Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30172
Mechanisms Involved In Organic Solvent Resistance in Gram-Negative Bacteria

Authors: M. M. Lâzâroaie


The high world interest given to the researches concerning the study of moderately halophilic solvent-tolerant bacteria isolated from marine polluted environments is due to their high biotechnological potential, and also to the perspective of their application in different remediation technologies. Using enrichment procedures, I isolated two moderately halophilic Gram-negative bacterial strains from seawater sample, which are tolerant to organic solvents. Cell tolerance, adhesion and cells viability of Aeromonas salmonicida IBBCt2 and Pseudomonas aeruginosa IBBCt3 in the presence of organic solvents depends not only on its physicochemical properties and its concentration, but also on the specific response of the cells, and the cellular response is not the same for these bacterial strains. n-hexane, n-heptane, propylbenzene, with log POW between 3.69 and 4.39, were less toxic for Aeromonas salmonicida IBBCt2 and Pseudomonas aeruginosa IBBCt3, compared with toluene, styrene, xylene isomers and ethylbenzene, with log POW between 2.64 and 3.17. The results indicated that Aeromonas salmonicida IBBCt2 is more susceptible to organic solvents than Pseudomonas aeruginosa IBBCt3. The mechanisms underlying solvent tolerance (e.g., the existance of the efflux pumps) in Aeromonas salmonicida IBBCt2 and Pseudomonas aeruginosa IBBCt3 it was also studied.

Keywords: bacteria, mechanisms, organic solvent, resistance.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631


[1] R. Aono, and H. Kobayashi, "Cell surface properties of organic solventtolerant mutants of Escherichia coli K-12," Appl. Environ. Microbiol., vol. 63, pp. 3637-3642, 1997.
[2] S. Isken, and J. A. M. de Bont, "Bacteria tolerant to organic solvents," Extremophiles, vol. 2, pp. 229-238, 1998.
[3] L. E. Nielsen, D. R. Kadavy, S. Rajagopal, R. Drijber, and K. W. Nickerson, "Survey of extreme solvent tolerance in gram-positive cocci: membrane fatty acid changes in Staphylococcus haemolyticus grown in toluene," Appl. Environ. Microbiol., vol. 71, pp. 5171-5176, 2005.
[4] M. R. Smith, "The biodegradation of aromatic hydrocarbons by bacteria," Biodegrad., vol. 1, pp. 191-206, 1990.
[5] E. A. Nonino, "Where is the citrus industry going?," Perfum Flavor, vol. 22, pp. 53-58, 1997.
[6] K. Shirai, "Catechol production from benzene through reaction with resting and immobilized cells of mutant strains of Pseudomonas," Agric. Biol. Chem., vol. 51, pp. 121-128, 1987.
[7] R. O. Jenkins, G. M. Stephens, and H. Dalton, 1987, "Production of toluene cisglycol by Pseudomonas putida in glucose feed-batch culture," Biotechnol. Bioeng., vol. 29, pp. 873-883.
[8] J. Sikkema, J. A. M. de Bont, and B. Poolman, "Interactions of cyclic hydrocarbons with biological membranes," J. Biol. Chem., vol. 269, pp. 8022-8028, 1994.
[9] J. Sikkema, J. A. M. de Bont, and B. Poolman, "Mechanisms of membrane toxicity of hydrocarbons," Microbiol. Rev., vol. 59, pp. 201- 222, 1995.
[10] J. L. Ramos, E. Duque, M. T. Gallegos, P. Godoy, M. I. Ramos-González, A. Rojas, W. Terán, and A. Segura, "Mechanisms of solvent tolerance in gram-negative bacteria," Annu. Rev. Microbiol., vol. 56, pp. 743-768, 2002.
[11] H. J. Heipieper, G. Neumann, S. Cornelissen, and F. Meinhardt, "Solventtolerant bacteria for biotransformations in two-phase fermentation systems," Appl. Microbiol. Biotechnol., vol. 74, pp. 961-973, 2007.
[12] A. Segura, E. Duque, G. Mosqueda, J. L. Ramos, and F. Junker, "Multiple responses of Gram-negative bacteria to organic solvents," Environ. Microbiol., vol. 1, pp. 191-198, 1999.
[13] A. Segura, P. Godoy, P. van Dillewijn, A. Hurtado, N. Arroyo, S. Santacruz, and J. L. Ramos, "Proteomic analysis reveals the participation of energy- and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene," J. Bacteriol., vol. 187, pp. 5937-5945, 2005.
[14] A. Segura, A. Hurtado, B. Rivera, and M. M. Lâzâroaie, "Isolation of new toluene-tolerant marine strains of bacteria and characterization of their solvent-tolerance properties," J. Appl. Microbiol., vol. 104, pp. 1408- 1416, 2008.
[15] E. Duque, J. J. Rodriguez-Herva, J. de la Torre, P. Dominguez-Cuevas, J. Munoz-Rojas, and J. L. Ramos, "The RpoT regulon of Pseudomonas putida DOT-T1E and its role in stress endurance against solvents," J. Bacteriol., vol. 189, pp. 207-219, 2007.
[16] H. C. Pinkart, and D.C. White, "Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains," J. Bacteriol., vol. 179, pp. 4219-4226, 1997.
[17] M. I. Borges-Walmsley, K. S. McKeegan, and A. R. Walmsley, "Structure and function of efflux pumps that confer resistance to drugs," Biochem. J., vol. 376, pp. 313-338, 2003.
[18] K. Nishino, and A. Yamaguchi, "Role of histone-like protein H-NS in multidrug resistance of Escherichia coli," J. Bacteriol., vol. 186, pp. 1423-1429, 2004.
[19] R. Margesin, and F. Schinner, "Biodegradation and bioremediation of hydrocarbons in extreme environments," Appl. Microbiol. Biotechnol., vol. 56, pp. 650-663, 2001.
[20] M. T. García, E. Mellado, J. C. Ostos, and A. Ventosa, "Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds," Int. J. of Syst. and Evol. Microbiol., vol. 54, pp. 1723- 1728, 2004.
[21] J. R. Haines, B. A. Wrenn, E. L. Holder, K. L. Strohmeier, R.T. Herrington, and A. D. Venosa, "Measurement of hydrocarbon-degrading microbial populations by a 96-well plate most-probable-number procedure," J. Ind. Microbiol., vol. 16, pp. 36-41, 1996.
[22] W. E. Garthright, and R. J. Blodgett, "FDA's preferred MPN methods for standard, large or unusual tests, with a spreadsheet," Food Microbiol., vol. 20, pp. 439-445, 2003.
[23] J. De Ley, "The quick approximation of DNA base composition from absorbancy ratios," Antonie van Leeuwenhoek, vol. 33, pp. 203-208, 1976.
[24] J. L. Ramos, E. Duque, M. J. Huertas, and A. Haídour, "Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons," J. Bacteriol., vol. 177, pp. 3911-3916, 1995.
[25] M. Rosenberg, D. Gutnick, and E. Rosenberg, "Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrofobicity," FEMS Microbiol. Lett., vol. 9, pp. 29-33, 1980.
[26] J. L. Ramos, E. Duque J. J., Rodriguez-Hervas, P. Godoy, A. Haidour, F. Reyes, and A. Fernández-Barrero, "Metabolism for solvent tolerance in bacteria," J. Biol. Chem., vol. 272, pp. 3887-3890, 1997.
[27] J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning, A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989.
[28] M. M. Bradford, "A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding," Anal. Biochem., vol. 72, pp. 248-254, 1976.
[29] L. G. Whyte, C. W. Greer, and W. E. Inniss, "Assessment of the biodegradation potential of psychrotrophic microorganisms," Can. J. Microbiol., vol. 42, pp. 99-106, 1995.
[30] R. H. Vreeland, C. D. Lichtfield, E. L. Martin, and E. Elliot, "Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria," Int. J. Syst. Bacteriol., vol. 30, pp. 485-495, 1980.
[31] J. D. Walker, and R. R. Colwell, "Enumeration of petroleum-degrading microorganisms," Appl. Environ. Microbiol., vol. 31, pp. 198-207, 1976.
[32] G. Roubal, and R. M. Atlas, 1978, "Distribution of hydrocarbonutilizing microorganisms and hydrocarbon biodegradation potentials in Alaskan continental shelf areas," Appl. Environ. Microbiol., vol. 35, pp. 897- 905.
[33] M. A. Heitkamp, and C. E. Cerniglia, "Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field," Appl. Environ. Microbiol., vol. 54, pp. 1612-1614, 1988.
[34] H.-G. Song, and R. Bartha, "Effects of jet fuel spills on the microbial community of soil," Appl. Environ. Microbiol., vol. 56, pp. 646-651, 1990.
[35] Y. Shi, M. D. Zwolinski, M. E. Schreiber, J. M. Bahr, G. W. Sewell, and W. J. Hickey, "Molecular analysis of microbial community structures in pristine and contaminated aquifers: field and laboratory microcosm experiments," Appl. Environ. Microbiol., vol. 65, pp. 2143-2150, 1999.
[36] S. Bordenave, M. S. Go├▒i-Urriza, P. Caumette, and R. Duran, "Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat," Appl. Environ. Microbiol., vol. 73, pp. 6089-6097, 2007.
[37] W. F. Röling, M. G. Milner, D. M. Jones, K. Lee, F. Daniel, R. J. Swannell, and I. M. Head, "Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation," Appl. Environ. Microbiol., vol. 68, pp. 5537-5548, 2002.
[38] R. Seshadri, S. W. Joseph, A. K. Chopra, J. Sha, J. Shaw, J. Graf, D. Haft, M. Wu, Q. Ren, M. J. Rosovitz, R. Madupu, L. Tallon, M. Kim, S. Jin, H. Vuong, O. C. Stine, A. Ali, A. J. Horneman, and J. F. Heidelberg, "Genome sequence of Aeromonas hydrophila ATCC 7966T: jack of all trades," J. Bacteriol., vol. 188, pp. 8272-8282, 2006.
[39] H. Nikaido, and H. I. Zgurskaya, "AcrAB and related multidrug efflux pumps of Escherichia coli," J. Mol. Microbiol. Biotechnol., vol. 3, pp. 215-218, 2001.
[40] W. Terán, A. Felipe, A. Segura, A. Rojas, J. L. Ramos, and M.-T. Gallegos, "Antibiotic-dependent induction of Pseudomonas putida DOT-T1E TtgABC efflux pump is mediated by the drug binding repressor TtgR," Antimicrob. Agents Chemother., vol. 47, pp. 3067- 3072, 2003.
[41] K. Poole, "Efflux-mediated antimicrobial resistance," J. Antimicrob. Chemother., vol. 56, pp. 20-51, 2005.
[42] R. Aono, N. Tsukagoshi, and M. Yamamoto, "Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12," J. Bacteriol., vol. 180, pp. 938-944, 1998.
[43] R. A. Al-Tahhan, T. R. Sandrin, A. A. Bodour, and R. M. Maier, "Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates," Appl. Environ. Microbiol., vol. 66, pp. 3262-3268, 2000.
[44] A. Inoue, M. Yamamoto, and K. Horikoshi, "Pseudomonas putida which can grow in the presence of toluene," Appl Environ Microbiol., vol. 57, pp. 1560-1562, 1991.
[45] F. J. Weber, and J. A. M. de Bont, "Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes," Biochim. Biophys. Acta, vol. 1286, pp. 225-245, 1996.
[46] G. Mosqueda, and J. L. Ramos, "A set of genes encoding a second toluene efflux system in Pseudomonas putida DOT-T1.E is linked to the tod genes for toluene metabolism," J. Bacteriol., vol. 182, pp. 937-943, 2000.
[47] K. Kim, L. Lee, K. Lee, and D. Lim, "Isolation and characterization of toluene-sensitive mutants from the toluene-resistant bacterium Pseudomonas putida GM73," J. Bacteriol., vol. 180, pp. 3692-3696, 1998.
[48] A. Rojas, A. Segura, M. E. Guazzaroni, W. Teran, A. Hurtado, M. T. Gallegos, and J. L. Ramos, "In vivo and in vitro evidence that TtgV is the specific regulator of the TtgGHI multidrug and solvent efflux pump of Pseudomonas putida," J. Bacteriol., vol. 185, pp. 4755-4763, 2003.
[49] G. Neumann, N. Kabelitz, A. Zehnsdorf, A. Miltner, H. Lippold, D. Meyer, A. Schmid, and H. J. Heipieper, "Prediction of the adaptability of Pseudomonas putida DOT-T1E to a second phase of a solvent for economically sound two-phase biotransformations," Appl. Environ. Microbiol., vol. 71, pp. 6606-6612, 2005.
[50] N. Meguro, Y. Kodama, M. T. Gallegos, and K. Watanabe, "Molecular characterization of resistance-nodulation-division transporters from solvent- and drug-resistant bacteria in petroleum-contaminated soil," Appl. Environ. Microbiol., vol. 71, pp. 580-586, 2005.
[51] J. G. Leahy, and R. R. Colwell, "Microbial degradation of hydrocarbons in the environment," Microbiol. Rev., vol. 54, pp. 305-315, 1990.
[52] A. I. Okoh, "Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants," Biotechnol. Molec. Biol. Rev., vol. 1, pp. 38- 50, 2006.
[53] I. Llamas, M. Argandona, E. Quesada, and A. del Moral, "Transposon mutagenesis in Halomonas eurihalina," Res. Microbiol., vol. 151, pp. 13-18, 2000.
[54] G. Gauthier, M. Gauthier, and R. Christen, "Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (Emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations," Int. J. of Syst. Bacteriol., vol. 45, pp. 755-761, 1995.