), Optimal Allocation, Particle Swarm Optimization (PSO), Power Loss Minimization, Voltage Profile Improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31693576 Optimal Design of Airfoil Platform Shapes with High Aspect Ratio Using Genetic Algorithm
Authors: Kyoungwoo Park, Byeong-Sam Kim
Abstract:
Unmanned aerial vehicles (UAVs) performing their operations for a long time have been attracting much attention in military and civil aviation industries for the past decade. The applicable field of UAV is changing from the military purpose only to the civil one. Because of their low operation cost, high reliability and the necessity of various application areas, numerous development programs have been initiated around the world. To obtain the optimal solutions of the design variable (i.e., sectional airfoil profile, wing taper ratio and sweep) for high performance of UAVs, both the lift and lift-to-drag ratio are maximized whereas the pitching moment should be minimized, simultaneously. It is found that the lift force and lift-to-drag ratio are linearly dependent and a unique and dominant solution are existed. However, a trade-off phenomenon is observed between the lift-to-drag ratio and pitching moment. As the result of optimization, sixty-five (65) non-dominated Pareto individuals at the cutting edge of design spaces that are decided by airfoil shapes can be obtained.Keywords: Unmanned aerial vehicle (UAV), Airfoil, CFD, Shape optimization, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19593575 Consensus of Multi-Agent Systems under the Special Consensus Protocols
Authors: Konghe Xie
Abstract:
Two consensus problems are considered in this paper. One is the consensus of linear multi-agent systems with weakly connected directed communication topology. The other is the consensus of nonlinear multi-agent systems with strongly connected directed communication topology. For the first problem, a simplified consensus protocol is designed: Each child agent can only communicate with one of its neighbors. That is, the real communication topology is a directed spanning tree of the original communication topology and without any cycles. Then, the necessary and sufficient condition is put forward to the multi-agent systems can be reached consensus. It is worth noting that the given conditions do not need any eigenvalue of the corresponding Laplacian matrix of the original directed communication network. For the second problem, the feedback gain is designed in the nonlinear consensus protocol. Then, the sufficient condition is proposed such that the systems can be achieved consensus. Besides, the consensus interval is introduced and analyzed to solve the consensus problem. Finally, two numerical simulations are included to verify the theoretical analysis.Keywords: Consensus, multi-agent systems, directed spanning tree, the Laplacian matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9153574 Hierarchically Modeling Cognition and Behavioral Problems of an Under-Represented Group
Authors: Zhidong Zhang, Zhi-Chao Zhang
Abstract:
This study examined the mental health and behavioral problems in early adolescence with the instrument of Achenbach System of Empirically Based Assessment (ASEBA). The purpose of the study was stratified sampling method was used to collect data from 1975 participants. Multiple regression models and hierarchical regression models were applied to examine the relations between the background variables and internalizing problems, and the ones between students’ performance and internalizing problems. The results indicated that several background variables as predictors could significantly predict the anxious/depressed problem; reading and social study scores could significantly predict the anxious/depressed problem. However the class as a hierarchical macro factor did not indicate the significant effect. In brief, the majority of these models represented that the background variables, behaviors and academic performance were significantly related to the anxious/depressed problem.Keywords: Behavioral problems, anxious/depression problems, empirical-based assessment, hierarchical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17603573 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: Crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11763572 Intuition Operator: Providing Genomes with Reason
Authors: Grigorios N. Beligiannis, Georgios A. Tsirogiannis, Panayotis E. Pintelas
Abstract:
In this contribution, the use of a new genetic operator is proposed. The main advantage of using this operator is that it is able to assist the evolution procedure to converge faster towards the optimal solution of a problem. This new genetic operator is called ''intuition'' operator. Generally speaking, one can claim that this operator is a way to include any heuristic or any other local knowledge, concerning the problem, that cannot be embedded in the fitness function. Simulation results show that the use of this operator increases significantly the performance of the classic Genetic Algorithm by increasing the convergence speed of its population.
Keywords: Genetic algorithms, intuition operator, reasonable genomes, complex search space, nonlinear fitness functions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15773571 Optimization of Fiber Rich Gluten-Free Cookie Formulation by Response Surface Methodology
Authors: Bahadur Singh Hathan, B. L. Prassana
Abstract:
Most of the commercial gluten free products are nutritionally inferior when compared to gluten containing counterparts as manufacturers most often use the refined flours and starches. So it is possible that people on gluten free diet have low intake of fibre content. The foxtail millet flour and copra meal are gluten free and have high fibre and protein contents. The formulation of fibre rich gluten free cookies was optimized by response surface methodology considering independent process variables as proportion of Foxtail millet (Setaria italica) flour in mixed flour, fat content and guar gum. The sugar, sodium chloride, sodium bicarbonates and water were added in fixed proportion as 60, 1.0, 0.4 and 20% of mixed flour weight, respectively. Optimum formulation obtained for maximum spread ratio, fibre content, surface L-value, overall acceptability and minimum breaking strength were 80% foxtail millet flour in mixed flour, 42.8 % fat content and 0.05% guar gum.Keywords: Copra meal flour, Fiber rich gluten-free cookies, Foxtail millet flour, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23533570 Characterization of Solutions of Nonsmooth Variational Problems and Duality
Authors: Juan Zhang, Changzhao Li
Abstract:
In this paper, we introduce a new class of nonsmooth pseudo-invex and nonsmooth quasi-invex functions to non-smooth variational problems. By using these concepts, numbers of necessary and sufficient conditions are established for a nonsmooth variational problem wherein Clarke’s generalized gradient is used. Also, weak, strong and converse duality are established.
Keywords: Variational problem, Nonsmooth pseudo-invex, Nonsmooth quasi-invex, Critical point, Duality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11433569 Comparison of GSA, SA and PSO Based Intelligent Controllers for Path Planning of Mobile Robot in Unknown Environment
Authors: P. K. Panigrahi, Saradindu Ghosh, Dayal R. Parhi
Abstract:
Now-a-days autonomous mobile robots have found applications in diverse fields. An autonomous robot system must be able to behave in an intelligent manner to deal with complex and changing environment. This work proposes the performance of path planning and navigation of autonomous mobile robot using Gravitational Search Algorithm (GSA), Simulated Annealing (SA) and Particle Swarm optimization (PSO) based intelligent controllers in an unstructured environment. The approach not only finds a valid collision free path but also optimal one. The main aim of the work is to minimize the length of the path and duration of travel from a starting point to a target while moving in an unknown environment with obstacles without collision. Finally, a comparison is made between the three controllers, it is found that the path length and time duration made by the robot using GSA is better than SA and PSO based controllers for the same work.
Keywords: Autonomous Mobile Robot, Gravitational Search Algorithm, Particle Swarm Optimization, Simulated Annealing Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31203568 Lattice Boltzmann Simulation of Binary Mixture Diffusion Using Modern Graphics Processors
Authors: Mohammad Amin Safi, Mahmud Ashrafizaadeh, Amir Ali Ashrafizaadeh
Abstract:
A highly optimized implementation of binary mixture diffusion with no initial bulk velocity on graphics processors is presented. The lattice Boltzmann model is employed for simulating the binary diffusion of oxygen and nitrogen into each other with different initial concentration distributions. Simulations have been performed using the latest proposed lattice Boltzmann model that satisfies both the indifferentiability principle and the H-theorem for multi-component gas mixtures. Contemporary numerical optimization techniques such as memory alignment and increasing the multiprocessor occupancy are exploited along with some novel optimization strategies to enhance the computational performance on graphics processors using the C for CUDA programming language. Speedup of more than two orders of magnitude over single-core processors is achieved on a variety of Graphical Processing Unit (GPU) devices ranging from conventional graphics cards to advanced, high-end GPUs, while the numerical results are in excellent agreement with the available analytical and numerical data in the literature.Keywords: Lattice Boltzmann model, Graphical processing unit, Binary mixture diffusion, 2D flow simulations, Optimized algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15573567 Modeling and Numerical Simulation of Sound Radiation by the Boundary Element Method
Authors: Costa, E.S., Borges, E.N.M., Afonso, M.M.
Abstract:
The modeling of sound radiation is of fundamental importance for understanding the propagation of acoustic waves and, consequently, develop mechanisms for reducing acoustic noise. The propagation of acoustic waves, are involved in various phenomena such as radiation, absorption, transmission and reflection. The radiation is studied through the linear equation of the acoustic wave that is obtained through the equation for the Conservation of Momentum, equation of State and Continuity. From these equations, is the Helmholtz differential equation that describes the problem of acoustic radiation. In this paper we obtained the solution of the Helmholtz differential equation for an infinite cylinder in a pulsating through free and homogeneous. The analytical solution is implemented and the results are compared with the literature. A numerical formulation for this problem is obtained using the Boundary Element Method (BEM). This method has great power for solving certain acoustical problems in open field, compared to differential methods. BEM reduces the size of the problem, thereby simplifying the input data to be worked and reducing the computational time used.
Keywords: Acoustic radiation, boundary element
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14763566 Extended Cubic B-spline Interpolation Method Applied to Linear Two-Point Boundary Value Problems
Authors: Nur Nadiah Abd Hamid, Ahmad Abd. Majid, Ahmad Izani Md. Ismail
Abstract:
Linear two-point boundary value problem of order two is solved using extended cubic B-spline interpolation method. There is one free parameters, λ, that control the tension of the solution curve. For some λ, this method produced better results than cubic B-spline interpolation method.
Keywords: two-point boundary value problem, B-spline, extendedcubic B-spline.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21803565 Enhanced Imperialist Competitive Algorithm for the Cell Formation Problem Using Sequence Data
Authors: S. H. Borghei, E. Teymourian, M. Mobin, G. M. Komaki, S. Sheikh
Abstract:
Imperialist Competitive Algorithm (ICA) is a recent meta-heuristic method that is inspired by the social evolutions for solving NP-Hard problems. The ICA is a population-based algorithm which has achieved a great performance in comparison to other metaheuristics. This study is about developing enhanced ICA approach to solve the Cell Formation Problem (CFP) using sequence data. In addition to the conventional ICA, an enhanced version of ICA, namely EICA, applies local search techniques to add more intensification aptitude and embed the features of exploration and intensification more successfully. Suitable performance measures are used to compare the proposed algorithms with some other powerful solution approaches in the literature. In the same way, for checking the proficiency of algorithms, forty test problems are presented. Five benchmark problems have sequence data, and other ones are based on 0-1 matrices modified to sequence based problems. Computational results elucidate the efficiency of the EICA in solving CFP problems.Keywords: Cell formation problem, Group technology, Imperialist competitive algorithm, Sequence data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15893564 Fluid Differential Agitators
Authors: Saeed Asiri
Abstract:
This research is to design and implement a new kind of agitators called differential agitator. The Differential Agitator is an electro- mechanic set consists of two shafts. The first shaft is the bearing axis while the second shaft is the axis of the quartet upper bearing impellers group and the triple lower group which are called as agitating group. The agitating group is located inside a cylindrical container equipped especially to contain square directors for the liquid entrance and square directors called fixing group for the liquid exit. The fixing group is installed containing the agitating group inside any tank whether from upper or lower position. The agitating process occurs through the agitating group bearing causing a lower pressure over the upper group leading to withdrawing the liquid from the square directors of the liquid entering and consequently the liquid moves to the denser place under the quartet upper group. Then, the liquid moves to the so high pressure area under the agitating group causing the liquid to exit from the square directors in the bottom of the container. For improving efficiency, parametric study and shape optimization has been carried out. A numerical analysis, manufacturing and laboratory experiments were conducted to design and implement the differential agitator. Knowing the material prosperities and the loading conditions, the FEM using ANSYS11 was used to get the optimum design of the geometrical parameters of the differential agitator elements while the experimental test was performed to validate the advantages of the differential agitators to give a high agitation performance of lime in the water as an example. In addition, the experimental work has been done to express the internal container shape in the agitation efficiency. The study ended up with conclusions to maximize agitator performance and optimize the geometrical parameters to be used for manufacturing the differential agitatorKeywords: Differential Agitators, Parametric Optimization, Shape Optimization, Agitation, FEM, ANSYS11.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37093563 Optimization of Surface Roughness and Vibration in Turning of Aluminum Alloy AA2024 Using Taguchi Technique
Authors: Vladimir Aleksandrovich Rogov, Ghorbani Siamak
Abstract:
Determination of optimal conditions of machining parameters is important to reduce the production cost and achieve the desired surface quality. This paper investigates the influence of cutting parameters on surface roughness and natural frequency in turning of aluminum alloy AA2024. The experiments were performed at the lathe machine using two different cutting tools made of AISI 5140 and carbide cutting insert coated with TiC. Turning experiments were planned by Taguchi method L9 orthogonal array.Three levels for spindle speed, feed rate, depth of cut and tool overhang were chosen as cutting variables. The obtained experimental data has been analyzed using signal to noise ratio and analysis of variance. The main effects have been discussed and percentage contributions of various parameters affecting surface roughness and natural frequency, and optimal cutting conditions have been determined. Finally, optimization of the cutting parameters using Taguchi method was verified by confirmation experiments.
Keywords: Turning, Cutting conditions, Surface roughness, Natural frequency, Taguchi method, ANOVA, S/N ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46163562 Minimization Entropic Applied to Rotary Dryers to Reduce the Energy Consumption
Authors: I. O. Nascimento, J. T. Manzi
Abstract:
The drying process is an important operation in the chemical industry and it is widely used in the food, grain industry and fertilizer industry. However, for demanding a considerable consumption of energy, such a process requires a deep energetic analysis in order to reduce operating costs. This paper deals with thermodynamic optimization applied to rotary dryers based on the entropy production minimization, aiming at to reduce the energy consumption. To do this, the mass, energy and entropy balance was used for developing a relationship that represents the rate of entropy production. The use of the Second Law of Thermodynamics is essential because it takes into account constraints of nature. Since the entropy production rate is minimized, optimals conditions of operations can be established and the process can obtain a substantial gain in energy saving. The minimization strategy had been led using classical methods such as Lagrange multipliers and implemented in the MATLAB platform. As expected, the preliminary results reveal a significant energy saving by the application of the optimal parameters found by the procedure of the entropy minimization It is important to say that this method has shown easy implementation and low cost.Keywords: Drying, entropy minimization, modeling dryers, thermodynamic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14303561 Characteristic Function in Estimation of Probability Distribution Moments
Authors: Vladimir S. Timofeev
Abstract:
In this article the problem of distributional moments estimation is considered. The new approach of moments estimation based on usage of the characteristic function is proposed. By statistical simulation technique author shows that new approach has some robust properties. For calculation of the derivatives of characteristic function there is used numerical differentiation. Obtained results confirmed that author’s idea has a certain working efficiency and it can be recommended for any statistical applications.
Keywords: Characteristic function, distributional moments, robustness, outlier, statistical estimation problem, statistical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22543560 Multiple Job Shop-Scheduling using Hybrid Heuristic Algorithm
Authors: R.A.Mahdavinejad
Abstract:
In this paper, multi-processors job shop scheduling problems are solved by a heuristic algorithm based on the hybrid of priority dispatching rules according to an ant colony optimization algorithm. The objective function is to minimize the makespan, i.e. total completion time, in which a simultanous presence of various kinds of ferons is allowed. By using the suitable hybrid of priority dispatching rules, the process of finding the best solution will be improved. Ant colony optimization algorithm, not only promote the ability of this proposed algorithm, but also decreases the total working time because of decreasing in setup times and modifying the working production line. Thus, the similar work has the same production lines. Other advantage of this algorithm is that the similar machines (not the same) can be considered. So, these machines are able to process a job with different processing and setup times. According to this capability and from this algorithm evaluation point of view, a number of test problems are solved and the associated results are analyzed. The results show a significant decrease in throughput time. It also shows that, this algorithm is able to recognize the bottleneck machine and to schedule jobs in an efficient way.
Keywords: Job shops scheduling, Priority dispatching rules, Makespan, Hybrid heuristic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670