Search results for: Cellular learning automata
1032 Knowing Where the Learning Is a Shift from Summative to Formative Assessment
Authors: Eric Ho
Abstract:
Pedagogical approaches in Asia nowadays are imported from the West. In Confucian Heritage Culture (CHC), however, there is a dichotomy between the perceived benefits of Western pedagogies and the real classroom practices in Chinese societies. The success of Hong Kong students in large-scale international assessments has proved that both the strengths of both Western pedagogies and CHC educational approaches should be integrated for the sake of the students. University students aim to equip themselves with employability skills upon graduation. Formative assessments allow students to receive detailed, positive, and timely feedback and they can identify their strengths and weaknesses before they start working. However, there remains a question of whether university year 1 students who come from an examination-driven secondary education background are ready to respond to more formative assessments. The findings show that year 1 students are less concerned about competition in the university and more open to new teaching approaches that will allow them to improve as professionals in their major study areas.
Keywords: Formative assessment, higher education, learning styles, Confucian heritage culture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24731031 Detecting Fake News: A Natural Language Processing, Reinforcement Learning, and Blockchain Approach
Authors: Ashly Joseph, Jithu Paulose
Abstract:
In an era where misleading information may quickly circulate on digital news channels, it is crucial to have efficient and trustworthy methods to detect and reduce the impact of misinformation. This research proposes an innovative framework that combines Natural Language Processing (NLP), Reinforcement Learning (RL), and Blockchain technologies to precisely detect and minimize the spread of false information in news articles on social media. The framework starts by gathering a variety of news items from different social media sites and performing preprocessing on the data to ensure its quality and uniformity. NLP methods are utilized to extract complete linguistic and semantic characteristics, effectively capturing the subtleties and contextual aspects of the language used. These features are utilized as input for a RL model. This model acquires the most effective tactics for detecting and mitigating the impact of false material by modeling the intricate dynamics of user engagements and incentives on social media platforms. The integration of blockchain technology establishes a decentralized and transparent method for storing and verifying the accuracy of information. The Blockchain component guarantees the unchangeability and safety of verified news records, while encouraging user engagement for detecting and fighting false information through an incentive system based on tokens. The suggested framework seeks to provide a thorough and resilient solution to the problems presented by misinformation in social media articles.
Keywords: Natural Language Processing, Reinforcement Learning, Blockchain, fake news mitigation, misinformation detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 891030 An Agent Oriented Architecture to Supply Dynamic Document Generation in ERP Systems
Authors: Hassan Haghighi, Seyedeh Zahra Hosseini, Seyedeh Elahe Jalambadani
Abstract:
One of the most important aspects expected from an ERP system is to mange user\administrator manual documents dynamically. Since an ERP package is frequently changed during its implementation in customer sites, it is often needed to add new documents and/or apply required changes to existing documents in order to cover new or changed capabilities. The worse is that since these changes occur continuously, the corresponding documents should be updated dynamically; otherwise, implementing the ERP package in the organization encounters serious risks. In this paper, we propose a new architecture which is based on the agent oriented vision and supplies the dynamic document generation expected from ERP systems using several independent but cooperative agents. Beside the dynamic document generation which is the main issue of this paper, the presented architecture will address some aspects of intelligence and learning capabilities existing in ERP.Keywords: enterprise resource planning, dynamic documentgeneration, software architecture, agent oriented architecture, learning, intelligence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16561029 Attitude Change after Taking a Virtual Global Understanding Course
Authors: Rosina C. Chia, Elmer Poe, Karl L. Wuensch
Abstract:
A virtual collaborative classroom was created at East Carolina University, using videoconference technology via regular internet to bring students from 18 different countries, 2 at a time, to the ECU classroom in real time to learn about each other-s culture. Students from two countries are partnered one on one, they meet for 4-5 weeks, and submit a joint paper. Then the same process is repeated for two other countries. Lectures and student discussions are managed with pre-determined topics and questions. Classes are conducted in English and reading assignments are placed on the website. Administratively all partners are independent, students pay fees and get credits at their home institution. Familiarity with technology, knowledge in cultural understanding and attitude change were assessed, only attitude changes are reported in this paper. After taking this course, all students stated their comfort level in working with, and their desire to interact with, culturally different others grew stronger and their xenophobia and isolationist attitudes decreased.
Keywords: Attitude change, interactive cultural learning, multicultural education, real time virtual learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18331028 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder
Authors: D. Hişam, S. İkizoğlu
Abstract:
Identifying the problem behind balance disorder is one of the most interesting topics in medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three ML models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest (RF) Classifier was the most accurate model.
Keywords: Vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691027 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis
Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen
Abstract:
The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluates the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.
Keywords: lexical semantics, feature representation, semantic decision, convolutional neural network, electronic medical record
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5941026 High Strain Rate Characteristics of the Advanced Blast Energy Absorbers
Authors: Martina Drdlová, Michal Frank, Jaroslav Buchar, Josef Krátký
Abstract:
The main aim of the presented experiments is to improve behaviour of sandwich structures under dynamic loading, such as crash or explosion. Several cellular materials are widely used as core of the sandwich structures and their properties influence the response of the entire element under impact load. To optimize their performance requires the characterisation of the core material behaviour at high strain rates and identification of the underlying mechanism. This work presents the study of high strain-rate characteristics of a specific porous lightweight blast energy absorbing foam using a Split Hopkinson Pressure Bar (SHPB) technique adapted to perform tests on low strength materials. Two different velocities, 15 and 30 m.s-1 were used to determine the strain sensitivity of the material. Foams were designed using two types of porous lightweight spherical raw materials with diameters of 30- 100 *m, combined with polymer matrix. Cylindrical specimens with diameter of 15 mm and length of 7 mm were prepared and loaded using a Split Hopkinson Pressure Bar apparatus to assess the relation between the composition of the material and its shock wave attenuation capacity.
Keywords: Blast, foam, microsphere, resin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24841025 Impact of Network Workload between Virtualization Solutions on a Testbed Environment for Cybersecurity Learning
Authors: K´evin Fernagut, Olivier Flauzac, Erick M. Gallegos R, Florent Nolot
Abstract:
The adoption of modern lightweight virtualization often comes with new threats and network vulnerabilities. This paper seeks to assess this with a different approach studying the behavior of a testbed built with tools such as Kernel-based Virtual Machine (KVM), LinuX Containers (LXC) and Docker, by performing stress tests within a platform where students experiment simultaneously with cyber-attacks, and thus observe the impact on the campus network and also find the best solution for cyber-security learning. Interesting outcomes can be found in the literature comparing these technologies. It is, however, difficult to find results of the effects on the global network where experiments are carried out. Our work shows that other physical hosts and the faculty network were impacted while performing these trials. The problems found are discussed, as well as security solutions and the adoption of new network policies.
Keywords: Containerization, containers, cyber-security, cyber-attacks, isolation, performance, security, virtualization, virtual machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5661024 How to Improve Teaching and Learning Strategies through Educational Research: An Experience of Peer Observation in Legal Education
Authors: L. Mortari, A. Bevilacqua, R. Silva
Abstract:
The experience presented in this paper aims to understand how educational research can support the introduction and optimization of teaching innovations in legal education. In this increasingly complex context, a strong need to introduce paths aimed at acquiring not only professional knowledge and skills but also reflective, critical and problem-solving skills emerges. Through a peer observation intertwined with an analysis of discursive practices, researchers and the teacher worked together through a process of participatory and transformative accompaniment whose objective was to promote the active participation and engagement of students in learning processes, an element indispensable to work in the more specific direction of strengthening key competences. This reflective faculty development path led the teacher to activate metacognitive processes, becoming thus aware of the strengths and areas of improvement of his teaching innovation.
Keywords: Discursive analysis, faculty development, legal education, peer observation, teaching innovation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3571023 The Construction of a Probiotic Lactic Acid Bacterium Expressing Acid-Resistant Phytase Enzyme
Authors: R. Majidzadeh Heravi, M. Sankian, H. Kermanshahi, M. R. Nassiri, A. Heravi Moussavi, S. A. Lari, A. R. Varasteh
Abstract:
The use of probiotics engineered to express specific enzymes has been the subject of considerable attention in poultry industry because of increased nutrient availability and reduced cost of enzyme supplementation. Phytase enzyme is commonly added to poultry feed to improve digestibility and availability of phosphorus from plant sources. To construct a probiotic with potential of phytate degradation, phytase gene (appA) from E. coli was cloned and transformed into two probiotic bacteria Lactobacillus salivarius and Lactococcus lactis. L. salivarous showed plasmid instability, unable to express the gene. The expression of appA gene in L. lactis was analyzed by detecting specific RNA and zymography assay. Phytase enzyme was isolated from cellular extracts of recombinant L. lactis, showing a 46 kDa band upon the SDS-PAGE analysis. Zymogram also confirmed the phytase activity of the 46 kDa band corresponding to the enzyme. An enzyme activity of 4.9U/ml was obtained in cell extracts of L. lactis. The growth of native and recombinant L. lactis was similar in the presence of two concentrations of ox bile.Keywords: Lactobacillus salivarus, Lactococcus lactis, recombinant, phytase, poultry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10211022 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning
Authors: Y. A. Adla, R. Soubra, M. Kasab, M. O. Diab, A. Chkeir
Abstract:
Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals out of which 11 were chosen based on their Intraclass Correlation Coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, five features were introduced to the Linear Discriminant Analysis classifier and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90% respectively.
Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4551021 Towards a Web 2.0 Based Practical Works Management System at a Public University: Case of Sultan Moulay Slimane University
Authors: Khalid Ghoulam, Belaid Bouikhalene, Zakaria Harmouch, Hicham Mouncif
Abstract:
The goal of engineering education is to prepare students to cope with problems of real devices and systems. Usually there are not enough devices or time for conducting experiments in a real lab. Other factors that prevent the use of lab devices directly by students are inaccessible or dangerous phenomena, or polluting chemical reactions. The technology brings additional strategies of learning and teaching, there are two types of online labs, virtual and remote labs RL. We present an example of a successful development and deployment of a remote lab in the field of engineering education, integrated in the Moodle platform, using very low-coast, high documented devices and free software. The remote lab is user friendly for both teachers and students. Our web 2.0 based user interface would attract and motivate students, as well as solving the problem of larger classes and expensive lab devices.Keywords: Remote lab, online learning, Moodle, Arduino, SMSU, lab experimentation, engineering education, online engineering education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13621020 Apoptosis Inspired Intrusion Detection System
Authors: R. Sridevi, G. Jagajothi
Abstract:
Artificial Immune Systems (AIS), inspired by the human immune system, are algorithms and mechanisms which are self-adaptive and self-learning classifiers capable of recognizing and classifying by learning, long-term memory and association. Unlike other human system inspired techniques like genetic algorithms and neural networks, AIS includes a range of algorithms modeling on different immune mechanism of the body. In this paper, a mechanism of a human immune system based on apoptosis is adopted to build an Intrusion Detection System (IDS) to protect computer networks. Features are selected from network traffic using Fisher Score. Based on the selected features, the record/connection is classified as either an attack or normal traffic by the proposed methodology. Simulation results demonstrates that the proposed AIS based on apoptosis performs better than existing AIS for intrusion detection.
Keywords: Apoptosis, Artificial Immune System (AIS), Fisher Score, KDD dataset, Network intrusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21911019 The Predictability and Abstractness of Language: A Study in Understanding and Usage of the English Language through Probabilistic Modeling and Frequency
Authors: Revanth Sai Kosaraju, Michael Ramscar, Melody Dye
Abstract:
Accounts of language acquisition differ significantly in their treatment of the role of prediction in language learning. In particular, nativist accounts posit that probabilistic learning about words and word sequences has little to do with how children come to use language. The accuracy of this claim was examined by testing whether distributional probabilities and frequency contributed to how well 3-4 year olds repeat simple word chunks. Corresponding chunks were the same length, expressed similar content, and were all grammatically acceptable, yet the results of the study showed marked differences in performance when overall distributional frequency varied. It was found that a distributional model of language predicted the empirical findings better than a number of other models, replicating earlier findings and showing that children attend to distributional probabilities in an adult corpus. This suggested that language is more prediction-and-error based, rather than on abstract rules which nativist camps suggest.
Keywords: Abstractness, child psychology, language acquisition, prediction and error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20981018 Feature Selection and Predictive Modeling of Housing Data Using Random Forest
Authors: Bharatendra Rai
Abstract:
Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).
Keywords: Housing data, feature selection, random forest, Boruta algorithm, root mean square error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17161017 Recurrent Neural Network Based Fuzzy Inference System for Identification and Control of Dynamic Plants
Authors: Rahib Hidayat Abiyev
Abstract:
This paper presents the development of recurrent neural network based fuzzy inference system for identification and control of dynamic nonlinear plant. The structure and algorithms of fuzzy system based on recurrent neural network are described. To train unknown parameters of the system the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The neuro-fuzzy system is used for the identification and control of nonlinear dynamic plant. The simulation results of identification and control systems based on recurrent neuro-fuzzy network are compared with the simulation results of other neural systems. It is found that the recurrent neuro-fuzzy based system has better performance than the others.
Keywords: Fuzzy logic, neural network, neuro-fuzzy system, control system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23751016 The Evaluation of Electricity Generation and Consumption from Solar Generator: A Case Study at Rajabhat Suan Sunandha’s Learning Center in Samutsongkram
Authors: Chonmapat Torasa
Abstract:
This paper presents the performance of electricity generation and consumption from solar generator installed at Rajabhat Suan Sunandha’s learning center in Samutsongkram. The result from the experiment showed that solar cell began to work and distribute the current into the system when the solar energy intensity was 340 w/m2, starting from 8:00 am to 4:00 pm (duration of 8 hours). The highest intensity read during the experiment was 1,051.64w/m2. The solar power was 38.74kWh/day. The electromotive force from solar cell averagely was 93.6V. However, when connecting solar cell with the battery charge controller system, the voltage was dropped to 69.07V. After evaluating the power distribution ability and electricity load of tested solar cell, the result showed that it could generate power to 11 units of 36-watt fluorescent lamp bulbs, which was altogether 396W. In the meantime, the AC to DC power converter generated 3.55A to the load, and gave 781VA.
Keywords: Solar Cell, Solar-cell power generating system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20651015 Electroencephalography-Based Intention Recognition and Consensus Assessment during Emergency Response
Abstract:
After natural and man-made disasters, robots can bypass the danger, expedite the search, and acquire unprecedented situational awareness to design rescue plans. Brain-computer interface is a promising option to overcome the limitations of tedious manual control and operation of robots in the urgent search-and-rescue tasks. This study aims to test the feasibility of using electroencephalography (EEG) signals to decode human intentions and detect the level of consensus on robot-provided information. EEG signals were classified using machine-learning and deep-learning methods to discriminate search intentions and agreement perceptions. The results show that the average classification accuracy for intention recognition and consensus assessment is 67% and 72%, respectively, proving the potential of incorporating recognizable users’ bioelectrical responses into advanced robot-assisted systems for emergency response.
Keywords: Consensus assessment, electroencephalogram, EEG, emergency response, human-robot collaboration, intention recognition, search and rescue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3471014 An Analytical Study of FRP-Concrete Bridge Superstructures
Authors: Wael I. Alnahhal
Abstract:
It is a major challenge to build a bridge superstructure that has long-term durability and low maintenance requirements. A solution to this challenge may be to use new materials or to implement new structural systems. Fiber Reinforced Polymer (FRP) composites have continued to play an important role in solving some of persistent problems in infrastructure applications because of its high specific strength, light weight, and durability. In this study, the concept of the hybrid FRP-concrete structural systems is applied to a bridge superstructure. The hybrid FRP-concrete bridge superstructure is intended to have durable, structurally sound, and cost effective hybrid system that will take full advantage of the inherent properties of both FRP materials and concrete. In this study, two hybrid FRP-concrete bridge systems were investigated. The first system consists of trapezoidal cell units forming a bridge superstructure. The second one is formed by arch cells. The two systems rely on using cellular components to form the core of the bridge superstructure, and an outer shell to warp around those cells to form the integral unit of the bridge. Both systems were investigated analytically by using finite element (FE) analysis. From the rigorous FE studies, it was concluded that first system is more efficient than the second.Keywords: Bridge superstructure, hybrid system, fiber reinforced polymer, finite element analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16831013 Use of Bayesian Network in Information Extraction from Unstructured Data Sources
Authors: Quratulain N. Rajput, Sajjad Haider
Abstract:
This paper applies Bayesian Networks to support information extraction from unstructured, ungrammatical, and incoherent data sources for semantic annotation. A tool has been developed that combines ontologies, machine learning, and information extraction and probabilistic reasoning techniques to support the extraction process. Data acquisition is performed with the aid of knowledge specified in the form of ontology. Due to the variable size of information available on different data sources, it is often the case that the extracted data contains missing values for certain variables of interest. It is desirable in such situations to predict the missing values. The methodology, presented in this paper, first learns a Bayesian network from the training data and then uses it to predict missing data and to resolve conflicts. Experiments have been conducted to analyze the performance of the presented methodology. The results look promising as the methodology achieves high degree of precision and recall for information extraction and reasonably good accuracy for predicting missing values.Keywords: Information Extraction, Bayesian Network, ontology, Machine Learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22321012 Anticancer Effect of Doxorubicin Loaded Heparin based Super-paramagnetic Iron oxide Nanoparticles against the Human Ovarian Cancer Cells
Authors: Amaneh Javid, Shahin Ahmadian, Ali A. Saboury, Saeed Rezaei-Zarchi
Abstract:
This study determines the effect of naked and heparinbased super-paramagnetic iron oxide nanoparticles on the human cancer cell lines of A2780. Doxorubicin was used as the anticancer drug, entrapped in the SPIO-NPs. This study aimed to decorate nanoparticles with heparin, a molecular ligand for 'active' targeting of cancerous cells and the application of modified-nanoparticles in cancer treatment. The nanoparticles containing the anticancer drug DOX were prepared by a solvent evaporation and emulsification cross-linking method. The physicochemical properties of the nanoparticles were characterized by various techniques, and uniform nanoparticles with an average particle size of 110±15 nm with high encapsulation efficiencies (EE) were obtained. Additionally, a sustained release of DOX from the SPIO-NPs was successful. Cytotoxicity tests showed that the SPIO-DOX-HP had higher cell toxicity than the individual HP and confocal microscopy analysis confirmed excellent cellular uptake efficiency. These results indicate that HP based SPIO-NPs have potential uses as anticancer drug carriers and also have an enhanced anticancer effect.Keywords: Heparin, A2780 cells, ovarian cancer, nanoparticles, doxorubicin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24651011 Effects of Pressure and Temperature on the Extraction of Benzyl Isothiocyanate by Supercritical Fluids from Tropaeolum majus L. Leaves
Authors: Espinoza S. Clara, Gamarra Q. Flor, Marianela F. Ramos Quispe S. Miguel, Flores R. Omar
Abstract:
Tropaeolum majus L. is a native plant to South and Central America, used since ancient times by our ancestors to combat different diseases. Glucotropaeolonin is one of its main components, which when hydrolyzed, forms benzyl isothiocyanate (BIT) that promotes cellular apoptosis (programmed cell death in cancer cells). Therefore, the present research aims to evaluate the effect of the pressure and temperature of BIT extraction by supercritical CO2 from Tropaeolum majus L. The extraction was carried out in a supercritical fluid extractor equipment Speed SFE BASIC Brand: Poly science, the leaves of Tropaeolum majus L. were ground for one hour and lyophilized until obtaining a humidity of 6%. The extraction with supercritical CO2 was carried out with pressures of 200 bar and 300 bar, temperatures of 50°C, 60°C and 70°C, obtained by the conjugation of these six treatments. BIT was identified by thin layer chromatography using 98% BIT as the standard, and as the mobile phase hexane: dichloromethane (4:2). Subsequently, BIT quantification was performed by high performance liquid chromatography (HPLC). The highest yield of oleoresin by supercritical CO2 extraction was obtained pressure 300 bar and temperature at 60°C; and the higher content of BIT at pressure 200 bar and 70°C for 30 minutes to obtain 113.615 ± 0.03 mg BIT/100 g dry matter was obtained.
Keywords: Tropaeolum majus L., supercritical fluids, benzyl isothiocyanate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8801010 An Investigation into Libyan Teachers’ Views of Children’s Emotional and Behavioural Difficulties
Authors: Abdelbasit Gadour
Abstract:
A great number of children in mainstream schools across Libya is currently living with emotional, behavioural difficulties. This study aims to explore teachers’ perceptions of children’s emotional and behavioural difficulties (EBD) and their attributions of the causes of EBD. The relevance of this area of study to current educational practice is illustrated in the fact that primary school teachers in Libya find classroom behaviour problems one of the major difficulties they face. The information presented in this study was gathered from 182 teachers that responded back to the survey, of whom, 27 teachers were later interviewed. In general, teachers’ perceptions of EBD reflect personal experience, training, and attitudes. Teachers appear from this study to use words such as indifferent, frightened, withdrawn, aggressive, disobedient, hyperactive, less ambitious, lacking concentration, and academically weak to describe pupils with EBD. The implications of this study are envisaged as being extremely important to support teachers addressing children’s EBD and shed light on the contributing factors to EBD for a successful teaching-learning process in Libyan primary schools.
Keywords: Teachers, children, learning, emotional and behaviour difficulties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6151009 Adaption Model for Building Agile Pronunciation Dictionaries Using Phonemic Distance Measurements
Authors: Akella Amarendra Babu, Rama Devi Yellasiri, Natukula Sainath
Abstract:
Where human beings can easily learn and adopt pronunciation variations, machines need training before put into use. Also humans keep minimum vocabulary and their pronunciation variations are stored in front-end of their memory for ready reference, while machines keep the entire pronunciation dictionary for ready reference. Supervised methods are used for preparation of pronunciation dictionaries which take large amounts of manual effort, cost, time and are not suitable for real time use. This paper presents an unsupervised adaptation model for building agile and dynamic pronunciation dictionaries online. These methods mimic human approach in learning the new pronunciations in real time. A new algorithm for measuring sound distances called Dynamic Phone Warping is presented and tested. Performance of the system is measured using an adaptation model and the precision metrics is found to be better than 86 percent.Keywords: Pronunciation variations, dynamic programming, machine learning, natural language processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8001008 Examining the Usefulness of an ESP Textbook for Information Technology: Learner Perspectives
Authors: Yun-Husan Huang
Abstract:
Many English for Specific Purposes (ESP) textbooks are distributed globally as the content development is often obliged to compromises between commercial and pedagogical demands. Therefore, the issue of regional application and usefulness of globally published ESP textbooks has received much debate. For ESP instructors, textbook selection is definitely a priority consideration for curriculum design. An appropriate ESP textbook can facilitate teaching and learning, while an inappropriate one may cause a disaster for both teachers and students. This study aims to investigate the regional application and usefulness of an ESP textbook for information technology (IT). Participants were 51 sophomores majoring in Applied Informatics and Multimedia at a university in Taiwan. As they were non-English majors, their English proficiency was mostly at elementary and elementary-to-intermediate levels. This course was offered for two semesters. The textbook selected was Oxford English for Information Technology. At class end, the students were required to complete a survey comprising five choices of Very Easy, Easy, Neutral, Difficult, and Very Difficult for each item. Based on the content design of the textbook, the survey investigated how the students viewed the difficulty of grammar, listening, speaking, reading, and writing materials of the textbook. In terms of difficulty, results reveal that only 22% of them found the grammar section difficult and very difficult. For listening, 71% responded difficult and very difficult. For general reading, 55% responded difficult and very difficult. For speaking, 56% responded difficult and very difficult. For writing, 78% responded difficult and very difficult. For advanced reading, 90% reported difficult and very difficult. These results indicate that, except the grammar section, more than half of the students found the textbook contents difficult in terms of listening, speaking, reading, and writing materials. Such contradictory results between the easy grammar section and the difficult four language skills sections imply that the textbook designers do not well understand the English learning background of regional ESP learners. For the participants, the learning contents of the grammar section were the general grammar level of junior high school, while the learning contents of the four language skills sections were more of the levels of college English majors. Implications from the findings are obtained for instructors and textbook designers. First of all, existing ESP textbooks for IT are few and thus textbook selections for instructors are insufficient. Second, existing globally published textbooks for IT cannot be applied to learners of all English proficiency levels, especially the low level. With limited textbook selections, third, instructors should modify the selected textbook contents or supplement extra ESP materials to meet the proficiency level of target learners. Fourth, local ESP publishers should collaborate with local ESP instructors who understand best the learning background of their students in order to develop appropriate ESP textbooks for local learners. Even though the instructor reduced learning contents and simplified tests in curriculum design, in conclusion, the students still found difficult. This implies that in addition to the instructor’s professional experience, there is a need to understand the usefulness of the textbook from learner perspectives.Keywords: ESP textbooks, ESP materials, ESP textbook design, learner perspectives on ESP textbooks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18971007 A Teaching Learning Based Optimization for Optimal Design of a Hybrid Energy System
Authors: Ahmad Rouhani, Masoud Jabbari, Sima Honarmand
Abstract:
This paper introduces a method to optimal design of a hybrid Wind/Photovoltaic/Fuel cell generation system for a typical domestic load that is not located near the electricity grid. In this configuration the combination of a battery, an electrolyser, and a hydrogen storage tank are used as the energy storage system. The aim of this design is minimization of overall cost of generation scheme over 20 years of operation. The Matlab/Simulink is applied for choosing the appropriate structure and the optimization of system sizing. A teaching learning based optimization is used to optimize the cost function. An overall power management strategy is designed for the proposed system to manage power flows among the different energy sources and the storage unit in the system. The results have been analyzed in terms of technical and economic. The simulation results indicate that the proposed hybrid system would be a feasible solution for stand-alone applications at remote locations.Keywords: Hybrid energy system, optimum sizing, power management, TLBO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25611006 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.Keywords: Deep learning, long-short-term memory, energy, renewable energy load forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15961005 Trajectory-Based Modified Policy Iteration
Abstract:
This paper presents a new problem solving approach that is able to generate optimal policy solution for finite-state stochastic sequential decision-making problems with high data efficiency. The proposed algorithm iteratively builds and improves an approximate Markov Decision Process (MDP) model along with cost-to-go value approximates by generating finite length trajectories through the state-space. The approach creates a synergy between an approximate evolving model and approximate cost-to-go values to produce a sequence of improving policies finally converging to the optimal policy through an intelligent and structured search of the policy space. The approach modifies the policy update step of the policy iteration so as to result in a speedy and stable convergence to the optimal policy. We apply the algorithm to a non-holonomic mobile robot control problem and compare its performance with other Reinforcement Learning (RL) approaches, e.g., a) Q-learning, b) Watkins Q(λ), c) SARSA(λ).Keywords: Markov Decision Process (MDP), Mobile robot, Policy iteration, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14461004 Jointly Learning Python Programming and Analytic Geometry
Authors: Cristina-Maria Păcurar
Abstract:
The paper presents an original Python-based application that outlines the advantages of combining some elementary notions of mathematics with the study of a programming language. The application support refers to some of the first lessons of analytic geometry, meaning conics and quadrics and their reduction to a standard form, as well as some related notions. The chosen programming language is Python, not only for its closer to an everyday language syntax – and therefore, enhanced readability – but also for its highly reusable code, which is of utmost importance for a mathematician that is accustomed to exploit already known and used problems to solve new ones. The purpose of this paper is, on one hand, to support the idea that one of the most appropriate means to initiate one into programming is throughout mathematics, and reciprocal, one of the most facile and handy ways to assimilate some basic knowledge in the study of mathematics is to apply them in a personal project. On the other hand, besides being a mean of learning both programming and analytic geometry, the application subject to this paper is itself a useful tool for it can be seen as an independent original Python package for analytic geometry.Keywords: Analytic geometry, conics, Python programming language, quadrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15851003 Mechanisms Involved In Organic Solvent Resistance in Gram-Negative Bacteria
Authors: M. M. Lâzâroaie
Abstract:
The high world interest given to the researches concerning the study of moderately halophilic solvent-tolerant bacteria isolated from marine polluted environments is due to their high biotechnological potential, and also to the perspective of their application in different remediation technologies. Using enrichment procedures, I isolated two moderately halophilic Gram-negative bacterial strains from seawater sample, which are tolerant to organic solvents. Cell tolerance, adhesion and cells viability of Aeromonas salmonicida IBBCt2 and Pseudomonas aeruginosa IBBCt3 in the presence of organic solvents depends not only on its physicochemical properties and its concentration, but also on the specific response of the cells, and the cellular response is not the same for these bacterial strains. n-hexane, n-heptane, propylbenzene, with log POW between 3.69 and 4.39, were less toxic for Aeromonas salmonicida IBBCt2 and Pseudomonas aeruginosa IBBCt3, compared with toluene, styrene, xylene isomers and ethylbenzene, with log POW between 2.64 and 3.17. The results indicated that Aeromonas salmonicida IBBCt2 is more susceptible to organic solvents than Pseudomonas aeruginosa IBBCt3. The mechanisms underlying solvent tolerance (e.g., the existance of the efflux pumps) in Aeromonas salmonicida IBBCt2 and Pseudomonas aeruginosa IBBCt3 it was also studied.
Keywords: bacteria, mechanisms, organic solvent, resistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978