Search results for: thin film solar cells.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1490

Search results for: thin film solar cells.

260 Study of Peptide Fragment of Alpha-Fetoprotein as a Radionuclide Vehicle

Authors: Alesya Ya. Maruk, Olga E. Klementyeva, Ekaterina I. Lesik, Anton A. Larenkov, Alexander B. Bruskin

Abstract:

Alpfa-fetoprotein and its fragments may be an important vehicle for targeted delivery of radionuclides to the tumor. We investigated the effect of conditions on the labeling of biologically active synthetic peptide based on the (F-afp) with technetium-99m. The influence of the nature of the buffer solution, pH, concentration of reductant, concentration of the peptide and the reaction temperature on the yield of labeling was examined. As a result, the following optimal conditions for labeling of (F-afp) are found: pH 8.5 (phosphate and bicarbonate buffers) and pH from 1.7 to 7.0 (citrate buffer). The reaction proceeds with sufficient yield at room temperature for 30 min at the concentration of SnCl2 and (Fafp) (F-afp) is to be less than 10 mkg/ml and 25 mkg/ml, respectively. Investigations of the test drug accumulation in the tumor cells of human breast cancer were carried out. Results can be assumed that the in vivo study of the (F-afp) in experimental tumor lesions will show concentrations sufficient for imaging these lesions by SPECT.

Keywords: peptide, technetium-99m, tumor, SPECT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
259 Three Dimensional Large Eddy Simulation of Blood Flow and Deformation in an Elastic Constricted Artery

Authors: Xi Gu, Guan Heng Yeoh, Victoria Timchenko

Abstract:

In the current work, a three-dimensional geometry of a 75% stenosed blood vessel is analyzed. Large eddy simulation (LES) with the help of a dynamic subgrid scale Smagorinsky model is applied to model the turbulent pulsatile flow. The geometry, the transmural pressure and the properties of the blood and the elastic boundary were based on clinical measurement data. For the flexible wall model, a thin solid region is constructed around the 75% stenosed blood vessel. The deformation of this solid region was modelled as a deforming boundary to reduce the computational cost of the solid model. Fluid-structure interaction is realized via a twoway coupling between the blood flow modelled via LES and the deforming vessel. The information of the flow pressure and the wall motion was exchanged continually during the cycle by an arbitrary Lagrangian-Eulerian method. The boundary condition of current time step depended on previous solutions. The fluctuation of the velocity in the post-stenotic region was analyzed in the study. The axial velocity at normalized position Z=0.5 shows a negative value near the vessel wall. The displacement of the elastic boundary was concerned in this study. In particular, the wall displacement at the systole and the diastole were compared. The negative displacement at the stenosis indicates a collapse at the maximum velocity and the deceleration phase.

Keywords: Large Eddy Simulation, Fluid Structural Interaction, Constricted Artery, Computational Fluid Dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2312
258 Minimization of Switching Losses in Cascaded Multilevel Inverters Using Efficient Sequential Switching Hybrid-Modulation Techniques

Authors: P. Satish Kumar, K. Ramakrishna, Ch. Lokeshwar Reddy, G. Sridhar

Abstract:

This paper presents two different sequential switching hybrid-modulation strategies and implemented for cascaded multilevel inverters. Hybrid modulation strategies represent the combinations of Fundamental-frequency pulse width modulation (FFPWM) and Multilevel sinusoidal-modulation (MSPWM) strategies, and are designed for performance of the well-known Alternative Phase opposition disposition (APOD), Phase shifted carrier (PSC). The main characteristics of these modulations are the reduction of switching losses with good harmonic performance, balanced power loss dissipation among the devices with in a cell, and among the series-connected cells. The feasibility of these modulations is verified through spectral analysis, power loss analysis and simulation.

Keywords: Cascaded multilevel inverters, hybrid modulation, power loss analysis, pulse width modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2951
257 Optimization and Feasibility Analysis of PV/Wind/ Battery Hybrid Energy Conversion

Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah

Abstract:

In this paper, the optimum design for renewable energy system powered an aquaculture pond was determined. Hybrid Optimization Model for Electric Renewable (HOMER) software program, which is developed by U.S National Renewable Energy Laboratory (NREL), is used for analyzing the feasibility of the stand alone and hybrid system in this study. HOMER program determines whether renewable energy resources satisfy hourly electric demand or not. The program calculates energy balance for every 8760 hours in a year to simulate operation of the system. This optimization compares the demand for the electrical energy for each hour of the year with the energy supplied by the system for that hour and calculates the relevant energy flow for each component in the model. The essential principle is to minimize the total system cost while HOMER ensures control of the system. Moreover the feasibility analysis of the energy system is also studied. Wind speed, solar irradiance, interest rate and capacity shortage are the parameters which are taken into consideration. The simulation results indicate that the hybrid system is the best choice in this study, yielding lower net present cost. Thus, it provides higher system performance than PV or wind stand alone systems.

Keywords: Wind stand-alone system, Photovoltaic stand-alone system, Hybrid system, Optimum system sizing, feasibility, Cost analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079
256 Two-Stage Launch Vehicle Trajectory Modeling for Low Earth Orbit Applications

Authors: Assem M. F. Sallam, Ah. El-S. Makled

Abstract:

This paper presents a study on the trajectory of a two stage launch vehicle. The study includes dynamic responses of motion parameters as well as the variation of angles affecting the orientation of the launch vehicle (LV). LV dynamic characteristics including state vector variation with corresponding altitude and velocity for the different LV stages separation, as well as the angle of attack and flight path angles are also discussed. A flight trajectory study for the drop zone of first stage and the jettisoning of fairing are introduced in the mathematical modeling to study their effect. To increase the accuracy of the LV model, atmospheric model is used taking into consideration geographical location and the values of solar flux related to the date and time of launch, accurate atmospheric model leads to enhancement of the calculation of Mach number, which affects the drag force over the LV. The mathematical model is implemented on MATLAB based software (Simulink). The real available experimental data are compared with results obtained from the theoretical computation model. The comparison shows good agreement, which proves the validity of the developed simulation model; the maximum error noticed was generally less than 10%, which is a result that can lead to future works and enhancement to decrease this level of error.

Keywords: Launch vehicle modeling, launch vehicle trajectory, mathematical modeling, MATLAB-Simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3243
255 A Robust Approach to the Load Frequency Control Problem with Speed Regulation Uncertainty

Authors: S. Z. Sayed Hassen

Abstract:

The load frequency control problem of power systems has attracted a lot of attention from engineers and researchers over the years. Increasing and quickly changing load demand, coupled with the inclusion of more generators with high variability (solar and wind power generators) on the network are making power systems more difficult to regulate. Frequency changes are unavoidable but regulatory authorities require that these changes remain within a certain bound. Engineers are required to perform the tricky task of adjusting the control system to maintain the frequency within tolerated bounds. It is well known that to minimize frequency variations, a large proportional feedback gain (speed regulation constant) is desirable. However, this improvement in performance using proportional feedback comes about at the expense of a reduced stability margin and also allows some steady-state error. A conventional PI controller is then included as a secondary control loop to drive the steadystate error to zero. In this paper, we propose a robust controller to replace the conventional PI controller which guarantees performance and stability of the power system over the range of variation of the speed regulation constant. Simulation results are shown to validate the superiority of the proposed approach on a simple single-area power system model.

Keywords: Robust control, power system, integral action, minimax LQG control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
254 Comparison of Inter Cell Interference Coordination Approaches

Authors: Selma Sbit, Mohamed Bechir Dadi, Belgacem Chibani Rhaimi

Abstract:

This work aims to compare various techniques used in order to mitigate Inter-Cell Interference (ICI) in Long Term Evolution (LTE) and LTE-Advanced systems. For that, we will evaluate the performance of each one. In mobile communication networks, systems are limited by ICI particularly caused by deployment of small cells in conventional cell’s implementation. Therefore, various mitigation techniques, named Inter-Cell Interference Coordination techniques (ICIC), enhanced Inter-Cell Interference Coordination (eICIC) techniques and Coordinated Multi-Point transmission and reception (CoMP) are proposed. This paper presents a comparative study of these strategies. It can be concluded that CoMP techniques can ameliorate SINR and capacity system compared to ICIC and eICIC. In fact, SINR value reaches 15 dB for a distance of 0.5 km between user equipment and servant base station if we use CoMP technology whereas it cannot exceed 12 dB and 9 dB for eICIC and ICIC approaches respectively as reflected in simulations.

Keywords: 4th generation, interference, coordination, ICIC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 968
253 Analysis of a Self-Acting Air Journal Bearing: Effect of Dynamic Deformation of Bump Foil

Authors: H. Bensouilah, H. Boucherit, M. Lahmar

Abstract:

A theoretical investigation on the effects of both steady-state and dynamic deformations of the foils on the dynamic performance characteristics of a self-acting air foil journal bearing operating under small harmonic vibrations is proposed. To take into account the dynamic deformations of foils, the perturbation method is used for determining the gas-film stiffness and damping coefficients for given values of excitation frequency, compressibility number, and compliance factor of the bump foil. The nonlinear stationary Reynolds’ equation is solved by means of the Galerkins’ finite element formulation while the finite differences method are used to solve the first order complex dynamic equations resulting from the perturbation of the nonlinear transient compressible Reynolds’ equation. The stiffness of a bump is uniformly distributed throughout the bearing surface (generation I bearing). It was found that the dynamic properties of the compliant finite length journal bearing are significantly affected by the compliance of foils especially whenthe dynamic deformation of foils is considered in addition to the static one by applying the principle of superposition.

Keywords: Elasto-aerodynamic lubrication, Air foil bearing, Steady-state deformation, Dynamic deformation, Stiffness and damping coefficients, Perturbation method, Fluid-structure interaction, Galerk infinite element method, Finite difference method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2726
252 Metal-Based Anticancer Agents: In vitro DNA Binding, Cleavage and Cytotoxicity

Authors: Mala Nath, Nagamani Kompelli, Partha Roy, Snehasish Das

Abstract:

Two new metal-based anticancer chemotherapeutic agents, [(Ph2Sn)2(HGuO)2(phen)Cl2] 1 and [(Ph3Sn)(HGuO)(phen)]- Cl.CH3OH.H2O 2, were designed, prepared and characterized by analytical and spectral (IR, ESI-Mass, 1H, 13C and 119Sn NMR) techniques. The proposed geometry of Sn(IV) in 1 and 2 is distorted octahedral and distorted trigonal-bipyramidal, respectively. Both 1 and 2 exhibit potential cytotoxicity in vitro against MCF-7, HepG-2 and DU-145 cell lines. The intrinsic binding constant (Kb) values of 1 (2.33 × 105 M-1) and 2 (2.46 × 105 M-1) evaluated from UV-Visible absorption studies suggest non-classical electrostatic mode of interaction via phosphate backbone of DNA double helix. The Stern- Volmer quenching constant (Ksv) of 1 (9.74 × 105 M-1) and 2 (2.9 × 106 M-1) determined by fluorescence studies suggests the groove binding and intercalation mode for 1 and 2, respectively. Effective cleavage of pBR322 DNA is induced by 1.Their interaction with DNA of cancer cells may account for potency.

Keywords: Anticancer agents, DNA binding studies, NMR spectroscopy, organotin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2746
251 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing

Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor

Abstract:

This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.

Keywords: Intelligent transportation systems, object detection, video processing, road traffic, vehicle counting, vehicle classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
250 Application of CFD for Air Flow Analysis underneath Natural Ventilation with Forced Convection in Roof Attic

Authors: C. Nutphuang, S. Chirarattananon, V.D. Hien

Abstract:

In research on natural ventilation, and passive cooling with forced convection, is essential to know how heat flows in a solid object and the pattern of temperature distribution on their surfaces, and eventually how air flows through and convects heat from the surfaces of steel under roof. This paper presents some results from running the computational fluid dynamic program (CFD) by comparison between natural ventilation and forced convection within roof attic that is received directly from solar radiation. The CFD program for modeling air flow inside roof attic has been modified to allow as two cases. First case, the analysis under natural ventilation, is closed area in roof attic and second case, the analysis under forced convection, is opened area in roof attic. These extend of all cases to available predictions of variations such as temperature, pressure, and mass flow rate distributions in each case within roof attic. The comparison shows that this CFD program is an effective model for predicting air flow of temperature and heat transfer coefficient distribution within roof attic. The result shows that forced convection can help to reduce heat transfer through roof attic and an around area of steel core has temperature inner zone lower than natural ventilation type. The different temperature on the steel core of roof attic of two cases was 10-15 oK.

Keywords: CFD program, natural ventilation, forcedconvection, heat transfer, air flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192
249 Development of Improved Three Dimensional Unstructured Tetrahedral Mesh Generator

Authors: Ng Yee Luon, Mohd Zamri Yusoff, Norshah Hafeez Shuaib

Abstract:

Meshing is the process of discretizing problem domain into many sub domains before the numerical calculation can be performed. One of the most popular meshes among many types of meshes is tetrahedral mesh, due to their flexibility to fit into almost any domain shape. In both 2D and 3D domains, triangular and tetrahedral meshes can be generated by using Delaunay triangulation. The quality of mesh is an important factor in performing any Computational Fluid Dynamics (CFD) simulations as the results is highly affected by the mesh quality. Many efforts had been done in order to improve the quality of the mesh. The paper describes a mesh generation routine which has been developed capable of generating high quality tetrahedral cells in arbitrary complex geometry. A few test cases in CFD problems are used for testing the mesh generator. The result of the mesh is compared with the one generated by a commercial software. The results show that no sliver exists for the meshes generated, and the overall quality is acceptable since the percentage of the bad tetrahedral is relatively small. The boundary recovery was also successfully done where all the missing faces are rebuilt.

Keywords: Mesh generation, tetrahedral, CFD, Delaunay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
248 Using Malolactic Fermentation with Acid- And Ethanol- Adapted Oenococcus Oeni Strain to Improve the Quality of Wine from Champs Bourcin Grape in Sapa - Lao Cai

Authors: Pham Thu Thuy, Nguyen Lan Huong, Chu Ky Son

Abstract:

Champs Bourcin black grape originated from Aquitaine, France and planted in Sapa, Lao cai provice, exhibited high total acidity (11.72 g/L). After 9 days of alcoholic fermentation at 25oC using Saccharomyces cerevisiae UP3OY5 strain, the ethanol concentration of wine was 11.5% v/v, however the sharp sour taste of wine has been found. The malolactic fermentation (MLF) was carried out by Oenococcus oeni ATCCBAA-1163 strain which had been preadapted to acid (pH 3-4) and ethanol (8-12%v/v) conditions. We obtained the highest vivability (83.2%) upon malolactic fermentation after 5 days at 22oC with early stationary phase O. oeni cells preadapted to pH 3.5 and 8% v/v ethanol in MRS medium. The malic acid content in wine was decreased from 5.82 g/L to 0.02 g/L after MLF (21 days at 22oC). The sensory quality of wine was significantly improved.

Keywords: Champs Bourcin grape, malolactic fermentation, pre-adaptation, Oenococcus oeni

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
247 Review of Carbon Materials: Application in Alternative Energy Sources and Catalysis

Authors: Marita Pigłowska, Beata Kurc, Maciej Galiński

Abstract:

The application of carbon materials in the branches of the electrochemical industry shows an increasing tendency each year due to the many interesting properties they possess. These are, among others, a well-developed specific surface, porosity, high sorption capacity, good adsorption properties, low bulk density, electrical conductivity and chemical resistance. All these properties allow for their effective use, among others in supercapacitors, which can store electric charges of the order of 100 F due to carbon electrodes constituting the capacitor plates. Coals (including expanded graphite, carbon black, graphite carbon fibers, activated carbon) are commonly used in electrochemical methods of removing oil derivatives from water after tanker disasters, e.g., phenols and their derivatives by their electrochemical anodic oxidation. Phenol can occupy practically the entire surface of carbon material and leave the water clean of hydrophobic impurities. Regeneration of such electrodes is also not complicated, it is carried out by electrochemical methods consisting in unblocking the pores and reducing resistances, and thus their reactivation for subsequent adsorption processes. Graphite is commonly used as an anode material in lithium-ion cells, while due to the limited capacity it offers (372 mAh g-1), new solutions are sought that meet both capacitive, efficiency and economic criteria. Increasingly, biodegradable materials, green materials, biomass, waste (including agricultural waste) are used in order to reuse them and reduce greenhouse effects and, above all, to meet the biodegradability criterion necessary for the production of lithium-ion cells as chemical power sources. The most common of these materials are cellulose, starch, wheat, rice, and corn waste, e.g., from agricultural, paper and pharmaceutical production. Such products are subjected to appropriate treatments depending on the desired application (including chemical, thermal, electrochemical). Starch is a biodegradable polysaccharide that consists of polymeric units such as amylose and amylopectin that build an ordered (linear) and amorphous (branched) structure of the polymer. Carbon is also used as a catalyst. Elemental carbon has become available in many nano-structured forms representing the hybridization combinations found in the primary carbon allotropes, and the materials can be enriched with a large number of surface functional groups. There are many examples of catalytic applications of coal in the literature, but the development of this field has been hampered by the lack of a conceptual approach combining structure and function and a lack of understanding of material synthesis. In the context of catalytic applications, the integrity of carbon environmental management properties and parameters such as metal conductivity range and bond sequence management should be characterized. Such data, along with surface and textured information, can form the basis for the provision of network support services.

Keywords: carbon materials, catalysis, BET, capacitors, lithium ion cell

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1075
246 A Highly Efficient Process Applying Sige Film to Generate Quasi-Beehive Si Nanostructure for the Growth of Platinum Nanopillars with High Emission Property for the Applications of X-Ray Tube

Authors: Pin-Hsu Kao, Wen-Shou Tseng, Hung-Ming Tai, Yuan-Ming Chang, Jenh-Yih Juang

Abstract:

We report a lithography-free approach to fabricate the biomimetics, quasi-beehive Si nanostructures (QBSNs), on Si-substrates. The self-assembled SiGe nanoislands via the strain induced surface roughening (Asaro-Tiller-Grinfeld instability) during in-situ annealing play a key role as patterned sacrifice regions for subsequent reactive ion etching (RIE) process performed for fabricating quasi-beehive nanostructures on Si-substrates. As the measurements of field emission, the bare QBSNs show poor field emission performance, resulted from the existence of the native oxide layer which forms an insurmountable barrier for electron emission. In order to dramatically improve the field emission characteristics, the platinum nanopillars (Pt-NPs) were deposited on QBSNs to form Pt-NPs/QBSNs heterostructures. The turn-on field of Pt-NPs/QBSNs is as low as 2.29 V/μm (corresponding current density of 1 μA/cm2), and the field enhancement factor (β-value) is significantly increased to 6067. More importantly, the uniform and continuous electrons excite light emission, due to the surrounding filed emitters from Pt-NPs/QBSNs, can be easily obtained. This approach does not require an expensive photolithographic process and possesses great potential for applications.

Keywords: Biomimetics, quasi-beehive Si, SiGe nanoislands, platinum nanopillars, field emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
245 Simultaneous Clustering and Feature Selection Method for Gene Expression Data

Authors: T. Chandrasekhar, K. Thangavel, E. N. Sathishkumar

Abstract:

Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this work K-Means algorithms has been applied for clustering of Gene Expression Data. Further, rough set based Quick reduct algorithm has been applied for each cluster in order to select the most similar genes having high correlation. Then the ACV measure is used to evaluate the refined clusters and classification is used to evaluate the proposed method. They could identify compact clusters with feature selection method used to genes are selected.

Keywords: Clustering, Feature selection, Gene expression data, Quick reduct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
244 Effect of Cladding Direction on Residual Stress Distribution in Laser Cladded Rails

Authors: Taposh Roy, Anna Paradowska, Ralph Abrahams, Quan Lai, Michael Law, Peter Mutton, Mehdi Soodi, Wenyi Yan

Abstract:

In this investigation, a laser cladding process with a powder feeding was used to deposit stainless steel 410L (high strength, excellent resistance to abrasion and corrosion, and great laser compatibility) onto railhead (higher strength, heat treated hypereutectoid rail grade manufactured in accordance with the requirements of European standard EN 13674 Part 1 for R400HT grade), to investigate the development and controllability of process-induced residual stress in the cladding, heat-affected zone (HAZ) and substrate and to analyse their correlation with hardness profile during two different laser cladding directions (across and along the track). Residual stresses were analysed by neutron diffraction at OPAL reactor, ANSTO. Neutron diffraction was carried out on the samples in longitudinal (parallel to the rail), transverse (perpendicular to the rail) and normal (through thickness) directions with high spatial resolution through the thickness. Due to the thick rail and thin cladding, 4 mm thick reference samples were prepared from every specimen by Electric Discharge Machining (EDM). Metallography across the laser claded sample revealed four distinct zones: The clad zone, the dilution zone, HAZ and the substrate. Compressive residual stresses were found in the clad zone and tensile residual stress in the dilution zone and HAZ. Laser cladding in longitudinally cladding induced higher tensile stress in the HAZ, whereas transversely cladding rail showed lower tensile behavior.

Keywords: Laser cladding, residual stress, neutron diffraction, HAZ.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 973
243 Alcohols as a Phase Change Material with Excellent Thermal Storage Properties in Buildings

Authors: Dehong Li, Yuchen Chen, Alireza Kaboorani, Denis Rodrigue, Xiaodong (Alice) Wang

Abstract:

Utilizing solar energy for thermal energy storage has emerged as an appealing option for lowering the amount of energy that is consumed by buildings. Due to their high heat storage density, non-corrosive and non-polluting properties, alcohols can be a good alternative to petroleum-derived paraffin phase change materials (PCMs). In this paper, ternary eutectic PCMs with suitable phase change temperatures were designed and prepared using lauryl alcohol (LA), cetyl alcohol (CA), stearyl alcohol (SA) and xylitol (X). The Differential Scanning Calorimetry (DSC) results revealed that the phase change temperatures of LA-CA-SA, LA-CA-X, and LA-SA-X were 20.52 °C, 20.37 °C, and 22.18 °C, respectively. The latent heat of phase change of the ternary eutectic PCMs were all stronger than that of the paraffinic PCMs at roughly the same temperature. The highest latent heat was 195 J/g. It had good thermal energy storage capacity. The preparation mechanism was investigated using Fourier-transform Infrared Spectroscopy (FTIR), and it was found that the ternary eutectic PCMs were only physically mixed among the components. Ternary eutectic PCMs had a simple preparation process, suitable phase change temperature, and high energy storage density. They are suitable for low-temperature architectural packaging applications.

Keywords: Thermal energy storage, buildings, phase change materials, alcohols.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 123
242 Parametric Analysis of Water Lily Shaped Split Ring Resonator Loaded Fractal Monopole Antenna for Multiband Applications

Authors: C. Elavarasi, T. Shanmuganantham

Abstract:

A coplanar waveguide (CPW) feed is presented, and comprising a split ring resonator (SRR) loaded fractal with water lily shape is used for multi band applications. The impedance matching of the antenna is determined by the number of Koch curve fractal unit cells. The antenna is designed on a FR4 substrate with a permittivity of εr = 4.4 and size of 14 x 16 x 1.6 mm3 to generate multi resonant mode at 3.8 GHz covering S band, 8.68 GHz at X band, 13.96 GHz at Ku band, and 19.74 GHz at K band with reflection coefficient better than -10 dB. Simulation results show that the antenna exhibits the desired voltage standing wave ratio (VSWR) level and radiation patterns across the wide frequency range. The fundamental parameters of the antenna such as return loss, VSWR, good radiation pattern with reasonable gain across the operating bands are obtained.

Keywords: Monopole antenna, fractal, metamaterial, waterlily shape, split ring resonator, multiband.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1215
241 A Review on Electrical Behavior of Different Substrates, Electrodes and Membranes in Microbial Fuel Cell

Authors: Bharat Mishra, Sanjay Kumar Awasthi, Raj Kumar Rajak

Abstract:

The devices, which convert the energy in the form of electricity from organic matters, are called microbial fuel cell (MFC). Recently, MFCs have been given a lot of attention due to their mild operating conditions, and various types of biodegradable substrates have been used in the form of fuel. Traditional MFCs were included in anode and cathode chambers, but there are single chamber MFCs. Microorganisms actively catabolize substrate, and bioelectricities are produced. In the field of power generation from non-conventional sources, apart from the benefits of this technique, it is still facing practical constraints such as low potential and power. In this study, most suitable, natural, low cost MFCs components are electrodes (anode and cathode), organic substrates, membranes and its design is selected on the basis of maximum potential (voltage) as an electrical parameter, which indicates a vital role of affecting factor in MFC for sustainable power production.

Keywords: Substrates, electrodes, membranes, microbial fuel cells, voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396
240 High Aspect Ratio SiO2 Capillary Based On Silicon Etching and Thermal Oxidation Process for Optical Modulator

Authors: N. V. Toan, S. Sangu, T. Saitoh, N. Inomata, T. Ono

Abstract:

This paper presents the design and fabrication of an optical window for an optical modulator toward image sensing applications. An optical window consists of micrometer-order SiO2 capillaries (porous solid) that can modulate transmission light intensity by moving the liquid in and out of porous solid. A high optical transmittance of the optical window can be achieved due to refractive index matching when the liquid is penetrated into the porous solid. Otherwise, its light transmittance is lower because of light reflection and scattering by air holes and capillary walls. Silicon capillaries fabricated by deep reactive ion etching (DRIE) process are completely oxidized to form the SiO2 capillaries. Therefore, high aspect ratio SiO2 capillaries can be achieved based on silicon capillaries formed by DRIE technique. Large compressive stress of the oxide causes bending of the capillary structure, which is reduced by optimizing the design of device structure. The large stress of the optical window can be released via thin supporting beams. A 7.2 mm x 9.6 mm optical window area toward a fully integrated with the image sensor format is successfully fabricated and its optical transmittance is evaluated with and without inserting liquids (ethanol and matching oil). The achieved modulation range is approximately 20% to 35% with and without liquid penetration in visible region (wavelength range from 450 nm to 650 nm).

Keywords: Thermal oxidation process, SiO2 capillaries, optical window, light transmittance, image sensor, liquid penetration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2237
239 Effect on Surface Temperature Reduction of Asphalt Pavements with Cement–Based Materials Containing Ceramic Waste Powder

Authors: H. Higashiyama, M. Sano, F. Nakanishi, M. Sugiyama, O. Takahashi, S. Tsukuma

Abstract:

The heat island phenomenon becomes one of the environmental problems. As countermeasures in the field of road engineering, cool pavements such as water retaining pavements and solar radiation reflective pavements have been developed to reduce the surface temperature of asphalt pavements in the hot summer climate in Japan. The authors have studied on the water retaining pavements with cement–based grouting materials. The cement–based grouting materials consist of cement, ceramic waste powder, and natural zeolite. The ceramic waste powder is collected through the recycling process of electric porcelain insulators. In this study, mixing ratio between the ceramic waste powder and the natural zeolite and a type of cement for the cement–based grouting materials is investigated to measure the surface temperature of asphalt pavements in the outdoor. All of the developed cement–based grouting materials were confirmed to effectively reduce the surface temperature of the asphalt pavements. Especially, the cement–based grouting material using the ultra–rapid hardening cement with the mixing ratio of 0.7:0.3 between the ceramic waste powder and the natural zeolite reduced mostly the surface temperature by 20 °C and more.

Keywords: Ceramic waste powder, natural zeolite, road surface temperature, water retaining pavements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
238 Parameter Optimization and Thermal Simulation in Laser Joining of Coach Peel Panels of Dissimilar Materials

Authors: Masoud Mohammadpour, Blair Carlson, Radovan Kovacevic

Abstract:

The quality of laser welded-brazed (LWB) joints were strongly dependent on the main process parameters, therefore the effect of laser power (3.2–4 kW), welding speed (60–80 mm/s) and wire feed rate (70–90 mm/s) on mechanical strength and surface roughness were investigated in this study. The comprehensive optimization process by means of response surface methodology (RSM) and desirability function was used for multi-criteria optimization. The experiments were planned based on Box– Behnken design implementing linear and quadratic polynomial equations for predicting the desired output properties. Finally, validation experiments were conducted on an optimized process condition which exhibited good agreement between the predicted and experimental results. AlSi3Mn1 was selected as the filler material for joining aluminum alloy 6022 and hot-dip galvanized steel in coach peel configuration. The high scanning speed could control the thickness of IMC as thin as 5 µm. The thermal simulations of joining process were conducted by the Finite Element Method (FEM), and results were validated through experimental data. The Fe/Al interfacial thermal history evidenced that the duration of critical temperature range (700–900 °C) in this high scanning speed process was less than 1 s. This short interaction time leads to the formation of reaction-control IMC layer instead of diffusion-control mechanisms.

Keywords: Laser welding-brazing, finite element, response surface methodology, multi-response optimization, cross-beam laser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 930
237 The Influence of Low Power Microwave Radiation on the Growth Rate of Listeria Monocytogenes

Authors: Renzo Carta, Francesco Desogus

Abstract:

Variations in the growth rate constant of the Listeria monocytogenes bacterial species were determined at 37°C in irradiated environments and compared to the situation of a nonirradiated environment. The bacteria cells, contained in a suspension made of a nutrient solution of Brain Heart Infusion, were made to grow at different frequency (2.30e2.60 GHz) and power (0e400 mW) values, in a plug flow reactor positioned in the irradiated environment. Then the reacting suspension was made to pass into a cylindrical cuvette where its optical density was read every 2.5 minutes at a wavelength of 600 nm. The obtained experimental data of optical density vs. time allowed the bacterial growth rate constant to be derived; this was found to be slightly influenced by microwave power, but not by microwave frequency; in particular, a minimum value was found for powers in the 50e150 mW field.

Keywords: Growth rate constant, irradiated environment, Listeria monocytogenes, microwaves, plug flow reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
236 Bioconversion of Biodiesel Derived Crude Glycerol by Immobilized Clostridium pasteurianum: Effect of Temperature

Authors: Swati Khanna, Arun Goyal, Vijayanand S. Moholkar

Abstract:

Batch fermentation of 5, 10 and 25 g/L biodiesel derived crude glycerol was carried out at 30, 37 and 450C by Clostridium pasteurianum cells immobilized on silica. Maximum yield of 1,3-propanediol (PDO) (0.60 mol/mol), and ethanol (0.26 mol/mol) were obtained from 10 g/L crude glycerol at 30 and 370C respectively. Maximum yield of butanol (0.28 mol/mol substrate added) was obtained at 370C with 25 g/L substrate. None of the three products were detected at 45oC even after 10 days of fermentation. Only traces of ethanol (0.01 mol/mol) were detected at 450C with 5 g/L substrate. The results obtained for 25 g/L substrate utilization were fitted in first order rate equation to obtain the values of rate constant at three different temperatures for bioconversion of glycerol. First order rate constants for bioconversion of glycerol at 30, 37 and 45oC were found to be 0.198, 0.294 and 0.029/day respectively. Activation energy (Ea) for crude glycerol bioconversion was calculated to be 57.62 kcal/mol.

Keywords: activation energy, Clostridium pasteurianum, crude glycerol, immobilization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
235 Performance Analysis of Evolutionary ANN for Output Prediction of a Grid-Connected Photovoltaic System

Authors: S.I Sulaiman, T.K Abdul Rahman, I. Musirin, S. Shaari

Abstract:

This paper presents performance analysis of the Evolutionary Programming-Artificial Neural Network (EPANN) based technique to optimize the architecture and training parameters of a one-hidden layer feedforward ANN model for the prediction of energy output from a grid connected photovoltaic system. The ANN utilizes solar radiation and ambient temperature as its inputs while the output is the total watt-hour energy produced from the grid-connected PV system. EP is used to optimize the regression performance of the ANN model by determining the optimum values for the number of nodes in the hidden layer as well as the optimal momentum rate and learning rate for the training. The EPANN model is tested using two types of transfer function for the hidden layer, namely the tangent sigmoid and logarithmic sigmoid. The best transfer function, neural topology and learning parameters were selected based on the highest regression performance obtained during the ANN training and testing process. It is observed that the best transfer function configuration for the prediction model is [logarithmic sigmoid, purely linear].

Keywords: Artificial neural network (ANN), Correlation coefficient (R), Evolutionary programming-ANN (EPANN), Photovoltaic (PV), logarithmic sigmoid and tangent sigmoid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
234 Effect of Hormonal Manipulations on the Pattern of the Vaginal Tissue Structure

Authors: Fatahian Dehkordi RF., Parchami A.

Abstract:

Design of experiments made for correlated the hormonal activity of steroids and their effect on the vaginal structure properties. Vaginal wall consists of distinct layers of cells which strongly differ regarding growth in answer to steroid hormones. The presence study carried out for functional evaluation and sustained replacement effect of the reproductive hormones on the vaginal morphometry in the rabbit. Rabbits were maintained control (Co) or ovariectomized (Ovz) and continuously treated with estradiol (Ovz E) and estradiol mixture with testosterone (Ovz ET). Relative to control rabbits with the distinct tissue distribution pattern, ovariectomized animals displayed declined epithelial thickness and atrophy of the muscularis layer that cause the vaginal wall thinning. Estradiol treatment of Orz rabbits inverted these changes to status of the preovariectomy. Histometric measurements in Ovz ET group completely including of thickness of the epithelial and muscular layers was greater in comparison to that of control animals.

Keywords: Vagina, Ovariectomy, Rabbit, Morphometry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
233 Contrast-Enhanced Multispectal Upconversion Fluorescence Analysis for High-Resolution in-vivo Deep Tissue Imaging

Authors: Lijiang Wang, Wei Wang, Yuhong Xu

Abstract:

Lanthanide-doped upconversion nanoparticles which can convert near-infrared lights to visible lights have attracted growing interest because of their great potentials in fluorescence imaging. Upconversion fluorescence imaging technique with excitation in the near-infrared (NIR) region has been used for imaging of biological cells and tissues. However, improving the detection sensitivity and decreasing the absorption and scattering in biological tissues are as yet unresolved problems. In this present study, a novel NIR-reflected multispectral imaging system was developed for upconversion fluorescent imaging in small animals. Based on this system, we have obtained the high contrast images without the autofluorescence when biocompatible UCPs were injected near the body surface or deeply into the tissue. Furthermore, we have extracted respective spectra of the upconversion fluorescence and relatively quantify the fluorescence intensity with the multispectral analysis. To our knowledge, this is the first time to analyze and quantify the upconversion fluorescence in the small animal imaging.

Keywords: Multispectral imaging, near-infrared, upconversion fluorescence imaging, upconversion nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
232 Handling Mobility using Virtual Grid in Static Wireless Sensor Networks

Authors: T.P. Sharma

Abstract:

Querying a data source and routing data towards sink becomes a serious challenge in static wireless sensor networks if sink and/or data source are mobile. Many a times the event to be observed either moves or spreads across wide area making maintenance of continuous path between source and sink a challenge. Also, sink can move while query is being issued or data is on its way towards sink. In this paper, we extend our already proposed Grid Based Data Dissemination (GBDD) scheme which is a virtual grid based topology management scheme restricting impact of movement of sink(s) and event(s) to some specific cells of a grid. This obviates the need for frequent path modifications and hence maintains continuous flow of data while minimizing the network energy consumptions. Simulation experiments show significant improvements in network energy savings and average packet delay for a packet to reach at sink.

Keywords: Mobility in WSNs, virtual grid, GBDD, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
231 In vitro Anti-tubercular Screening of Newly Synthesized Benzimidazole Derivatives

Authors: M. Shahar Yar, M. Mustaqeem Abdullah, Jaseela Majeed

Abstract:

A series of 1-(1H-benzimidazol-2-yl)-3-(substituted phenyl)-2-propen-1-one were allowed to react with hydrazine hydrate and phenyl hydrazine in submitted reactions to get pyrazoline and phenyl pyrazoline derivatives. All the compounds entered for screening at the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF) for their in vitro antibacterial activity against Mycobacterium tuberculosis H37Rv strain (ATCC 27294) using Microplate Alamar Blue Assay (MABA) susceptibility test. The results expressed as MIC (minimum inhibitory concentration) in μg/mL. Among the fifteen compounds, eight compounds were found to have MIC values less than 10 μg/mL. These were subjected for cytotoxicity assay in VERO cells to determine CC50 (cytotoxic concentration 50%) values and finally SI (Selectivity Index) were calculated. Compound (XV) 2-[5-(4- fluorophenyl)-1-phenyl-4,5-dihydro-1H-3-pyrazolyl]-1Hbenzimidazole was considered the best candidate of the series that could be a good starting point to develop new lead compounds in the fight against tuberculosis.

Keywords: anti-tubercular activity, benzimidazole, pyrazoline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872