Search results for: motion sensor
222 Performances Comparison of Neural Architectures for On-Line Speed Estimation in Sensorless IM Drives
Authors: K.Sedhuraman, S.Himavathi, A.Muthuramalingam
Abstract:
The performance of sensor-less controlled induction motor drive depends on the accuracy of the estimated speed. Conventional estimation techniques being mathematically complex require more execution time resulting in poor dynamic response. The nonlinear mapping capability and powerful learning algorithms of neural network provides a promising alternative for on-line speed estimation. The on-line speed estimator requires the NN model to be accurate, simpler in design, structurally compact and computationally less complex to ensure faster execution and effective control in real time implementation. This in turn to a large extent depends on the type of Neural Architecture. This paper investigates three types of neural architectures for on-line speed estimation and their performance is compared in terms of accuracy, structural compactness, computational complexity and execution time. The suitable neural architecture for on-line speed estimation is identified and the promising results obtained are presented.Keywords: Sensorless IM drives, rotor speed estimators, artificial neural network, feed- forward architecture, single neuron cascaded architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458221 Fluorometric Aptasensor: Evaluation of Stability and Comparison to Standard ELISA Assay
Authors: J. Carlos Kuri, Varun Vij, Raymond J. Turner, Orly Yadid-Pecht
Abstract:
Celiac disease (CD) is an immune system disorder that is related to eating gluten. As gluten-free (GF) diet has become a concern of many people for health reasons, a gold standard had to be nominated. Enzyme-linked immunosorbent assay (ELISA) has taken the seat of this role. However, multiple limitations were discovered, and with that, the desire for an alternative method now exists. Nucleic acid based aptamers have become of great interest due to their selectivity, specificity, simplicity, and rapid-testing advantages. However, fluorescence-based aptasensors have been tagged as unstable, but lifespan details are rarely stated. In this work, the lifespan stability of a fluorescence-based aptasensor is shown over a 8-week long study displaying the accuracy of the sensor and false negatives. This study follows 22 different samples, including GF and gluten-rich (GR) and soy sauce products, off-the-shelf products, and reference material from laboratories; giving a total of 836 tests. The analysis shows an accuracy of correctly classifying GF and GR products of 96.30% and 100%, respectively, when the protocol is augmented with molecular sieves. The overall accuracy remains around 94% within the first 4 weeks and then decays to 63%.
Keywords: Aptasensor, PEG, rGO, FAM, RM, ELISA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 428220 Geometrically Non-Linear Axisymmetric Free Vibration Analysis of Functionally Graded Annular Plates
Authors: Boutahar Lhoucine, El Bikri Khalid, Benamar Rhali
Abstract:
In this paper, the non-linear free axisymmetric vibration of a thin annular plate made of functionally graded material (FGM) has been studied by using the energy method and a multimode approach. FGM properties vary continuously as well as non-homogeneity through the thickness direction of the plate. The theoretical model is based on the classical plate theory and the Von Kármán geometrical non-linearity assumptions. An approximation has been adopted in the present work consisting of neglecting the in-plane deformation in the formulation. Hamilton’s principle is used to derive the governing equation of motion. The problem is solved by a numerical iterative procedure in order to obtain more accurate results for vibration amplitudes up to 1.5 times the plate thickness. The numerical results are given for the first axisymmetric non-linear mode shape for a wide range of vibration amplitudes and they are presented either in tabular form or in graphical form to show the effect that the vibration amplitude and the variation in material properties have significant effects on the frequencies and the bending stresses in large amplitude vibration of the functionally graded annular plate.
Keywords: Non-linear vibrations, Annular plates, Large amplitudes, FGM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181219 Modular Hybrid Robots for Safe Human-Robot Interaction
Authors: J. Radojicic, D. Surdilovic, G. Schreck
Abstract:
The paper considers a novel modular and intrinsically safe redundant robotic system with biologically inspired actuators (pneumatic artificial muscles and rubber bellows actuators). Similarly to the biological systems, the stiffness of the internal parallel modules, representing 2 DOF joints in the serial robotic chains, is controlled by co-activation of opposing redundant actuator groups in the null-space of the module Jacobian, without influencing the actual robot position. The decoupled position/stiffness control allows the realization of variable joint stiffness according to different force-displacement relationships. The variable joint stiffness, as well as limited pneumatic muscle/bellows force ability, ensures internal system safety that is crucial for development of human-friendly robots intended for human-robot collaboration. The initial experiments with the system prototype demonstrate the capabilities of independently, simultaneously controlling both joint (Cartesian) motion and joint stiffness. The paper also presents the possible industrial applications of snake-like robots built using the new modules.
Keywords: bellows actuator, human-robot interaction, hyper redundant robot, pneumatic muscle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002218 Influence of Non-Structural Elements on Dynamic Response of Multi-Storey Rc Building to Mining Shock
Authors: Joanna M. Dulińska, Maria Fabijańska
Abstract:
In the paper the results of calculations of the dynamic response of a multi-storey reinforced concrete building to a strong mining shock originated from the main region of mining activity in Poland (i.e. the Legnica-Glogow Copper District) are presented. The representative time histories of accelerations registered in three directions were used as ground motion data in calculations of the dynamic response of the structure. Two variants of a numerical model were applied: the model including only structural elements of the building and the model including both structural and non-structural elements (i.e. partition walls and ventilation ducts made of brick). It turned out that non-structural elements of multi-storey RC buildings have a small impact of about 10 % on natural frequencies of these structures. It was also proved that the dynamic response of building to mining shock obtained in case of inclusion of all non-structural elements in the numerical model is about 20 % smaller than in case of consideration of structural elements only. The principal stresses obtained in calculations of dynamic response of multi-storey building to strong mining shock are situated on the level of about 30% of values obtained from static analysis (dead load).Keywords: Dynamic characteristics of buildings, mining shocks, dynamic response of buildings, non-structural elements
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887217 Coupled Spacecraft Orbital and Attitude Modeling and Simulation in Multi-Complex Modes
Authors: Amr Abdel Azim Ali, G. A. Elsheikh, Moutaz Hegazy
Abstract:
This paper presents verification of a modeling and simulation for a Spacecraft (SC) attitude and orbit control system. Detailed formulation of coupled SC orbital and attitude equations of motion is performed in order to achieve accepted accuracy to meet the requirements of multitargets tracking and orbit correction complex modes. Correction of the target parameter based on the estimated state vector during shooting time to enhance pointing accuracy is considered. Time-optimal nonlinear feedback control technique was used in order to take full advantage of the maximum torques that the controller can deliver. This simulation provides options for visualizing SC trajectory and attitude in a 3D environment by including an interface with V-Realm Builder and VR Sink in Simulink/MATLAB. Verification data confirms the simulation results, ensuring that the model and the proposed control law can be used successfully for large and fast tracking and is robust enough to keep the pointing accuracy within the desired limits with considerable uncertainty in inertia and control torque.Keywords: Attitude and orbit control, time-optimal nonlinear feedback control, modeling and simulation, pointing accuracy, maximum torques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315216 Simulation for Squat Exercise of an Active Controlled Vibration Isolation and Stabilization System for Astronaut’s Exercise Platform
Authors: Ziraguen O. Williams, Shield B. Lin, Fouad N. Matari, Leslie J. Quiocho
Abstract:
In a task to assist NASA in analyzing the dynamic forces caused by operational countermeasures of an astronaut’s exercise platform impacting the spacecraft, feedback delay and signal noise were added to a simulation model of an active controlled vibration isolation and stabilization system to regulate the movement of the exercise platform. Two additional simulation tools used in this study were Trick and MBDyn, software simulation environments developed at the NASA Johnson Space Center. Simulation results obtained from these three tools were very similar. All simulation results support the hypothesis that an active controlled vibration isolation and stabilization system outperforms a passive controlled system even with the addition of feedback delay and signal noise to the active controlled system. In this paper, squat exercise was used in creating excited force to the simulation model. The exciter force from squat exercise was calculated from motion capture of an exerciser. The simulation results demonstrate much greater transmitted force reduction in the active controlled system than the passive controlled system.
Keywords: Astronaut, counterweight, stabilization, vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 461215 Developing Vision-Based Digital Public Display as an Interactive Media
Authors: Adrian Samuel Limanto, Yunli Lee
Abstract:
Interactive public displays give access as an innovative media to promote enhanced communication between people and information. However, digital public displays are subject to a few constraints, such as content presentation. Content presentation needs to be developed to be more interesting to attract people’s attention and motivate people to interact with the display. In this paper, we proposed idea to implement contents with interaction elements for vision-based digital public display. Vision-based techniques are applied as a sensor to detect passers-by and theme contents are suggested to attract their attention for encouraging them to interact with the announcement content. Virtual object, gesture detection and projection installation are applied for attracting attention from passers-by. Preliminary study showed positive feedback of interactive content designing towards the public display. This new trend would be a valuable innovation as delivery of announcement content and information communication through this media is proven to be more engaging.
Keywords: Digital announcement, digital public display, human-information interaction, interactive media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738214 Hair Mechanical Properties Depending on Age and Origin
Authors: Meriem Benzarti, Mohamed Ben Tkaya, Cyril Pailler Mattei, Hassan Zahouani
Abstract:
Hair is a non homogenous complex material which can be associated with a polymer. It is made up 95% of Keratin. Hair has a great social significance for human beings. In the High Middle Ages, for example, long hairs have been reserved for kings and nobles. Most common interest in hair is focused on hair growth, hair types and hair care, but hair is also an important biomaterial which can vary depending on ethnic origin or on age, hair colour for example can be a sign of ethnic ancestry or age (dark hair for Asiatic, blond hair for Caucasian and white hair for old people in general). In this context, different approaches have been conducted to determine the differences in mechanical properties and characterize the fracture topography at the surface of hair depending on its type and its age. A tensile testing machine was especially designed to achieve tensile tests on hair. This device is composed of a microdisplacement system and a force sensor whose peak load is limited to 3N. The curves and the values extracted from each experiment, allow us to compare the evolution of the mechanical properties from one hair to another. Observations with a Scanning Electron Microscope (SEM) and with an interferometer were made on different hairs. Thus, it is possible to access the cuticle state and the fracture topography for each category.Keywords: Hair, relaxation test, SEM, interferometer, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2470213 Spreading of Swirling Double–Concentric Jets at Low and High Pulsation Intensities
Authors: Shiferaw R. Jufar, Rong F. Huang, Ching M. Hsu
Abstract:
The spreading characteristics of acoustically excited swirling double-concentric jets were studied experimentally. The central jet was acoustically excited at low and high pulsation intensities. A smoke wire flow visualization and a hot-wire anemometer velocity measurement results show that excitation forces a vortex ring to roll-up from the edge of the central tube during each excitation period. At low pulsation intensities, the vortex ring evolves downstream, and eventually breaks up into turbulent eddies. At high pulsation intensities, the primary vortex ring evolves and a series of trailing vortex rings form during the same period of excitation. The trailing vortex rings accelerate while evolving downstream and overtake the primary vortex ring within the same cycle. In the process, the primary vortex ring becomes unstable and breaks up early. The effect of the fast traveling trailing vortex rings combined with the swirl motion of the annular flow improve jet spreading compared with the naturally evolving jets.Keywords: Acoustic excitation, double–concentric jets, flow control, swirling jet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981212 Implementation of Edge Detection Based on Autofluorescence Endoscopic Image of Field Programmable Gate Array
Authors: Hao Cheng, Zhiwu Wang, Guozheng Yan, Pingping Jiang, Shijia Qin, Shuai Kuang
Abstract:
Autofluorescence Imaging (AFI) is a technology for detecting early carcinogenesis of the gastrointestinal tract in recent years. Compared with traditional white light endoscopy (WLE), this technology greatly improves the detection accuracy of early carcinogenesis, because the colors of normal tissues are different from cancerous tissues. Thus, edge detection can distinguish them in grayscale images. In this paper, based on the traditional Sobel edge detection method, optimization has been performed on this method which considers the environment of the gastrointestinal, including adaptive threshold and morphological processing. All of the processes are implemented on our self-designed system based on the image sensor OV6930 and Field Programmable Gate Array (FPGA), The system can capture the gastrointestinal image taken by the lens in real time and detect edges. The final experiments verified the feasibility of our system and the effectiveness and accuracy of the edge detection algorithm.
Keywords: AFI, edge detection, adaptive threshold, morphological processing, OV6930, FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 656211 On-line Recognition of Isolated Gestures of Flight Deck Officers (FDO)
Authors: Deniz T. Sodiri, Venkat V S S Sastry
Abstract:
The paper presents an on-line recognition machine (RM) for continuous/isolated, dynamic and static gestures that arise in Flight Deck Officer (FDO) training. RM is based on generic pattern recognition framework. Gestures are represented as templates using summary statistics. The proposed recognition algorithm exploits temporal and spatial characteristics of gestures via dynamic programming and Markovian process. The algorithm predicts corresponding index of incremental input data in the templates in an on-line mode. Accumulated consistency in the sequence of prediction provides a similarity measurement (Score) between input data and the templates. The algorithm provides an intuitive mechanism for automatic detection of start/end frames of continuous gestures. In the present paper, we consider isolated gestures. The performance of RM is evaluated using four datasets - artificial (W TTest), hand motion (Yang) and FDO (tracker, vision-based ). RM achieves comparable results which are in agreement with other on-line and off-line algorithms such as hidden Markov model (HMM) and dynamic time warping (DTW). The proposed algorithm has the additional advantage of providing timely feedback for training purposes.Keywords: On-line Recognition Algorithm, IsolatedDynamic/Static Gesture Recognition, On-line Markovian/DynamicProgramming, Training in Virtual Environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331210 Implementation of State-Space and Super-Element Techniques for the Modeling and Control of Smart Structures with Damping Characteristics
Authors: Nader Ghareeb, R¨udiger Schmidt
Abstract:
Minimizing the weight in flexible structures means reducing material and costs as well. However, these structures could become prone to vibrations. Attenuating these vibrations has become a pivotal engineering problem that shifted the focus of many research endeavors. One technique to do that is to design and implement an active control system. This system is mainly composed of a vibrating structure, a sensor to perceive the vibrations, an actuator to counteract the influence of disturbances, and finally a controller to generate the appropriate control signals. In this work, two different techniques are explored to create two different mathematical models of an active control system. The first model is a finite element model with a reduced number of nodes and it is called a super-element. The second model is in the form of state-space representation, i.e. a set of partial differential equations. The damping coefficients are calculated and incorporated into both models. The effectiveness of these models is demonstrated when the system is excited by its first natural frequency and an active control strategy is developed and implemented to attenuate the resulting vibrations. Results from both modeling techniques are presented and compared.Keywords: Finite element analysis, super-element, state-space model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828209 Efficient Web-Learning Collision Detection Tool on Five-Axis Machine
Authors: Chia-Jung Chen, Rong-Shine Lin, Rong-Guey Chang
Abstract:
As networking has become popular, Web-learning tends to be a trend while designing a tool. Moreover, five-axis machining has been widely used in industry recently; however, it has potential axial table colliding problems. Thus this paper aims at proposing an efficient web-learning collision detection tool on five-axis machining. However, collision detection consumes heavy resource that few devices can support, thus this research uses a systematic approach based on web knowledge to detect collision. The methodologies include the kinematics analyses for five-axis motions, separating axis method for collision detection, and computer simulation for verification. The machine structure is modeled as STL format in CAD software. The input to the detection system is the g-code part program, which describes the tool motions to produce the part surface. This research produced a simulation program with C programming language and demonstrated a five-axis machining example with collision detection on web site. The system simulates the five-axis CNC motion for tool trajectory and detects for any collisions according to the input g-codes and also supports high-performance web service benefiting from C. The result shows that our method improves 4.5 time of computational efficiency, comparing to the conventional detection method.
Keywords: Collision detection, Five-axis machining, Separating axis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180208 Dynamic Stability of Axially Moving Viscoelastic Plates under Non-Uniform In-Plane Edge Excitations
Authors: T. H. Young, S. J. Huang, Y. S. Chiu
Abstract:
This paper investigates the parametric stability of an axially moving web subjected to non-uniform in-plane edge excitations on two opposite, simply-supported edges. The web is modeled as a viscoelastic plate whose constitutive relation obeys the Kelvin-Voigt model, and the in-plane edge excitations are expressed as the sum of a static tension and a periodical perturbation. Due to the in-plane edge excitations, the moving plate may bring about parametric instability under certain situations. First, the in-plane stresses of the plate due to the non-uniform edge excitations are determined by solving the in-plane forced vibration problem. Then, the dependence on the spatial coordinates in the equation of transverse motion is eliminated by the generalized Galerkin method, which results in a set of discretized system equations in time. Finally, the method of multiple scales is utilized to solve the set of system equations analytically if the periodical perturbation of the in-plane edge excitations is much smaller as compared with the static tension of the plate, from which the stability boundaries of the moving plate are obtained. Numerical results reveal that only combination resonances of the summed-type appear under the in-plane edge excitations considered in this work.Keywords: Axially moving viscoelastic plate, in-plane periodic excitation, non-uniformly distributed edge tension, dynamic stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950207 Human Fall Detection by FMCW Radar Based on Time-Varying Range-Doppler Features
Authors: Xiang Yu, Chuntao Feng, Lu Yang, Meiyang Song, Wenhao Zhou
Abstract:
The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%.
Keywords: FMCW radar, fall detection, 3D CNN, time-varying range-Doppler features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 520206 Fault Detection and Isolation using RBF Networks for Polymer Electrolyte Membrane Fuel Cell
Authors: Mahanijah Md Kamal., Dingli Yu
Abstract:
This paper presents a new method of fault detection and isolation (FDI) for polymer electrolyte membrane (PEM) fuel cell (FC) dynamic systems under an open-loop scheme. This method uses a radial basis function (RBF) neural network to perform fault identification, classification and isolation. The novelty is that the RBF model of independent mode is used to predict the future outputs of the FC stack. One actuator fault, one component fault and three sensor faults have been introduced to the PEMFC systems experience faults between -7% to +10% of fault size in real-time operation. To validate the results, a benchmark model developed by Michigan University is used in the simulation to investigate the effect of these five faults. The developed independent RBF model is tested on MATLAB R2009a/Simulink environment. The simulation results confirm the effectiveness of the proposed method for FDI under an open-loop condition. By using this method, the RBF networks able to detect and isolate all five faults accordingly and accurately.
Keywords: Polymer electrolyte membrane fuel cell, radial basis function neural networks, fault detection, fault isolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814205 Simulation-Based Optimization of a Non-Uniform Piezoelectric Energy Harvester with Stack Boundary
Authors: Alireza Keshmiri, Shahriar Bagheri, Nan Wu
Abstract:
This research presents an analytical model for the development of an energy harvester with piezoelectric rings stacked at the boundary of the structure based on the Adomian decomposition method. The model is applied to geometrically non-uniform beams to derive the steady-state dynamic response of the structure subjected to base motion excitation and efficiently harvest the subsequent vibrational energy. The in-plane polarization of the piezoelectric rings is employed to enhance the electrical power output. A parametric study for the proposed energy harvester with various design parameters is done to prepare the dataset required for optimization. Finally, simulation-based optimization technique helps to find the optimum structural design with maximum efficiency. To solve the optimization problem, an artificial neural network is first trained to replace the simulation model, and then, a genetic algorithm is employed to find the optimized design variables. Higher geometrical non-uniformity and length of the beam lowers the structure natural frequency and generates a larger power output.Keywords: Piezoelectricity, energy harvesting, simulation-based optimization, artificial neural network, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 845204 Characterization and Detection of Cadmium Ion Using Modification Calixarene with Multiwalled Carbon Nanotubes
Authors: Amira Shakila Razali, Faridah Lisa Supian, Muhammad Mat Salleh, Suraini Abu Bakar
Abstract:
Water contamination by toxic compound is one of the serious environmental problems today. These toxic compounds mostly originated from industrial effluents, agriculture, natural sources and human waste. These studies focus on modification of multiwalled carbon nanotube (MWCNTs) with nanoparticle of calixarene and explore the possibility of using this modification for the remediation of cadmium in water. The nanocomposites were prepared by dissolving calixarene in chloroform solution as solvent, followed by additional multiwalled carbon nanotube (MWCNTs) then sonication process for 3 hour and fabricated the nanocomposites on substrate by spin coating method. Finally, the nanocomposites were tested on cadmium ion (10 mg/ml). The morphology of nanocomposites was investigated by FESEM showing the formation of calixarene on the outer walls of carbon nanotube and cadmium ion also clearly seen from the micrograph. This formation was supported by using energy dispersive x-ray (EDX). The presence of cadmium ions in the films, leads to some changes in the surface potential and Fourier Transform Infrared spectroscopy (FTIR).The nanocomposites MWCNTs-calixarene have potential for development of sensor for pollutant monitoring and nanoelectronics devices applications.
Keywords: Calixarene, Multiwalled Carbon Nanotubes, Cadmium, Surface Potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2820203 Molecular Dynamics Study on Mechanical Responses of Circular Graphene Nanoflake under Nanoindentation
Authors: Jeong-Won Kang
Abstract:
Graphene, a single-atom sheet, has been considered as the most promising material for making future nanoelectromechanical systems as well as purely electrical switching with graphene transistors. Graphene-based devices have advantages in scaled-up device fabrication due to the recent progress in large area graphene growth and lithographic patterning of graphene nanostructures. Here we investigated its mechanical responses of circular graphene nanoflake under the nanoindentation using classical molecular dynamics simulations. A correlation between the load and the indentation depth was constructed. The nanoindented force in this work was applied to the center point of the circular graphene nanoflake and then, the resonance frequency could be tuned by a nanoindented depth. We found the hardening or the softening of the graphene nanoflake during its nanoindented-deflections, and such properties were recognized by the shift of the resonance frequency. The calculated mechanical parameters in the force-vs-deflection plot were in good agreement with previous experimental and theoretical works. This proposed schematics can detect the pressure via the deflection change or/and the resonance frequency shift, and also have great potential for versatile applications in nanoelectromechanical systems.Keywords: Graphene, pressure sensor, circular graphene nanoflake, molecular dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717202 Recognition Machine (RM) for On-line and Isolated Flight Deck Officer (FDO) Gestures
Authors: Deniz T. Sodiri, Venkat V S S Sastry
Abstract:
The paper presents an on-line recognition machine (RM) for continuous/isolated, dynamic and static gestures that arise in Flight Deck Officer (FDO) training. RM is based on generic pattern recognition framework. Gestures are represented as templates using summary statistics. The proposed recognition algorithm exploits temporal and spatial characteristics of gestures via dynamic programming and Markovian process. The algorithm predicts corresponding index of incremental input data in the templates in an on-line mode. Accumulated consistency in the sequence of prediction provides a similarity measurement (Score) between input data and the templates. The algorithm provides an intuitive mechanism for automatic detection of start/end frames of continuous gestures. In the present paper, we consider isolated gestures. The performance of RM is evaluated using four datasets - artificial (W TTest), hand motion (Yang) and FDO (tracker, vision-based ). RM achieves comparable results which are in agreement with other on-line and off-line algorithms such as hidden Markov model (HMM) and dynamic time warping (DTW). The proposed algorithm has the additional advantage of providing timely feedback for training purposes.Keywords: On-line Recognition Algorithm, IsolatedDynamic/Static Gesture Recognition, On-line Markovian/DynamicProgramming, Training in Virtual Environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463201 Effects of Double Delta Doping on Millimeter and Sub-millimeter Wave Response of Two-Dimensional Hot Electrons in GaAs Nanostructures
Authors: N. Basanta Singh, Sanjoy Deb, G. P Mishra, Subir Kumar Sarkar
Abstract:
Carrier mobility has become the most important characteristic of high speed low dimensional devices. Due to development of very fast switching semiconductor devices, speed of computer and communication equipment has been increasing day by day and will continue to do so in future. As the response of any device depends on the carrier motion within the devices, extensive studies of carrier mobility in the devices has been established essential for the growth in the field of low dimensional devices. Small-signal ac transport of degenerate two-dimensional hot electrons in GaAs quantum wells is studied here incorporating deformation potential acoustic, polar optic and ionized impurity scattering in the framework of heated drifted Fermi-Dirac carrier distribution. Delta doping is considered in the calculations to investigate the effects of double delta doping on millimeter and submillimeter wave response of two dimensional hot electrons in GaAs nanostructures. The inclusion of delta doping is found to enhance considerably the two dimensional electron density which in turn improves the carrier mobility (both ac and dc) values in the GaAs quantum wells thereby providing scope of getting higher speed devices in future.Keywords: Carrier mobility, Delta doping, Hot carriers, Quantum wells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673200 Error Correction of Radial Displacement in Grinding Machine Tool Spindle by Optimizing Shape and Bearing Tuning
Authors: Khairul Jauhari, Achmad Widodo, Ismoyo Haryanto
Abstract:
In this article, the radial displacement error correction capability of a high precision spindle grinding caused by unbalance force was investigated. The spindle shaft is considered as a flexible rotor mounted on two sets of angular contact ball bearing. Finite element methods (FEM) have been adopted for obtaining the equation of motion of the spindle. In this paper, firstly, natural frequencies, critical frequencies, and amplitude of the unbalance response caused by residual unbalance are determined in order to investigate the spindle behaviors. Furthermore, an optimization design algorithm is employed to minimize radial displacement of the spindle which considers dimension of the spindle shaft, the dynamic characteristics of the bearings, critical frequencies and amplitude of the unbalance response, and computes optimum spindle diameters and stiffness and damping of the bearings. Numerical simulation results show that by optimizing the spindle diameters, and stiffness and damping in the bearings, radial displacement of the spindle can be reduced. A spindle about 4 μm radial displacement error can be compensated with 2 μm accuracy. This certainly can improve the accuracy of the product of machining.Keywords: Error correction, High precision grinding, Optimization, Radial displacement, Spindle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794199 Implementation of Geo-knowledge Based Geographic Information System for Estimating Earthquake Hazard Potential at a Metropolitan Area, Gwangju, in Korea
Authors: Chang-Guk Sun, Jin-Soo Shin
Abstract:
In this study, an inland metropolitan area, Gwangju, in Korea was selected to assess the amplification potential of earthquake motion and provide the information for regional seismic countermeasure. A geographic information system-based expert system was implemented for reliably predicting the spatial geotechnical layers in the entire region of interesting by building a geo-knowledge database. Particularly, the database consists of the existing boring data gathered from the prior geotechnical projects and the surface geo-knowledge data acquired from the site visit. For practical application of the geo-knowledge database to estimate the earthquake hazard potential related to site amplification effects at the study area, seismic zoning maps on geotechnical parameters, such as the bedrock depth and the site period, were created within GIS framework. In addition, seismic zonation of site classification was also performed to determine the site amplification coefficients for seismic design at any site in the study area. KeywordsEarthquake hazard, geo-knowledge, geographic information system, seismic zonation, site period.Keywords: Earthquake hazard, geo-knowledge, geographic information system, seismic zonation, site period.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664198 Geometric Contrast of a 3D Model Obtained by Means of Digital Photogrametry with a Quasimetric Camera on UAV Classical Methods
Authors: Julio Manuel de Luis Ruiz, Javier Sedano Cibrián, Rubén Pérez Álvarez, Raúl Pereda García, Cristina Diego Soroa
Abstract:
Nowadays, the use of drones has been extended to practically any human activity. One of the main applications is focused on the surveying field. In this regard, software programs that process the images captured by the sensor from the drone in an almost automatic way have been developed and commercialized, but they only allow contrasting the results through control points. This work proposes the contrast of a 3D model obtained from a flight developed by a drone and a non-metric camera (due to its low cost), with a second model that is obtained by means of the historically-endorsed classical methods. In addition to this, the contrast is developed over a certain territory with a significant unevenness, so as to test the model generated with photogrammetry, and considering that photogrammetry with drones finds more difficulties in terms of accuracy in this kind of situations. Distances, heights, surfaces and volumes are measured on the basis of the 3D models generated, and the results are contrasted. The differences are about 0.2% for the measurement of distances and heights, 0.3% for surfaces and 0.6% when measuring volumes. Although they are not important, they do not meet the order of magnitude that is presented by salespeople.
Keywords: Accuracy, classical topographic, 3D model, photogrammetry, UAV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 537197 Dynamic Response of Strain Rate Dependent Glass/Epoxy Composite Beams Using Finite Difference Method
Authors: M. M. Shokrieh, A. Karamnejad
Abstract:
This paper deals with a numerical analysis of the transient response of composite beams with strain rate dependent mechanical properties by use of a finite difference method. The equations of motion based on Timoshenko beam theory are derived. The geometric nonlinearity effects are taken into account with von Kármán large deflection theory. The finite difference method in conjunction with Newmark average acceleration method is applied to solve the differential equations. A modified progressive damage model which accounts for strain rate effects is developed based on the material property degradation rules and modified Hashin-type failure criteria and added to the finite difference model. The components of the model are implemented into a computer code in Mathematica 6. Glass/epoxy laminated composite beams with constant and strain rate dependent mechanical properties under dynamic load are analyzed. Effects of strain rate on dynamic response of the beam for various stacking sequences, load and boundary conditions are investigated.Keywords: Composite beam, Finite difference method, Progressive damage modeling, Strain rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990196 Reflectance Imaging Spectroscopy Data (Hyperspectral) for Mineral Mapping in the Orientale Basin Region on the Moon Surface
Authors: V. Sivakumar, R. Neelakantan
Abstract:
Mineral mapping on the Moon surface provides the clue to understand the origin, evolution, stratigraphy and geological history of the Moon. Recently, reflectance imaging spectroscopy plays a significant role in identifying minerals on the planetary surface in the Visible to NIR region of the electromagnetic spectrum. The Moon Mineralogy Mapper (M3) onboard Chandrayaan-1 provides unprecedented spectral data of lunar surface to study about the Moon surface. Here we used the M3 sensor data (hyperspectral imaging spectroscopy) for analysing mineralogy of Orientale basin region on the Moon surface. Reflectance spectrums were sampled from different locations of the basin and continuum was removed using ENvironment for Visualizing Images (ENVI) software. Reflectance spectra of unknown mineral composition were compared with known Reflectance Experiment Laboratory (RELAB) spectra for discriminating mineralogy. Minerals like olivine, Low-Ca Pyroxene (LCP), High-Ca Pyroxene (HCP) and plagioclase were identified. In addition to these minerals, an unusual type of spectral signature was identified, which indicates the probable Fe-Mg-spinel lithology in the basin region.Keywords: Chandrayaan-1, moon mineralogy mapper, orientale basin, moon, spectroscopy, hyperspectral.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2854195 Modified Buck Boost Circuit for Linear and Non-Linear Piezoelectric Energy Harvesting
Authors: I Made Darmayuda, Chai Tshun Chuan Kevin, Je Minkyu
Abstract:
Plenty researches have reported techniques to harvest energy from piezoelectric transducer. In the earlier years, the researches mainly report linear energy harvesting techniques whereby interface circuitry is designed to have input impedance that match with the impedance of the piezoelectric transducer. In recent years non-linear techniques become more popular. The non-linear technique employs voltage waveform manipulation to boost the available-for-extraction energy at the time of energy transfer. The fact that non-linear energy extraction provides larger available-for-extraction energy doesn’t mean the linear energy extraction is completely obsolete. In some scenarios, such as where initial power is not available, linear energy extraction is still preferred. A modified Buck Boost circuit which is capable of harvesting piezoelectric energy using both linear and non-linear techniques is reported in this paper. Efficiency of at least 64% can be achieved using this circuit. For linear extraction, the modified Buck Boost circuit is controlled using a fix frequency and duty cycle clock. A voltage sensor and a pulse generator are added as the controller for the non-linear extraction technique.
Keywords: Buck boost, energy harvester, linear energy harvester, non-linear energy harvester, piezoelectric, synchronized charge extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2435194 Optical Fish Tracking in Fishways using Neural Networks
Authors: Alvaro Rodriguez, Maria Bermudez, Juan R. Rabuñal, Jeronimo Puertas
Abstract:
One of the main issues in Computer Vision is to extract the movement of one or several points or objects of interest in an image or video sequence to conduct any kind of study or control process. Different techniques to solve this problem have been applied in numerous areas such as surveillance systems, analysis of traffic, motion capture, image compression, navigation systems and others, where the specific characteristics of each scenario determine the approximation to the problem. This paper puts forward a Computer Vision based algorithm to analyze fish trajectories in high turbulence conditions in artificial structures called vertical slot fishways, designed to allow the upstream migration of fish through obstructions in rivers. The suggested algorithm calculates the position of the fish at every instant starting from images recorded with a camera and using neural networks to execute fish detection on images. Different laboratory tests have been carried out in a full scale fishway model and with living fishes, allowing the reconstruction of the fish trajectory and the measurement of velocities and accelerations of the fish. These data can provide useful information to design more effective vertical slot fishways.
Keywords: Computer Vision, Neural Network, Fishway, Fish Trajectory, Tracking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001193 Structural and Optical Properties of Ce3+ Doped YPO4: Nanophosphors Synthesis by Sol Gel Method
Authors: B. Kahouadji, L. Guerbous, L. Lamiri, A. Mendoud
Abstract:
Recently, nanomaterials are developed in the form of nano-films, nano-crystals and nano-pores. Lanthanide phosphates as a material find extensive application as laser, ceramic, sensor, phosphor, and also in optoelectronics, medical and biological labels, solar cells and light sources. Among the different kinds of rare-earth orthophosphates, yttrium orthophosphate has been shown to be an efficient host lattice for rare earth activator ions, which have become a research focus because of their important role in the field of light display systems, lasers, and optoelectronic devices. It is in this context that the 4fn- « 4fn-1 5d transitions of rare earth in insulating materials, lying in the UV and VUV, are the aim of large number of studies .Though there has been a few reports on Eu3+, Nd3+, Pr3+,Er3+, Ce3+, Tm3+ doped YPO4. The 4fn- « 4fn-1 5d transitions of the rare earth dependent to the host-matrix, several matrices ions were used to study these transitions, in this work we are suggesting to study on a very specific class of inorganic material that are orthophosphate doped with rare earth ions. This study focused on the effect of Ce3+ concentration on the structural and optical properties of Ce3+ doped YPO4 yttrium orthophosphate with powder form prepared by the Sol Gel method.
Keywords: YPO4, Ce3+, 4fn- <->4fn-1 5d transitions, scintillator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2733