Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30135
The Construction of a Probiotic Lactic Acid Bacterium Expressing Acid-Resistant Phytase Enzyme

Authors: R. Majidzadeh Heravi, M. Sankian, H. Kermanshahi, M. R. Nassiri, A. Heravi Moussavi, S. A. Lari, A. R. Varasteh

Abstract:

The use of probiotics engineered to express specific enzymes has been the subject of considerable attention in poultry industry because of increased nutrient availability and reduced cost of enzyme supplementation. Phytase enzyme is commonly added to poultry feed to improve digestibility and availability of phosphorus from plant sources. To construct a probiotic with potential of phytate degradation, phytase gene (appA) from E. coli was cloned and transformed into two probiotic bacteria Lactobacillus salivarius and Lactococcus lactis. L. salivarous showed plasmid instability, unable to express the gene. The expression of appA gene in L. lactis was analyzed by detecting specific RNA and zymography assay. Phytase enzyme was isolated from cellular extracts of recombinant L. lactis, showing a 46 kDa band upon the SDS-PAGE analysis. Zymogram also confirmed the phytase activity of the 46 kDa band corresponding to the enzyme. An enzyme activity of 4.9U/ml was obtained in cell extracts of L. lactis. The growth of native and recombinant L. lactis was similar in the presence of two concentrations of ox bile.

Keywords: Lactobacillus salivarus, Lactococcus lactis, recombinant, phytase, poultry.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1339602

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 565

References:


[1] Lei, X. G. and C. H. Stahl, Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl. Microbiol. Biotechnol., 2001. 57(4): p. 474-481.
[2] Veum, T. L., et al., A genetically engineered Escherichia coli phytase improves nutrient utilization, growth performance, and bone strength of young swine fed diets deficient in available phosphorus. J. Anim. Sci., 2006. 84: p. 1147-1158.
[3] Augspurger, N. R., D. M. Webel, and D. H. Baker, An Escherichia coli phytase expressed in yeast effectively replaces inorganic phosphorus for finishing pigs and laying hens. J. Anim. Sci., 2007. 85: p. 1192-1198.
[4] Xiong, A. S., et al., High level expression of a recombinant acid phytase gene in Pichia pastoris. J. Appl. Microbiol., 2005. 98(2): p. 418-428.
[5] Han, Y., D.B. Wilson, and X.G. Lei, Expression of an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae. Appl. Environ. Microbiol., 1999. 65(5): p. 1915-1918.
[6] Lee, S., et al., Expression of Escherichia coli AppA2 phytase in four yeast systems. Biotechnol. Lett., 2005. 27(5): p. 327-334.
[7] Igbasan, F. A., et al., Comparative studies on the in vitro properties of phytases from various microbial origins. Arch Tierernahr, 2000. 53(4): p. 353-73.
[8] Kerovuo, J. and S. Tynkkynen, Expression of Bacillus subtilis phytase in Lactobacillus plantarum 755. Lett. Appl. Microbiol., 2000. 30(4): p. 325-329.
[9] Zuo, R., et al., Phytase gene expression in Lactobacillus and analysis of its biochemical characteristics. Microbiol. Res., 2010. 165(4): p. 329-335.
[10] Mierau, I. and M. Kleerebezem, 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl. Microbiol. Biotechnol., 2005. 68(6): p. 705-717.
[11] Majidzadeh Heravi, R., et al., Screening of lactobacilli bacteria isolated from gastrointestinal tract of broiler chickens for their use as probiotic. African J. Microbiol. Res., 2011. 5: p. 1858-1868.
[12] Chachaty, E. and P. Saulnier, Isolating Chromosomal DNA from Bacteria, in The nucleic acid protocols handbook, R. Rapley, Editor. 2000, Humana Press: Totowa, New Jersey. p. 28-32.
[13] Sambrook, J. and D.W. Russell, Molecular Cloning: A Laboratory Manual. 2001, New York: Cold Spring Harbor Laboratory Press.
[14] Mason, C. K., M. A. Collins, and K. Thompson, Modified electroporation protocol for Lactobacilli isolated from the chicken crop facilitates transformation and the use of a genetic tool. J Microbiol Methods, 2005. 60(3): p. 353-63.
[15] Bates, E. E., et al., Expression of a Clostridium thermocellum endoglucanase gene in Lactobacillus plantarum. Appl. Environ. Microbiol., 1989. 55(8): p. 2095-2097.
[16] Laemmli, U.K., Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature, 1970. 227: p. 2079-2085.
[17] Bae, H.D., et al., A novel staining method for detecting phytase activity. J Microbiol. Meth., 1999. 39: p. 17-22.
[18] Yin, Q.Q., Q.H. Zheng, and X.T. Kang, Biochemical characteristics of phytases from fungi and the transformed microorganism. Anim. feed sci. tech, 2007. 132: p. 341-350.
[19] Han, Y.M., et al., Supplemental phytases of microbial and cereal sources improve dietary phytate phosphrous utilization by pigs from weaning through finishing. J. Anim. Sci., 1997. 75: p. 1071-1025.
[20] Pillai, P. B., et al., Efficacy of an Escherichia coli Phytase in Broilers Fed Adequate or Reduced Phosphorus Diets and Its Effect on Carcass Characteristics. poult. sci., 2006. 85: p. 1737–1745.
[21] Stahl, C.H., et al., Effects of combining three fungal phytases with a bacterial phytase on plasma phosphorus status of weanling pigs fed a corn-soy diet. Poult. sci., 2004. 82: p. 1725–1731.
[22] Dassa, J., C. Marck, and P. Boquet, The complete nucleotide sequence of the Escherichia coli gene appA reveals significant homology between pH 2.5 acid phosphatase and glucose-1-phosphatase. J Bacteriol, 1990. 172: p. 5497-5500.
[23] Rodriguez, E., Y. Han, and X.G. Lei, Cloning, Sequencing, and Expression of an Escherichia coli Acid Phosphatase/Phytase Gene (appA2) Isolated from Pig Colon. Biochem. Biophys. Res. Commun., 1999. 257: p. 117-123.
[24] Dassa, J., C. Marck, and P.L. Boquet, The complete nucleotide sequence of the Escherichia coli gene appA reveals significant homology between pH 2.5 acid phosphatase and glucose-1-phosphatase. J Bacteriol, 1990. 172(9): p. 5497-500.
[25] Kimoto, H., et al., Lactococci as probiotic strains: adhesion to human enterocyte-like Caco-2 cells and tolerance to low pH and bile. Lett Appl Microbiol, 1999. 29(5): p. 313-6.
[26] Vinderola, C.G. and J.A. Reinheimer, Lactic acid starter and probiotic bacteria: a comparative ‘‘in vitro’’ study of probiotic characteristics and biological barrier resistance. Food Res Inter, 2003. 36: p. 895-904.
[27] Kiewiet, R., et al., The Mode of Replication Is a Major Factor in Segregational Plasmid Instability in Lactococcus lactis. Appl Environ Microbiol, 1993. 59(2): p. 358-64.
[28] Perez-Arellano, I., M. Zuniga, and G. Perez-Martinez, Construction of compatible wide-host-range shuttle vectors for lactic acid bacteria and Escherichia coli. Plasmid, 2001. 46(2): p. 106-116.
[29] Mills, S., et al., Plasmids of lactococci - genetic accessories or genetic necessities? FEMS Microbiol. Rev., 2006. 30(2): p. 243-273.
[30] Gruss, A. and S.D. Ehrlich, Insertion of foreign DNA into plasmids from Gram-positive bacteria induces formation of high-molecular-weight plasmid multimers. J. Bacteriol., 1988. 170: p. 1183-1190.
[31] Gruss, A. and S.D. Ehrlich, The family of highly interrelated single-stranded deoxyribonucleic acid plasmids. Microbiol Rev, 1989. 53: p. 231- 241.
[32] Leonhardt, H. and J.C. Alonso, Parameters affecting plasmid stability in Bacillus subtilis. Gene, 1991. 103: p. 107-111.
[33] Cordes, C., et al., The expression of a plasmid-specified exported protein causes structural plasmid instability in Bacillus subtilis. J Bacteriol, 1996. 178: p. 5235-5242.
[34] Liu, J.-R., et al., Coexpression of rumen microbial β-glucanase and xylanasegenes in Lactobacillus reuteri. Appl Microbiol Biotechnol, 2007. 77: p. 117-124.
[35] Steidler, L. and S. Neirynck, Genetically Modified Probiotics, in Probiotics and Prebiotics: Scientific Aspects, G.W. Tannock, Editor. 2005, Horizon Scientific Press. p. 155-170.
[36] Xin, K.-Q., et al., Immunogenicity and protective efficacy of orally administered recombinant Lactococcus lactis expressing surface-bound HIV Env. Blood, 2003. 102: p. 223-228.
[37] Liu, J.-R., et al., Expression of Rumen Microbial Fibrolytic Enzyme Genes in Probiotic Lactobacillus reuteri. Appl Environ Microbiol, 2005. 71: p. 6769-6775.
[38] van Rooijen, J.R., M.J. Gasson, and W.M.d. Vos, Characterization of the Lactococcus lactis Lactose Operon Promoter: Contribution of Flanking Sequences and LacR Repressor to Promoter Activity. J. Bacteriol., 1992. 174: p. 2273-2280.