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Abstract—The complexity of scavenging by ports and its impact
on engine efficiency create the need to understand and to model it as
realistically as possible. However, there are few empirical scavenging
models and these are highly specialized. In a design optimization
process, they appear very restricted and their field of use is limited.
This paper presents a comparison of two methods to establish and
reduce a model of the scavenging process in 2-stroke diesel engines.
To solve the lack of scavenging models, a CFD model has been
developed and is used as the referent case. However, its large size
requires a reduction. Two techniques have been tested depending on
their fields of application: The NTF method and neural networks.
They both appear highly appropriate drastically reducing the model’s
size (over 90% reduction) with a low relative error rate (under 10%).
Furthermore, each method produces a reduced model which can be
used in distinct specialized fields of application: the distribution of a
quantity (mass fraction for example) in the cylinder at each time step
(pseudo-dynamic model) or the qualification of scavenging at the end
of the process (pseudo-static model).

Keywords—Diesel engine, Design optimization, Model reduction,
Neural network, NTF algorithm, Scavenging.

1. INTRODUCTION

HE complexity of current engineering problems leads us

to model each element in our environment. In the field of
engines, pollution issues and anti-pollution standards create a
constant need for more accurate new models. Most studies
focus on the combustion process due to its preponderant role in
pollutant emissions. Less studied, but just as important, the
scavenging process has a considerable influence on engine
pollution. Especially in 2-stroke engines with ports, the
scavenging process is fundamental to improve engine
performance.

To study the scavenging impact on engine efficiency, we
need to understand and model it. There are many solutions
available to do this. CFD models are generally more complete
models providing plenty of information about the process, but
they are also resources and time consuming. On the other
hand, reduced models are less accurate, but give a response in
real time, or at least in a reasonably short period. Very simple
scavenging models already exist ([1], [2], etc.), but these are
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too limited to be of any use for optimizing design. Several
studies on parameter influence have already been carried out,
but the complexity of engines forces us to take into account all
the influent parameters on the scavenging process together.

In this paper, two model reduction techniques were tested:
the B-NTF method and neural networks. These approaches are
widely used in different areas, but not to model the scavenging
process. However, each technique turned out to be very
appropriate for modeling an aspect of scavenging. Their
results, their fields of application, their advantages and
disadvantages will be presented in this paper.

II. CONTEXT

A. 2-Stroke Diesel Engine

Two-stroke engines have suffered from high emissions and
poor fuel saving, compared to more efficient 4-stroke engines.
However, the car industry has recently shown a renewed
interest for 2-stroke engines thanks to its advantages. First of
all, 2-stroke engines are smaller and lighter than 4-stroke
engines due to the lack of valves. They fire once every
revolution so they provide higher power, and greater and
smoother torque [3], [4]. The advantage is also linked to the
development of new technologies which increase their
efficiency. Real-time performance monitoring and evaluation
have revolutionized engine design. However, before
manufacturing engines, and in order to find the best design, it
is essential to study its behavior and to test some
configurations.

Engine performance depends on many factors, such as the
quantity of injected gasoline or power duration. One of the
crucial issues is the aerodynamics in the combustion chamber
controlling the quality of scavenging and the composition of
gases available for the combustion process. They play an
important role in performance, pollutant emissions and engine
efficiency. The operating principle of a 2-stroke Diesel engine
(Fig. 1) with intake and exhaust ports is simpler than an engine
with valves, but the advance of opening for both intake and
exhaust ports are less adaptable: there is no possible variation
of the opening crank angles. During the downward motion of
the piston, the ports are uncovered and the scavenging process
starts. The first ports opened are the exhaust ones because the
pressure in the cylinder needs to drop first. Otherwise, some
backflow through the inlet ports will be observed [3]. So, the
burned gases begin to flow out the cylinder. As soon as the
inlet ports are opened, the fresh gases enter the cylinder
pushing out the burnt gases. After reaching the BDC (Bottom
Dead Center), the piston moves upward, gradually covering
the ports.
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In addition to possible backflow, the main difficulties with
the 2-stroke engine and a scavenging process with ports are the
mixture of burnt and unburnt gases, and the short-cutting of the
fresh charge as [5] underlines. Compared to the other issues,
short-cutting is the most problematic. It characterizes the entry
and exit of fresh gases before the end of the scavenging
process which reduce the engine’s efficiency. Short-cutting
impact is particularly undesirable for spark-ignition engines
because gasoline is incorporated into fresh gases. That is why
its modeling is widely studied [6]. One of the first solutions
used to reduce short-cutting was the addition of deflectors on
the piston head. It had the advantage of significantly
improving scavenging efficiency without any major design
change. However, the evolution of piston head and especially
the development of piston bowls (for direct injection systems),
reducing pollutant emissions [7], made this solution obsolete.
Remaining possibilities include the orientation of ducts and
ports. To study all these parameters and their impact, some
models are always used.

B. Model

A model is a representation of reality and is by definition
abstract. A model is used to capture in a finite amount of
parameters the way (or, at least, a part of) the world reacts. It is
not exactly the reality, but it provides (within the boundaries
set) a reliable estimation of the outputs [8]. A model consists
of variables {V}, their ranges of values {D} and relations
between variables {R}. To reduce a model implies lowering
one of these three parameters. In this study, the reduction
focuses on the number of variables.

The need for model reduction comes from the fact that, most
of the time, current engineering problems have prohibitive
sizes. The size problem comes from:

- The problem’s space dimension: a huge object (like
buildings, for example) or spatial discretization (fine
mesh);

- The problem’s time dimension: phenomenon very slow or
over years (weathering...) or use of tiny time steps;

- The problem’s parameter number: many variables to be
taken into account.

In the CFD engine model, the three sources are encountered.
Because of local turbulence phenomena, very fine meshes
were used with up to 50,000 nodes. To avoid any divergence
of the calculations, a time step of 3.10-6s (which corresponds
to 0.045 crank angles) was used. To simulate the complete
scavenging process, around one week of calculations was
needed for each design. Any engine control in real time is
impossible. Finally, 8 design parameters were taken into
account in this study to optimize engine efficiency [8]:

- Crankshaft angle,

- Height of the exhaust port,

- Advance of opening of intake ports,

- Advance of opening of exhaust ports,

- Boost pressure,

- Difference between intake and exhaust pressures,

- Intake duct slope,

- Exhaust duct slope.
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The aim of the developed scavenging model is to help
optimize the cylinder design. It needs to run fast or it will not
be of any use in solving industrial problems. The model needs
to be reduced to make it more practical.

C. Scavenging Models

Scavenging is the process by which the burnt gases are
replaced by fresh gases in the cylinder. In the engine cycle, it
starts right after the expansion phase and finishes when the
compression phase begins (Fig. 1).

(_

Expansion

-

Firing and combustion

~

Compression

_J

Scavenging

Fig. 1 2-Stroke engine cycle

Some behavioral models of scavenging in 2-stroke engines
already exist. In all the models, three distinct processes are
represented:

- Displacement (cf. Fig. 2 (a)): the burnt gases pushed out
by entering fresh gases: fresh and burnt gases are
considered as two separate zones,

- Mixing (cf. Fig. 2 (b)),

Short-cutting (cf. Fig. 2 (¢)).

In reality, scavenging is a combination of these three

processes and the behavioral models try to combine them in

order to be as realistic as possible. These theoretical models
are generally divided into three groups: “one-phase”, “multi-
phase” and “multi-dimension” groups, as presented by Zhang

[9]. None of these models consider any physical, fluid or

thermal phenomenon; they only characterize mass fraction

distribution according to empirical values of parameters.

In the one-phase group, we can find the perfect
displacement and perfect mixing models (cf. Figs. 2 (a) and
(b)), the first scavenging models, proposed by [2] and
discussed by [14]. Very simplistic, they do not consider
pressure or temperature variations or heat exchange between
the gases and the walls. They are generally used to determine
the efficiency of the scavenging process in the early stages of a
design project. More realistic, “multi-phase” and “multi-
dimension” models are more used. The classical models are as
follows: The Maekawa “three-zone” model [1] (cf. Fig. 2 (¢)),
the “three-zone and multi-phase” model [15] and the *“S-
shape” [16]. However, they only provide the functional
characteristics of scavenging introduced by [17] such as purity,
the delivery ratio, etc. They are not usable to characterize the
gas flow in the cylinder (such as velocity or pressure field) or
the impact of any geometry change on the flow or scavenging.
The specialization of their results makes them useless in most
optimization design problems. Furthermore, they are very
simplistic, which justifies the need for more complete models,
such as CFD.
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Fig. 2 Examples of scavenging models (a) Perfect displacement model [2], (b) Perfect mixing model [2], (¢) “three-zone” model of Mackawa
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Fig. 3 Method of comparison

There are many CFD engine studies. All intake and exhaust
configurations are studied: [10], [6], [11], [12] and [3] focused
on flow phenomena in engines with ports; [4] and [13] were
interested in engines with port (intake) and valve (exhaust)
configuration. They mostly concerned small 2-stroke and 4-
stroke engines because of the automotive industry’s needs, but
they are also used for large marine engines [5]. However, only
a few papers focus on the CFD of the scavenging process, like
[3] in engines with ports where the scavenging is very
problematic.

Despite evolutions in technology and computing, CFD
calculations still require huge resources and time. In this study,
the authors look for a compromise between very complete
CFD models and very fast behavioral models. To do so,
reduced models are established from CFD results, as shown in

Fig. 3. After determining the different cylinder designs which
will be tested, CFD models provide the data to quantify and
qualify the scavenging process (mass fractions of gases,
pressure field, etc.). All reduced models are based on CFD
calculations (more details about CFD model are given in [18]).
There are several scavenging models needed to qualify the
entire phenomenon. In this study, two different models are
developed and qualified depending on their applications. With
regard to methods for model reduction, many methods already
exist, such as SVD (Singular Values Decomposition), POD
(Proper Orthogonal Decomposition), PGD (Proper Generalized
Decomposition), Arnoldi-Lanczos, Reduced Basis, etc.
Because of the structural problem and the need to optimize
cylinder design, the B-NTF and Neural Network (NN) methods
were chosen. The NTF (Non-negative Tensor Factorization)
enables us to separate time, space and design parameters which
can be useful for the next step, optimization. On the other
hand, the neural network provides the expected value of the
output depending on the inputs thanks to its capability to
simulate the system response. Both are used in this study
depending on the final model structure needed.

TABLE I
SPECIFICATION OF THE DIFFERENT MODELS

Model

1 engine configuration (2D) / simulation
Global data
1 dynamic reduced model for the 27 configurations
Global data
2 different reduced models (dynamic and static) for the 27
configurations
Local data

CFD

NTF

Neural
Network

- ' u
a) b) ©)

Fig. 4 CFD results, mass fraction of the fresh gases distribution for (a) =180 crank degrees, (b) 6=208 crank degrees, (c) 6= 245 crank degrees
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Fig. 5 NTF Concept

[II. MODEL DEVELOPMENT AND REDUCTION

A. CFD Model and Database

The scavenging model clearly depends on the engine design.
Because both intake and exhaust are done by ports, the need to
develop a new scavenging model dedicated to our specific
engine quickly appears. To do so, the CFD tool was used first.
Both complete and accurate, the CFD model allows the several
parameters to be observed: pressure, velocity, mass fraction of
fresh and burnt gases, etc. (cf. Fig. 4). However, the problem
of calculation time appears immediately because more than a
day was needed to model the scavenging phase alone. The aim
of the study is to integrate a scavenging model into a global 0D
engine model: the scavenging model should provide results as
fast as possible, which is not the case with CFD models. As
explained in [18], it was chosen to model 27 designs of engine
cylinder in CFD and to regularly extract data in order to
generate a database. The database groups together all the CFD
results and extracted data.

B. NTF Reduction

The NTF algorithm is very attractive because of its ability to
take into account spatial and temporal correlations between
variables more accurately than 2D Non-negative Matrix
Factorization (NMF). As is the case with NMF, NTF also
provides greater stability and a unique solution, as well as
meaningful latent (hidden) components or features with
physical or physiological meaning and interpretation [19].
Finally, the NTF algorithm is very simple to use in python and
provides powerful implementation with multi-array data. The
disadvantage of this method is the form of the reduced model.
Indeed, the reduced model is still a 3D matrix. This form is
very suitable for modeling the whole distribution of gases in
the cylinder at each crank angle, but not so easy to implement
in a 0D model, the final objective of this study.

1. Operating Principle

Parallel factor analysis (PARAFAC) is a tensor (multiway
array) factorization method which allows us to find hidden
factors (component matrices) from multidimensional data.

Non-negative Tensor Factorization (NTF) was first
proposed by [20]. This algorithm is a generalization of Non-
negative Matrix factorization (NMF) presented by [21]. NTF is
based on a PARAFAC (Parallel Factors) analysis and its
particularity is that it imposes nonnegative constraints on
tensor and factor matrices. In addition to its efficiency and
speed, the use of the NTF algorithm in this study was
motivated by its ability to take into account spatial and
temporal correlations between variables more accurately than
2D matrix factorizations, such as NMF (Nonnegative Matrix
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Factorization), and it usually provides sparse common factors
or hidden (latent) components. Moreover, the spatial, temporal
and parametric dimensions are totally independent from each
other.

We consider Y'as a 3D tensor, Y = {y;,} € R*/*K. We have
no negative value y; =0 Vijk. The NTF concept is
illustrated in Fig. 5.

v =3 (" u) +E= 7+ E (1

with Y the complete model, Y the reduced model and E the
error or the noise, the decomposition generates a set of three
unknown matrices U(n) such as U™ = [ug), ug), . ug)] , with n

the number of modes and 1 = (1, ], K).

2. Application to Scavenging Model

To use the NTF algorithm, the data should be organized so
as to obtain the Y model. The three dimensions were
respectively associated with space, time and input parameter
combinations (cf. Fig. 6).

Input
parameters

Space

;Y_.l

Time

Fig. 6 NTF model of engine quantity

Based on the CFD model, several quantities (pressure,
temperature, mass fraction of gases) were regularly extracted
from each mesh node. For each quantity, a complete NTF
model was defined. The study focuses on the scavenging
efficiency of the 2-stroke engine; only the mass fractions of
burnt and fresh gases will be presented here.

Due to piston motion during the simulation, some nodes
were added or removed from the cylinder mesh (cf. [18]). The
number of nodes changes between two successive crank
angles. To overcome the variable data number, a normalized
mesh (81x81 = 6561 elements) with constant numbers of nodes
was created. For each crank angle, the CFD results were
projected on the normalized mesh and the mass fraction
quantities extracted from the normalized mesh nodes. The
projection was an initial model reduction: the minimum
number of nodes of the moving mesh is 20,000 elements.

C. Neural Networks

Neural networks provide the expected output of the system
whatever the input. From the learning data, it can approximate

'We denote a tensor by a bold-face underlined capital letter, a matrix by a
bold-face capital letter, a vector by a bold letter and a scalar by a plain letter
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the system’s behavior. The relevance and accuracy of neural
network output outside the learning points should be checked,
but its ability to handle all input combination makes it very
useful. Converging towards the most suitable structure
(number of neurons in layers...) and the best parameter values
(biases and weights) is complex. Indeed, biases and weights
are particularly sensitive to their initial values, which are
randomly chosen. Successive tests should be carried out.

1. Operating Principle

A neural network can be seen as a complex mathematical

function that accepts numerical inputs and generates numerical

outputs. The general structure of a neural network is presented
in Fig. 7.

Input Hidden Layer

Layer

==~
| !
—
: S0 v
1
e e

Fig. 7 Example of fully connected neural network

The values of the outputs are determined by the input
values, the number of so-called hidden processing nodes, the
hidden and output layer activation functions, and a set of
weights and bias values.

Fig. 8 Structure of neuron i

In Fig. 8, I; are the n inputs of the node, each input [; is
respectively weighted by w;. These weights determine the way
each input impacts the neuron output O. The output O also
depends on activation function f of the node. The node output
is calculated thanks to (2):

S = f(XiwiE;) +b; = f(U;) + by (2)

U; is the sum of the inputs weighted with their respective
weight.

A fully connected neural network with m inputs, h hidden
nodes, and n outputs has (m * h) + h + (h * n) + n weights and
biases. For example, the neural network of Fig. 7 with 2 inputs,

International Scholarly and Scientific Research & Innovation 9(9) 2015

1688

3 hidden nodes, and 1 outputs has (2 * 3) + (3 * 1) = 9 weights
and 3 + 1 = 4 biases. The number of weights rises very quickly
with the neuron number of the hidden layer. Therefore, the
first step is to choose the network’s general architecture well.
The number of input neurons is equal to the number of model
inputs. Likewise, the number of output neurons is defined by
the number of numerical results the network should provide.
Only the number of hidden layers (and its number of neurons)
and the activation functions can be freely chosen to improve
the calculation time and accuracy of the output results.

After defining the neural network structure, the next step is
its training. Training a neural network is the process of finding
values for the weights and biases so that, for a set of training
data with known input and output values, the computed
outputs of the network closely match the known outputs.
Several learning paradigms already exist. They are divided into
three main groups according to their particular abstract
learning tasks: supervised, unsupervised and reinforcement
learning. Their differences result from the dataset, and
especially the type of outputs.

With supervised training, a unique output vector is
associated with each input vector. The neural network
calculates the outputs according to the inputs and compares its
results with the real ones. Depending on the error, the neural
network adapts the weights and bias to be as close as possible
to the real solution. The expected outputs have to be known to
determine and reduce the network error.

With unsupervised training, no information about the
expected outputs is provided: there is no supervisor. The
network statistically analyzes and sorts the data according to
shared properties.

With reinforcement learning, it is not possible to provide the
real outputs to the network, but only qualitative outputs
(right/wrong, success/fail, etc). The network maximizes its
performance index during training and it is able to evaluate the
relevance of its outputs (even if it does not know the real
expected outputs).

Thanks to the results of ANSYS Fluent models and python
treatments, the outputs of the engine cylinder with particular
input combinations are known. So, supervised training has
been selected.

2. Learning Algorithm

Most of the algorithms used to train neural networks use the
gradient descendent algorithm (a first-order optimization
algorithm).

The Rprop (Resilient backpropagation) algorithm was used,
with backpropagation of errors to converge toward the best
solution. First introduced in 1993 by Riedmiller and Braun
[22], the Rprop algorithm 1is faster than classical
backpropagation learning. Indeed, the effectiveness of
backpropagation methods is highly sensitive to the value of the
learning rate, whereas Rprop overcomes this difficulty. The
Rprop algorithm provides an individual step-size to each
weight in order to minimize oscillations and to optimize step-
size during their updates.

The principle of the method is briefly presented by Igel and
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Hiisken [23]. w;; is the weight from neuron j to neuron i and E
the error measured. E is differentiable with respect to the
weights. Bias parameters are considered as weights from an
extra constant input. Superscripts indicate the learning
iteration. At each iteration, each weight is updated from the
previous one thanks to (3):

Wi(jt+1) — i(jt) + A‘Ni(jt) (3)

Criteria can be defined to stop the learning algorithm (e.g., t
exceeds a predefined value for example). The direction of each
weight update is based on the sign of the partial derivative
OE/0dw;;. The update amount of a weight Awy; (also called
step-size) is individually adapted for each weight (at each
iteration). Unlike other techniques, the Rprop algorithm adapts
the step-sizes independently of the absolute value of the partial
derivatives, it only takes into account the sign of the
derivative. Because no weight-backtracking is used, the step-
sizes are defined by:

Awi(].t) = —sign (%Eij) Al(; ) 4)
The sign operator returns +1 if its argument is positive, —1 if
the argument is negative and 0 otherwise. A;; is initialized to a
constant Ay. The benefits of this update scheme, described by
Riedmiller [22], [24], are essentially a more stable learning
step and a faster convergence of the error function.
Aj; is adjusted at each iteration as shown in (5):

. t-1 .. 0B (71 g (U
(mln(r]*Ai(j ),Amax) if — —

Iwij Iwij
®_ (-1 . 9 (=1 5 (©
Ay= max(n Ai(jt ),Amax) if w, wy <0 ©)
Ai(].t_l) otherwise

With 0 < n- < 1 < n+. With (5), the step size increases if
0E/dwy;; possesses the same sign for two consecutive steps. On
the contrary, Al(]t ) decreases if the partial derivative signs
change. This principle is widely used in other learning
methods. The step size value is bound by A, and Apay,
defined by the user. Hence, the direction of the change of A;;
following (5) is in accordance with a gradient-based
optimization of the network error with respect to Ay;.

IV. MODELING METHODS

A. NTF Reduction

To limit both costs and time calculations, only 27 cylinder
configurations were tested. The choice of input parameter
combinations was made according to the L27 table from the
Taguchi design experiment. The configurations will not be
discussed in this paper, but the reader can find more details in
(8], [18].

To reduce time calculations, only the scavenging process is
modeled in CFD. Depending on the opening angle of the
exhaust port, the simulation begins at 6 = 94 crank angle after
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TDC (Top Dead Center). The time step used was 3.10-6s, the
data were extracted at 22 time step intervals, equivalent to 0.99
crank angles, 174 time steps were simulated. As already
explained, the NTF reduction and the B divergence [19] were
used to model the distribution of species in the cylinder during
the scavenging process. Referring to part 1, the dimensions of
the Y matrix in this study are 174 x 6561 x 27. So, the CFD
complete model has more than 30 million variables.

First, the influence of the number of design configurations
on the average relative error was tested (Fig. 9). The number of
design configurations directly impacts the model size and the
dimension of the Y matrix. In this paper, the relative error was
calculated with (6):

relafive error: = |Outputcomplete model i—OUtPUtreduced model il (6)
! |Outputcomplete model i|

To get the average error, (7) was used:

Y relative error;
average error = ==t——— 7

8%
. il 3 configurations
?E r\ et} configurations
E 6% AN —— 4 conti i
o 17 configurations
2 w33 configurations
E 4% A
[ e
LF ""”"—:,—
=]
E 20,
L £70
<

0% . -

0 30 100 150

Number of modes

Fig. 9 Evolution of the relative error depending on the number of
configurations

Fig. 9 shows that, for the same number of modes, the
reduction error rises when the number of configurations
increases. However, it also highlights the fact that the
influence of the model size on the error decreases when the
size of the model increase. Beyond 14 configurations, the error
increases are almost negligible. Any new configuration results
added to the CFD model will not impact the accuracy of the
reduced model.

The results of the NTF reduction are summarized in Table
II. Several modes were tested and for each mode the following
were calculated:

- The average relative error between the normalized model
and the NTF reduced model,

- The percentage of reduction (taking into consideration the
number of elements before and after NTF reduction),

- The time needed to converge towards a satisfying reduced
model.

As seen in Table II, number of modes should be chosen
carefully. This number influences both the reduction error and
the time needed to establish the reduced model. The duration
of the model development proportionally increases with the
number of modes. With 160 modes, more than 5 days are
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needed to get the complete reduced model. On the contrary,
the average relative error was calculated comparing the
normalized model and the NTF reduced one. As expected, the
error decreases when the number of modes rises (Fig. 10). In
addition, over 10 modes, the error is always under 8% which
confirms the NTF method is well adapted to extensive models:
It is able to compress 99.8% introducing less than 8% of
errors. On the contrary, an error of 2% seems to be the
minimum that can be achieved (Fig. 10). Because of time
increases, to go over 160 modes seems useless: it will reach
the time needed to solve the CFD model.

o
£

{/’

Average arelative error (%)
h
=

o
=

o 20 40 &0 g0 100 120 140 180

Number of modes

Fig. 10 Average relative error depending on the number of modes

The distribution of the average relative error (cf. Fig. 11)
underlines the fact that the error is maximum at 6=180.13
crank angle. This corresponds to the moment when the ports
are fully opened and the gas exchanges are greatest. Until
0=125 crank angle, all intake ports are closed. Only burnt
gases are in the cylinder which explained why the error equals
0. After, depending on the configuration, the intake ports open
and the exchanges of gases start which explained the gap
between normalized and NTF reduced models, and the error
increases.

Average relative error (%)

bt

100 150 200 250 09

Crankshaft angle (crank degree)

Fig. 11 Distribution of average relative error of all configurations
depending on the crank angle for 160 modes

TABLE IT
RESULTS OF NTF REDUCED MODELS

Modes Average rel. error Normalized model size Reduced model size % of reduction Time
10 7.12% 30,823,578 67,620 99.78% 18.6h
30 5.09% 30,823,578 202,860 99.34% 32.5h
45 4.38% 30,823,578 304,290 99.01% 44.2h
60 3.94% 30,823,578 405,720 98.68% 56.3h
80 3.45% 30,823,578 540,960 98.24% 71.2h
100 3.11% 30,823,578 676,200 97.81% 82.2h
120 2.80% 30,823,578 811,440 97.37% 99.2h
140 2.60% 30,823,578 946,680 96.93% 109.3h
160 241% 30,823,578 1,081,920 96.49% 123.2h
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Fig. 12 Distribution of fresh gases mass fraction of configuration 15 at 6=180.13 crank angles for (a) Normalized model (b) 10 modes (c) 60
modes (d) 120 modes (e) 160 modes

Configuration 15 at 6=180.13 crankshaft angles corresponds
to the maximum error observed with the NTF reduction,
(19.6%) whereas for all the other configurations the maximum
average relative error is always under 15%. So, this
configuration and this angle will be used as examples in the
following parts.

The impact of the number of modes is particularly visible in
Fig. 12. The figure also illustrates the error decrease. The 160
mode model appears to be the closest to the normalized model.
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Thanks to normalization, no error is introduced: only a loss
of information can be observed. However, we are interested in
the whole distribution in the cylinder, not just by small local
phenomena. So, the loss of accuracy compared to the need for
normalized data and the reduction model (between 65% and
80% compression depending on the number of mesh nodes)
has no repercussion on the model’s error. On the contrary, the
NTF algorithm introduces errors between the models before
and after reduction (cf. Fig. 13).
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Fig. 13 Configuration 15 at 6=151.42 crank angles with (a) CFD
model (b) normalized model (¢) NTF reduced model

Due to its matrix form, the NTF reduced model is only
usable for the 27 configurations tested. It cannot directly
provide results for any other design configurations. On the
other hand, it can be useful to know the field of any quantity at
any crank angle. At any time, this model can indicate if any
backflow, short-cutting or mixing occurs and quantify it.
Finally, the reduction of more than 95% is very useful to know
the distribution of any quantity (pressure, temperature, etc.) at
any time.

Thanks to interpolation and the kriging method, the NTF
reduced model will be used to forecast the evolution of the
distribution of gases inside the cylinder during the whole
scavenging process whatever the configuration.

B. Neural Network Reduction

Thanks to their structure, the neural networks are really
useful for optimizing cylinder design. Indeed, after training, it
is capable of interpolating the system’s behavior whatever the
inputs. Of course, there is no information on the accuracy of
the results outside the learning points, but it should provide an
estimation of the expected results.

With neural networks, multiple parameters can be selected
to improve the network’s efficiency such as:

- Number of hidden layers,
- Number of neurons in the hidden layers,
- Activation functions.

The models are developed to then be integrated in a 0D
model simulating the whole engine environment [18]. To do
so, the simpler the neural network is, the easier its integration
is in the 0D model. This is why only one hidden layer is used.

The neural networks were developed thanks to python and
pybrain codes. The network is used to qualify the scavenging
process evaluating the delivery ratio A and the trapping 1,
scavenging M and charging ne efficiencies at the end of the
process. The parameters used as inputs are presented in
Section II B. Because the process is evaluated when the ports
are closed, the crank angle is not considered as an input. In any
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case, 10% of the dataset is dedicated to verification during the
training phase; the other data are used for the learning aspect.

Firstly, only one neural network was developed with four
outputs. After several tests with different structures (changing
the number of neurons and the activation function type), the
results underlined the network’s inability to reduce the relative
error of all four outputs at the same time. At least, always one
output has an error over 80%, whereas the other errors are
between 10% and 20%. It was decided to use one neural
network for each parameter. The results for the different
parameters are summarized in Table III: depending on the
number of hidden neurons and the activation functions
selected, the relative error for the learning data and the relative
error for all the data are calculated. The best structure for each
output is highlighted in green. Weights and biases of the
network are randomly initialized, and the solution the network
converges towards is directly linked to these initial values.
Several tests were carried out to achieve these results.

TABLE IIT
NEURAL NETWORK RESULTS
Relative error
Output Actlva'tmn Number of hidden Training All data
function neurons data
A 8 6.19% 12.3%
Nee Siemoid 8 0.65% 2.5%
N & 8 0.09%  11.9%
Nse 8 2.62% 10.3%
A 10 2.56% 7.9%
Ner . . 10 0.01% 12.4%
Sigmoid
Neh 10 0.05% 15.7%
Nse 10 0.11% 11.3%
A 12 5.58% 9.4%
Nee . . 12 0.02% 7.8%
Sigmoid
Neh 12 0.05% 18.4%
Nse 12 6.55% 10.4%
A 8 5.31% 10.4%
Ner Tanh 8 0.78% 7.0%
an|
Neh 8 2.17% 9.8%
Nse 8 3.02% 5.2%
A 10 2.13% 16.6%
uts Tanh 10 0.34% 11.4%
an|
Neh 10 0.10% 23.6%
Nse 10 1.90% 16.0%
A 12 2.52% 13.9%
Ner Tanh 12 0.02% 7.0%
an|
Neh 12 0.36% 7.1%
Nse 12 0.02% 14.3%

The first striking result is that the best structure of each
output is different from the others. This confirms the need to
develop one neural network for each parameter. In addition,
the relative error of the delivery ratio and the charging
efficiency is over 7%. It is too high to be satisfying. The first
advantage in calculating these four outputs is to indicate the
influence of each input on the scavenging process in order to
optimize the cylinder design. With a relative error of almost
8%, the relevance of the neural network’s results is
questionable. To reduce the error the dataset should be
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completed with other CFD results. Another way to reduce the
error is to initialize the weights and biases with better values in
order to converge towards a better solution or to change the
network structure to something more appropriate.

In any case, neural networks are very flexible with the input
values which are very useful in optimization problems. Even
if, outside the learning points, the results can be qualified, they
are generally very efficient and justify their widespread use in
various sectors.

V.SUMMARY OF THE RESULTS

The performances of the three models are summarized in
Table IV.

0:9, 2015

TABLE IV
COMPARISON OF MODEL PERFORMANCES
CFD NTF (160 Neural Network
modes)
Calculation time 1 week x 27 designs 5 days 30 min
20,000 at 6 = 94 crank
. angles (beginning)
Size 50,000 at 0 = 180 30.823.578 1
crank angles
Average relative
error (compared to 2.41% 2.5%—7.9%
CFD results)
Number of 5,167,800 4,000 > 170,000
iterations

Table V does a comparison of the different models used in
this study.

TABLE V
COMPARISON OF NTF AND NNR METHODS

Advantages

Disadvantages Field of application

Resource consuming

CFD v Complete model % Time consumin To create a database or to check the
v’ Based on physical and behavioral principles % Model size e performances of a specific design
j Repeata‘bility of the ’T“eth"d To model the evolution of the
NTF v Separation of the variables % Matrix form of the model distribution of a quantity (mass
Very low average error fraction for example)
v Size of the database
v . . . .
Neural f/{iafet]a ?(1i;?iszieafhi;:??lgagtﬁ)cgnts, capable to interpolate Dependent to the initialization of its To evaluate a quantity for a particular
network j vt q parameters combination of inputs

Very fast reduction

VL

The lack of efficient and realistic scavenging models in two-
stroke Diesel engines motivated this study. Based on CFD 2D
models, 2 different scavenging models were developed and
reduced. Depending on the model’s use, several reduction
techniques can be used. To select the most suitable one,
several criteria are usually defined: the dataset form, the
amount of data, the maximum error tolerated... However, the
most important criterion is the way the reduced model will be
used afterwards! As presented in this study, NTF reduction
leads to matrix reduced models, whereas the neural network
develops analytical models. Their respective forms are suitable
to the utilization done after. The NTF reduced model allows
the observation of the gas flow inside the cylinder at every
time step. It locally qualifies the flow, but it does not provide
any global information. On the other hand, the neural network
reduced (NNR) model qualifies the scavenging process in its
entirety. It is impossible to know the evolution of the process
step by step but the influence of each design parameter is
clearly identified. In addition, the NNR model offers the
possibility of testing configurations other than only those in the
dataset, unlike NTF reduced models. In spite of its rigidity in
terms of input data, NTF reduced models provide greater
accuracy a very high data compression (over 90% compression
and almost 2% relative error): its efficiency is undeniable. On
the contrary, the dependence of neural networks on initial
values (weights and biases) makes their convergence
unpredictable and hard to control.

CONCLUSION
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