Search results for: learning and assessment.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3300

Search results for: learning and assessment.

2070 The Potential Benefits of Multimedia Information Representation in Enhancing Students’ Critical Thinking and History Reasoning

Authors: Ang Ling Weay, Mona Masood

Abstract:

This paper discusses the potential benefits of an interactive multimedia information representation in enhancing students’ critical thinking aligned with history reasoning in learning history amongst Secondary School students in Malaysia. Two modes of multimedia information representation were implemented; chronologic and thematic information representations. A qualitative study of an unstructured interview was conducted among two history teachers, one history education lecturer, two i-think experts, and five students from Form Four secondary school. The interview was to elicit their opinions on the implementation of thinking maps and interactive multimedia information representation in history learning. The key elements of the interactive multimedia (e.g. multiple media, user control, interactivity and use of timelines and concept maps) were then considered to improve the learning process. Findings of the preliminary investigation reveal that the interactive multimedia information representations have the potential benefits to be implemented as an instructional resource in enhancing students’ higher order thinking skills (HOTs). This paper concludes by giving suggestions for future work.

Keywords: Multimedia Information Representation, Critical Thinking, History Reasoning, Chronological and Thematic Information Representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2388
2069 Changes in Behavior and Learning Ability of Rats Intoxicated with Lead

Authors: Amira, A. Goma, U. E. Mahrous

Abstract:

Measuring the effect of perinatal lead exposure on learning ability of offspring is considered as a sensitive and selective index for providing an early marker for central nervous system damage produced by this toxic metal. A total of 35 Sprague-Dawley adult rats were used to investigate the effect of lead acetate toxicity on behavioral patterns of adult female rats and learning ability of offspring. Rats were allotted into 4 groups, group one received 1g/l lead acetate (n=10), group two received 1.5g/l lead acetate (n=10), group three received 2g/l lead acetate in drinking water (n=10) and control group did not receive lead acetate (n=5) from 8th day of pregnancy till weaning of pups.

The obtained results revealed a dose dependent increase in the feeding time, drinking frequency, licking frequency, scratching frequency, licking litters, nest building and retrieving frequencies, while standing time increased significantly in rats treated with 1.5g/l lead acetate than other treated groups and control, on contrary lying time decreased gradually in a dose dependent manner. Moreover, movement activities were higher in rats treated with 1g/l lead acetate than other treated groups and control. Furthermore, time spent in closed arms was significantly lower in rats given 2g/l lead acetate than other treated groups, while, they spent significantly much time spent in open arms than other treated groups which could be attributed to occurrence of adaptation. Furthermore, number of entries in open arms was dose dependent. However, the ratio between open/closed arms revealed a significant decrease in rats treated with 2g/l lead acetate than control group.

Keywords: Lead toxicity, rats, learning ability, behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2686
2068 The Application of Learning Systems to Support Decision for Stakeholder and Infrastructures Managers Based On Crowdsourcing

Authors: Alfonso Bastías, Álvaro González

Abstract:

The actual grow of the infrastructure in develop country require sophisticate ways manage the operation and control the quality served. This research wants to concentrate in the operation of this infrastructure beyond the construction. The infrastructure-s operation involves an uncertain environment, where unexpected variables are present every day and everywhere. Decision makers need to make right decisions with right information/data analyzed most in real time. To adequately support their decisions and decrease any negative impact and collateral effect, they need to use computational tools called decision support systems (DSS), but now the main source of information came from common users thought an extensive crowdsourcing

Keywords: Crowdsourcing, Learning Systems, Decision Support Systems, Infrastructure, Construction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
2067 Dialogue Meetings as an Arena for Collaboration and Reflection among Researchers and Practitioners

Authors: Kerstin Grunden, Ann Svensson, Berit Forsman, Christina Karlsson, Ayman Obeid

Abstract:

The research question of the article is to explore whether the dialogue meetings method could be relevant for reflective learning among researchers and practitioners when welfare technology should be implemented in municipalities, or not. A testbed was planned to be implemented in a retirement home in a Swedish municipality, and the practitioners worked with a pre-study of that testbed. In the article, the dialogue between the researchers and the practitioners in the dialogue meetings is described and analyzed. The potential of dialogue meetings as an arena for learning and reflection among researchers and practitioners is discussed. The research methodology approach is participatory action research with mixed methods (dialogue meetings, focus groups, participant observations). The main findings from the dialogue meetings were that the researchers learned more about the use of traditional research methods, and the practitioners learned more about how they could improve their use of the methods to facilitate change processes in their organization. These findings have the potential both for the researchers and the practitioners to result in more relevant use of research methods in change processes in organizations. It is concluded that dialogue meetings could be relevant for reflective learning among researchers and practitioners when welfare technology should be implemented in a health care organization.

Keywords: Dialogue meetings, implementation, reflection, test bed, welfare technology, participatory action research.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 464
2066 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients

Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim

Abstract:

The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.

Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 678
2065 Economics of Open and Distance Education in the University of Ibadan, Nigeria

Authors: Babatunde Kasim Oladele

Abstract:

One of the major objectives of the Nigeria national policy on education is the provision of equal educational opportunities to all citizens at different levels of education. With regards to higher education, an aspect of the policy encourages distance learning to be organized and delivered by tertiary institutions in Nigeria. This study therefore, determines how much of the Government resources are committed, how the resources are utilized and what alternative sources of funding are available for this system of education. This study investigated the trends in recurrent costs between 2004/2005 and 2013/2014 at University of Ibadan Distance Learning Centre (DLC). A descriptive survey research design was employed for the study. Questionnaire was the research instrument used for the collection of data. The population of the study was 280 current distance learning education students, 70 academic staff and 50 administrative staff. Only 354 questionnaires were correctly filled and returned. Data collected were analyzed and coded using the frequencies, ratio, average and percentages were used to answer all the research questions. The study revealed that staff salaries and allowances of academic and non-academic staff represent the most important variable that influences the cost of education. About 55% of resources were allocated to this sector alone. The study also indicates that costs rise every year with increase in enrolment representing a situation of diseconomies of scale. This study recommends that Universities who operates distance learning program should strive to explore other internally generated revenue option to boost their revenue. University of Ibadan, being the premier university in Nigeria, should be given foreign aid and home support, both financially and materially, to enable the institute to run a formidable distance education program that would measure up in planning and implementation with those of developed nation.

Keywords: Open education, distance education, University of Ibadan, cost of education, Nigeria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937
2064 Innovation, e-Learning and Higher Education: An Example of a University- LMS Adoption Process

Authors: Ana Mafalda Gonçalves, Neuza Pedro

Abstract:

The evolution of ICT has changed all sections of society and these changes have been creating an irreversible impact on higher education institutions, which are expected to adopt innovative technologies in their teaching practices. As theorical framework this study select Rogers theory of innovation diffusion which is widely used to illustrate how technologies move from a localized invented to a widespread evolution on organizational practices. Based on descriptive statistical data collected in a European higher education institution three years longitudinal study was conducted for analyzing and discussion the different stages of a LMS adoption process. Results show that ICT integration in higher education is not progressively successful and a linear process and multiple aspects must be taken into account.

Keywords: e-learning, higher education, LMS, innovation, technologies

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2469
2063 Acquiring Contour Following Behaviour in Robotics through Q-Learning and Image-based States

Authors: Carlos V. Regueiro, Jose E. Domenech, Roberto Iglesias, Jose L. Correa

Abstract:

In this work a visual and reactive contour following behaviour is learned by reinforcement. With artificial vision the environment is perceived in 3D, and it is possible to avoid obstacles that are invisible to other sensors that are more common in mobile robotics. Reinforcement learning reduces the need for intervention in behaviour design, and simplifies its adjustment to the environment, the robot and the task. In order to facilitate its generalisation to other behaviours and to reduce the role of the designer, we propose a regular image-based codification of states. Even though this is much more difficult, our implementation converges and is robust. Results are presented with a Pioneer 2 AT on a Gazebo 3D simulator.

Keywords: Image-based State Codification, Mobile Robotics, ReinforcementLearning, Visual Behaviour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
2062 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments

Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea

Abstract:

The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.

Keywords: Deep learning, data mining, gender predication, MOOCs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363
2061 Designing an Editorialization Environment for Repeatable Self-Correcting Exercises

Authors: M. Kobylanski, D. Buskulic, P.-H. Duron, D. Revuz, F. Ruggieri, E. Sandier, C. Tijus

Abstract:

In order to design a cooperative e-learning platform, we observed teams of Teacher [T], Computer Scientist [CS] and exerciser's programmer-designer [ED] cooperating for the conception of a self-correcting exercise, but without the use of such a device in order to catch the kind of interactions a useful platform might provide. To do so, we first run a task analysis on how T, CS and ED should be cooperating in order to achieve, at best, the task of creating and implementing self-directed, self-paced, repeatable self-correcting exercises (RSE) in the context of open educational resources. The formalization of the whole process was based on the “objectives, activities and evaluations” theory of educational task analysis. Second, using the resulting frame as a “how-to-do it” guide, we run a series of three contrasted Hackathon of RSE-production to collect data about the cooperative process that could be later used to design the collaborative e-learning platform. Third, we used two complementary methods to collect, to code and to analyze the adequate survey data: the directional flow of interaction among T-CS-ED experts holding a functional role, and the Means-End Problem Solving analysis. Fourth, we listed the set of derived recommendations useful for the design of the exerciser as a cooperative e-learning platform. Final recommendations underline the necessity of building (i) an ecosystem that allows to sustain teams of T-CS-ED experts, (ii) a data safety platform although offering accessibility and open discussion about the production of exercises with their resources and (iii) a good architecture allowing the inheritance of parts of the coding of any exercise already in the data base as well as fast implementation of new kinds of exercises along with their associated learning activities.

Keywords: Distance open educational resources, pedagogical alignment, self-correcting exercises, teacher’s involvement, team roles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 517
2060 Applicability of Diatom-Based Water Quality Assessment Indices in Dari Stream, Isparta- Turkey

Authors: Hasan Kalyoncu, Burcu Şerbetci

Abstract:

Diatoms are an important group of aquatic ecosystems and diatom-based indices are increasingly becoming important tools for the assessment of ecological conditions in lotic systems. Although the studies are very limited about Turkish rivers, diatom indices were used for monitoring rivers in different basins. In the present study, we used OMNIDIA program for estimation of stream quality. Some indices have less sensitive (IDP, WAT, LOBO, GENRE, TID, CEE, PT), intermediate sensitivities (IDSE, DESCY, IPS, DI-CH, SLA, IDAP), the others higher sensitivities (SID, IBD, SHE, EPI-D). Among the investigated diatom communities, only a few taxa indicated alfa-mesosaprobity and polysaprobity. Most of the sites were characterized by a great relative contribution of eutraphent and tolerant ones as well as oligosaprobic and betamesosaprobic diatoms. In general, SID and IBD indices gave the best results. This study suggests that the structure of benthic diatom communities and diatom indices, especially SID, can be applied for monitoring rivers in Southern Turkey. 

Keywords: Diatom, Darı stream, OMNIDIA, Turkey, Water quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2921
2059 Organization Model of Semantic Document Repository and Search Techniques for Studying Information Technology

Authors: Nhon Do, Thuong Huynh, An Pham

Abstract:

Nowadays, organizing a repository of documents and resources for learning on a special field as Information Technology (IT), together with search techniques based on domain knowledge or document-s content is an urgent need in practice of teaching, learning and researching. There have been several works related to methods of organization and search by content. However, the results are still limited and insufficient to meet user-s demand for semantic document retrieval. This paper presents a solution for the organization of a repository that supports semantic representation and processing in search. The proposed solution is a model which integrates components such as an ontology describing domain knowledge, a database of document repository, semantic representation for documents and a file system; with problems, semantic processing techniques and advanced search techniques based on measuring semantic similarity. The solution is applied to build a IT learning materials management system of a university with semantic search function serving students, teachers, and manager as well. The application has been implemented, tested at the University of Information Technology, Ho Chi Minh City, Vietnam and has achieved good results.

Keywords: document retrieval system, knowledgerepresentation, document representation, semantic search, ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
2058 Application of Extreme Learning Machine Method for Time Series Analysis

Authors: Rampal Singh, S. Balasundaram

Abstract:

In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM formulation leads to solving a system of linear equations in terms of the unknown weights connecting the hidden layer to the output layer. The solution of this general system of linear equations will be obtained using Moore-Penrose generalized pseudo inverse. For the study of the application of the method we consider the time series generated by the Mackey Glass delay differential equation with different time delays, Santa Fe A and UCR heart beat rate ECG time series. For the choice of sigmoid, sin and hardlim activation functions the optimal values for the memory order and the number of hidden neurons which give the best prediction performance in terms of root mean square error are determined. It is observed that the results obtained are in close agreement with the exact solution of the problems considered which clearly shows that ELM is a very promising alternative method for time series prediction.

Keywords: Chaotic time series, Extreme learning machine, Generalization performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3519
2057 An Approach for the Prediction of Cardiovascular Diseases

Authors: Nebi Gedik

Abstract:

Regardless of age or gender, cardiovascular illnesses are a serious health concern because of things like poor eating habits, stress, a sedentary lifestyle, hard work schedules, alcohol use, and weight. It tends to happen suddenly and has a high rate of recurrence. Machine learning models can be implemented to assist healthcare systems in the accurate detection and diagnosis of cardiovascular disease (CVD) in patients. Improved heart failure prediction is one of the primary goals of researchers using the heart disease dataset. The purpose of this study is to identify the feature or features that offer the best classification prediction for CVD detection. The support vector machine classifier is used to compare each feature's performance. It has been determined which feature produces the best results.

Keywords: Cardiovascular disease, feature extraction, supervised learning, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170
2056 The Desire to Know: Arnold’s Contribution to a Psychological Conceptualization of Academic Motivation

Authors: F. Ruiz-Fuster

Abstract:

Arnold’s redefinition of human motives can sustain a psychology of education which emphasizes the beauty of knowledge and the exercise of intellectual functions. Thus, education instead of focusing on skills and learning by doing would be centered on ‘the widest reaches of the human spirit’. One way to attain it is by developing children’s inherent interest. Arnold takes into account the fact that the desire to know is the inherent interest which leads students to explore and learn. She also emphasizes the need of exercising human functions as thinking, judging and reasoning. According to Arnold, the influence of psychological theories of motivation in education has derived in considering that all learning and school tasks should derive from children’s needs and impulses. The desire to know and the curiosity have not been considered as basic and active as any instinctive drive or basic need, so there has been an attempt to justify and understand how biological drives guide student’s learning. However, understanding motives and motivation not as a drive, an instinct or an impulse guided by our basic needs, but as a want that leads to action can help to understand, from a psychological perspective, how teachers can motivate students to learn, strengthening their desire and interest to reason and discover the whole new world of knowledge.

Keywords: Academic motivation, interests, desire to know, educational psychology, intellectual functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
2055 Through Biometric Card in Romania: Person Identification by Face, Fingerprint and Voice Recognition

Authors: Hariton N. Costin, Iulian Ciocoiu, Tudor Barbu, Cristian Rotariu

Abstract:

In this paper three different approaches for person verification and identification, i.e. by means of fingerprints, face and voice recognition, are studied. Face recognition uses parts-based representation methods and a manifold learning approach. The assessment criterion is recognition accuracy. The techniques under investigation are: a) Local Non-negative Matrix Factorization (LNMF); b) Independent Components Analysis (ICA); c) NMF with sparse constraints (NMFsc); d) Locality Preserving Projections (Laplacianfaces). Fingerprint detection was approached by classical minutiae (small graphical patterns) matching through image segmentation by using a structural approach and a neural network as decision block. As to voice / speaker recognition, melodic cepstral and delta delta mel cepstral analysis were used as main methods, in order to construct a supervised speaker-dependent voice recognition system. The final decision (e.g. “accept-reject" for a verification task) is taken by using a majority voting technique applied to the three biometrics. The preliminary results, obtained for medium databases of fingerprints, faces and voice recordings, indicate the feasibility of our study and an overall recognition precision (about 92%) permitting the utilization of our system for a future complex biometric card.

Keywords: Biometry, image processing, pattern recognition, speech analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
2054 Assessment of Modern RANS Models for the C3X Vane Film Cooling Prediction

Authors: Mikhail Gritskevich, Sebastian Hohenstein

Abstract:

The paper presents the results of a detailed assessment of several modern Reynolds Averaged Navier-Stokes (RANS) turbulence models for prediction of C3X vane film cooling at various injection regimes. Three models are considered, namely the Shear Stress Transport (SST) model, the modification of the SST model accounting for the streamlines curvature (SST-CC), and the Explicit Algebraic Reynolds Stress Model (EARSM). It is shown that all the considered models face with a problem in prediction of the adiabatic effectiveness in the vicinity of the cooling holes; however, accounting for the Reynolds stress anisotropy within the EARSM model noticeably increases the solution accuracy. On the other hand, further downstream all the models provide a reasonable agreement with the experimental data for the adiabatic effectiveness and among the considered models the most accurate results are obtained with the use EARMS.

Keywords: Discrete holes film cooling, Reynolds Averaged Navier-Stokes, Reynolds stress tensor anisotropy, turbulent heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1122
2053 Life Cycle Assessment of Residential Buildings: A Case Study in Canada

Authors: Venkatesh Kumar, Kasun Hewage, Rehan Sadiq

Abstract:

Residential buildings consume significant amounts of energy and produce large amount of emissions and waste. However, there is a substantial potential for energy savings in this sector which needs to be evaluated over the life cycle of residential buildings. Life Cycle Assessment (LCA) methodology has been employed to study the primary energy uses and associated environmental impacts of different phases (i.e., product, construction, use, end of life, and beyond building life) for residential buildings. Four different alternatives of residential buildings in Vancouver (BC, Canada) with a 50-year lifespan have been evaluated, including High Rise Apartment (HRA), Low Rise Apartment (LRA), Single family Attached House (SAH), and Single family Detached House (SDH). Life cycle performance of the buildings is evaluated for embodied energy, embodied environmental impacts, operational energy, operational environmental impacts, total life-cycle energy, and total life cycle environmental impacts. Estimation of operational energy and LCA are performed using DesignBuilder software and Athena Impact estimator software respectively. The study results revealed that over the life span of the buildings, the relationship between the energy use and the environmental impacts are identical. LRA is found to be the best alternative in terms of embodied energy use and embodied environmental impacts; while, HRA showed the best life-cycle performance in terms of minimum energy use and environmental impacts. Sensitivity analysis has also been carried out to study the influence of building service lifespan over 50, 75, and 100 years on the relative significance of embodied energy and total life cycle energy. The life-cycle energy requirements for SDH are found to be a significant component among the four types of residential buildings. The overall disclose that the primary operations of these buildings accounts for 90% of the total life cycle energy which far outweighs minor differences in embodied effects between the buildings.

Keywords: Building simulation, environmental impacts, life cycle assessment, life cycle energy analysis, residential buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5187
2052 Monte Carlo Analysis and Fuzzy Sets for Uncertainty Propagation in SIS Performance Assessment

Authors: Fares Innal, Yves Dutuit, Mourad Chebila

Abstract:

The object of this work is the probabilistic performance evaluation of safety instrumented systems (SIS), i.e. the average probability of dangerous failure on demand (PFDavg) and the average frequency of failure (PFH), taking into account the uncertainties related to the different parameters that come into play: failure rate (λ), common cause failure proportion (β), diagnostic coverage (DC)... This leads to an accurate and safe assessment of the safety integrity level (SIL) inherent to the safety function performed by such systems. This aim is in keeping with the requirement of the IEC 61508 standard with respect to handling uncertainty. To do this, we propose an approach that combines (1) Monte Carlo simulation and (2) fuzzy sets. Indeed, the first method is appropriate where representative statistical data are available (using pdf of the relating parameters), while the latter applies in the case characterized by vague and subjective information (using membership function). The proposed approach is fully supported with a suitable computer code.

Keywords: Fuzzy sets, Monte Carlo simulation, Safety instrumented system, Safety integrity level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2779
2051 Convergence of ICT and Education

Authors: Raju Kumar

Abstract:

Information and communication technology (ICT) has become, within a very short time, one of the basic building blocks of modern society. Many countries now understanding the importance of ICT and mastering the basic skills and concepts of it as part of the core of education. Organizations, experts and practitioners in the education sector increasingly recognizing the importance of ICT in supporting educational improvement and reform. This paper addresses the convergence of ICT and education. When two technologies are converging to each other, together they will generate some great opportunities and challenges. This paper focuses on these issues. In introduction section, it explains the ICT, education, and ICT-enhanced education. In next section it describes need of ICT in education, relationship between ICT skills and education, and stages of teaching learning process. The next two sections describe opportunities and challenges in integrating ICT in education. Finally the concluding section summaries the idea and its usefulness.

Keywords: Education, Information and CommunicationTechnology, Learning, Teaching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3597
2050 Seismic Assessment of Old Existing RC Buildings on Madinah with Masonry Infilled Using Ambient Vibration Measurements

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

Early pre-code reinforced concrete structures present undetermined resistance to earthquakes. This situation is particularly unacceptable in the case of essential structures, such as healthcare structures and pilgrims' houses. Amongst these, an existing old RC building in Madinah city (KSA) is seismically evaluated with and without infill wall and their dynamic characteristics are compared with measured values in the field using ambient vibration measurements (AVM). After updating the mathematical models for this building with the experimental results, three dimensional pushover analysis (Nonlinear static analysis) was carried out using commercial structural analysis software incorporating inelastic material properties for concrete, infill and steel. The purpose of this analysis is to evaluate the expected performance of structural systems by estimating, strength and deformation demands in design, and comparing these demands to available capacities at the performance levels of interest. The results summarized and discussed.

Keywords: Seismic Assessment, Pushover Analysis, Ambient vibration, Modal update.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2489
2049 Attribution Theory and Perceived Reliability of Cellphones for Teaching and Learning

Authors: Mayowa A. Sofowora, Seraphim D. Eyono Obono

Abstract:

The use of information and communication technologies such as computers, mobile phones and the Internet is becoming prevalent in today’s world; and it is facilitating access to a vast amount of data, services and applications for the improvement of people’s lives. However, this prevalence of ICTs is hampered by the problem of low income levels in developing countries to the point where people cannot timeously replace or repair their ICT devices when damaged or lost; and this problem serves as a motivation for this study whose aim is to examine the perceptions of teachers on the reliability of cellphones when used for teaching and learning purposes. The research objectives unfolding this aim are of two types: Objectives on the selection and design of theories and models, and objectives on the empirical testing of these theories and models. The first type of objectives is achieved using content analysis in an extensive literature survey: and the second type of objectives is achieved through a survey of high school teachers from the ILembe and UMgungundlovu districts in the KwaZulu-Natal province of South Africa. Data collected from this questionnaire based survey is analysed in SPSS using descriptive statistics and Pearson correlations after checking the reliability and validity of the questionnaires. The main hypothesis driving this study is that there is a relationship between the demographics and the attribution identity of teachers on one hand, and their perceptions on the reliability of cellphones on the other hand, as suggested by existing literature; except that attribution identities are considered in this study under three angles: intention, knowledge and ability, and action. The results of this study confirm that the perceptions of teachers on the reliability of cellphones for teaching and learning are affected by the school location of these teachers, and by their perceptions on learners’ cellphones usage intentions and actual use.

Keywords: Attribution, Cellphones, E-learning, Reliability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804
2048 Design and Simulation of a New Self-Learning Expert System for Mobile Robot

Authors: Rabi W. Yousif, Mohd Asri Hj Mansor

Abstract:

In this paper, we present a novel technique called Self-Learning Expert System (SLES). Unlike Expert System, where there is a need for an expert to impart experiences and knowledge to create the knowledge base, this technique tries to acquire the experience and knowledge automatically. To display this technique at work, a simulation of a mobile robot navigating through an environment with obstacles is employed using visual basic. The mobile robot will move through this area without colliding with any obstacle and save the path that it took. If the mobile robot has to go through a similar environment again, then it will apply this experience to help it move through quicker without having to check for collision.

Keywords: Expert system, knowledge base, mobile robot, visual basic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
2047 Teacher Trainers’ Motivation in Transformation of Teaching and Learning: The Fun Way Approach

Authors: Malathi Balakrishnan, Gananthan M. Nadarajah, Noraini Abd Rahim, Amy Wong On Mei

Abstract:

The purpose of the study is to investigate the level of intrinsic motivation of trainers after attending a Continuous Professional Development Course (CPD) organized by Institute of Teacher Training Malaysia titled, “Transformation of Teaching and Learning the Fun Way”. This study employed a survey whereby 96 teacher trainers were given Situational Intrinsic Motivational Scale (SIMS) Instruments. Confirmatory factor analysis was carried out to get the validity of this instrument in local setting. Data were analyzed with SPSS for descriptive statistic. Semi- structured interviews were also administrated to collect qualitative data on participants’ experiences after participating in the two-day fun-filled program. The findings showed that the participants’ level of intrinsic motivation showed higher mean than the amotivation. The results revealed that the intrinsic motivation mean is 19.0 followed by Identified regulation with a mean of 17.4, external regulation 9.7 and amotivation 6.9. The interview data also revealed that the participants were motivated after attending this training program. It can be concluded that this program, which was organized by Institute of Teacher Training Malaysia, was able to enhance participants’ level of motivation. Self-Determination Theory (SDT) as a multidimensional approach to motivation was utilized. Therefore, teacher trainers may have more success using the “The fun way approach” in conducting training program in future.

Keywords: Teaching and Learning, Motivation, Teacher Trainer, SDT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080
2046 Effect of Model Dimension in Numerical Simulation on Assessment of Water Inflow to Tunnel in Discontinues Rock

Authors: Hadi Farhadian, Homayoon Katibeh

Abstract:

Groundwater inflow to the tunnels is one of the most important problems in tunneling operation. The objective of this study is the investigation of model dimension effects on tunnel inflow assessment in discontinuous rock masses using numerical modeling. In the numerical simulation, the model dimension has an important role in prediction of water inflow rate. When the model dimension is very small, due to low distance to the tunnel border, the model boundary conditions affect the estimated amount of groundwater flow into the tunnel and results show a very high inflow to tunnel. Hence, in this study, the two-dimensional universal distinct element code (UDEC) used and the impact of different model parameters, such as tunnel radius, joint spacing, horizontal and vertical model domain extent has been evaluated. Results show that the model domain extent is a function of the most significant parameters, which are tunnel radius and joint spacing.

Keywords: Water inflow, Tunnel, Discontinues rock, Numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2510
2045 Spatio-Temporal Data Mining with Association Rules for Lake Van

Authors: T. Aydin, M. F. Alaeddinoglu

Abstract:

People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatiotemporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newlyformed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.

Keywords: Apriori algorithm, association rules, data mining, spatio-temporal data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405
2044 Anomaly Detection and Characterization to Classify Traffic Anomalies Case Study: TOT Public Company Limited Network

Authors: O. Siriporn, S. Benjawan

Abstract:

This paper represents four unsupervised clustering algorithms namely sIB, RandomFlatClustering, FarthestFirst, and FilteredClusterer that previously works have not been used for network traffic classification. The methodology, the result, the products of the cluster and evaluation of these algorithms with efficiency of each algorithm from accuracy are shown. Otherwise, the efficiency of these algorithms considering form the time that it use to generate the cluster quickly and correctly. Our work study and test the best algorithm by using classify traffic anomaly in network traffic with different attribute that have not been used before. We analyses the algorithm that have the best efficiency or the best learning and compare it to the previously used (K-Means). Our research will be use to develop anomaly detection system to more efficiency and more require in the future.

Keywords: Unsupervised, clustering, anomaly, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
2043 Learning of Class Membership Values by Ellipsoidal Decision Regions

Authors: Leehter Yao, Chin-Chin Lin

Abstract:

A novel method of learning complex fuzzy decision regions in the n-dimensional feature space is proposed. Through the fuzzy decision regions, a given pattern's class membership value of every class is determined instead of the conventional crisp class the pattern belongs to. The n-dimensional fuzzy decision region is approximated by union of hyperellipsoids. By explicitly parameterizing these hyperellipsoids, the decision regions are determined by estimating the parameters of each hyperellipsoid.Genetic Algorithm is applied to estimate the parameters of each region component. With the global optimization ability of GA, the learned decision region can be arbitrarily complex.

Keywords: Ellipsoid, genetic algorithm, decision regions, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
2042 Probabilistic Electrical Power Generation Modeling Using Decimal to Binary Conversion

Authors: Ahmed S. Al-Abdulwahab

Abstract:

Generation system reliability assessment is an important task which can be performed using deterministic or probabilistic techniques. The probabilistic approaches have significant advantages over the deterministic methods. However, more complicated modeling is required by the probabilistic approaches. Power generation model is a basic requirement for this assessment. One form of the generation models is the well known capacity outage probability table (COPT). Different analytical techniques have been used to construct the COPT. These approaches require considerable mathematical modeling of the generating units. The unit-s models are combined to build the COPT which will add more burdens on the process of creating the COPT. Decimal to Binary Conversion (DBC) technique is widely and commonly applied in electronic systems and computing This paper proposes a novel utilization of the DBC to create the COPT without engaging in analytical modeling or time consuming simulations. The simple binary representation , “0 " and “1 " is used to model the states o f generating units. The proposed technique is proven to be an effective approach to build the generation model.

Keywords: Decimal to Binary, generation, reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
2041 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Human action recognition (HAR) modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view Football datasets. Our HAR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH Multi-view Football datasets, respectively.

Keywords: Computer vision, human motion analysis, random forest, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38