Search results for: Detecting of Envelope Modulation on Noise.
278 The Water Level Detection Algorithm Using the Accumulated Histogram with Band Pass Filter
Authors: Sangbum Park, Namki Lee, Youngjoon Han, Hernsoo Hahn
Abstract:
In this paper, we propose the robust water level detection method based on the accumulated histogram under small changed image which is acquired from water level surveillance camera. In general surveillance system, this is detecting and recognizing invasion from searching area which is in big change on the sequential images. However, in case of a water level detection system, these general surveillance techniques are not suitable due to small change on the water surface. Therefore the algorithm introduces the accumulated histogram which is emphasizing change of water surface in sequential images. Accumulated histogram is based on the current image frame. The histogram is cumulating differences between previous images and current image. But, these differences are also appeared in the land region. The band pass filter is able to remove noises in the accumulated histogram Finally, this algorithm clearly separates water and land regions. After these works, the algorithm converts from the water level value on the image space to the real water level on the real space using calibration table. The detected water level is sent to the host computer with current image. To evaluate the proposed algorithm, we use test images from various situations.Keywords: accumulated histogram, water level detection, band pass filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000277 Modern Spectrum Sensing Techniques for Cognitive Radio Networks: Practical Implementation and Performance Evaluation
Authors: Antoni Ivanov, Nikolay Dandanov, Nicole Christoff, Vladimir Poulkov
Abstract:
Spectrum underutilization has made cognitive radio a promising technology both for current and future telecommunications. This is due to the ability to exploit the unused spectrum in the bands dedicated to other wireless communication systems, and thus, increase their occupancy. The essential function, which allows the cognitive radio device to perceive the occupancy of the spectrum, is spectrum sensing. In this paper, the performance of modern adaptations of the four most widely used spectrum sensing techniques namely, energy detection (ED), cyclostationary feature detection (CSFD), matched filter (MF) and eigenvalues-based detection (EBD) is compared. The implementation has been accomplished through the PlutoSDR hardware platform and the GNU Radio software package in very low Signal-to-Noise Ratio (SNR) conditions. The optimal detection performance of the examined methods in a realistic implementation-oriented model is found for the common relevant parameters (number of observed samples, sensing time and required probability of false alarm).Keywords: Cognitive radio, dynamic spectrum access, GNU Radio, spectrum sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1173276 Gas Detection via Machine Learning
Authors: Walaa Khalaf, Calogero Pace, Manlio Gaudioso
Abstract:
We present an Electronic Nose (ENose), which is aimed at identifying the presence of one out of two gases, possibly detecting the presence of a mixture of the two. Estimation of the concentrations of the components is also performed for a volatile organic compound (VOC) constituted by methanol and acetone, for the ranges 40-400 and 22-220 ppm (parts-per-million), respectively. Our system contains 8 sensors, 5 of them being gas sensors (of the class TGS from FIGARO USA, INC., whose sensing element is a tin dioxide (SnO2) semiconductor), the remaining being a temperature sensor (LM35 from National Semiconductor Corporation), a humidity sensor (HIH–3610 from Honeywell), and a pressure sensor (XFAM from Fujikura Ltd.). Our integrated hardware–software system uses some machine learning principles and least square regression principle to identify at first a new gas sample, or a mixture, and then to estimate the concentrations. In particular we adopt a training model using the Support Vector Machine (SVM) approach with linear kernel to teach the system how discriminate among different gases. Then we apply another training model using the least square regression, to predict the concentrations. The experimental results demonstrate that the proposed multiclassification and regression scheme is effective in the identification of the tested VOCs of methanol and acetone with 96.61% correctness. The concentration prediction is obtained with 0.979 and 0.964 correlation coefficient for the predicted versus real concentrations of methanol and acetone, respectively.Keywords: Electronic nose, Least square regression, Mixture ofgases, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2539275 Generalized Predictive Control of Batch Polymerization Reactor
Authors: R. Khaniki, M.B. Menhaj, H. Eliasi
Abstract:
This paper describes the application of a model predictive controller to the problem of batch reactor temperature control. Although a great deal of work has been done to improve reactor throughput using batch sequence control, the control of the actual reactor temperature remains a difficult problem for many operators of these processes. Temperature control is important as many chemical reactions are sensitive to temperature for formation of desired products. This controller consist of two part (1) a nonlinear control method GLC (Global Linearizing Control) to create a linear model of system and (2) a Model predictive controller used to obtain optimal input control sequence. The temperature of reactor is tuned to track a predetermined temperature trajectory that applied to the batch reactor. To do so two input signals, electrical powers and the flow of coolant in the coil are used. Simulation results show that the proposed controller has a remarkable performance for tracking reference trajectory while at the same time it is robust against noise imposed to system output.
Keywords: Generalized Predictive Control (GPC), TemperatureControl, Global Linearizing Control (GLC), Batch Reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504274 Generalized Predictive Control of Batch Polymerization Reactor
Authors: R. Khaniki, M.B. Menhaj, H. Eliasi
Abstract:
This paper describes the application of a model predictive controller to the problem of batch reactor temperature control. Although a great deal of work has been done to improve reactor throughput using batch sequence control, the control of the actual reactor temperature remains a difficult problem for many operators of these processes. Temperature control is important as many chemical reactions are sensitive to temperature for formation of desired products. This controller consist of two part (1) a nonlinear control method GLC (Global Linearizing Control) to create a linear model of system and (2) a Model predictive controller used to obtain optimal input control sequence. The temperature of reactor is tuned to track a predetermined temperature trajectory that applied to the batch reactor. To do so two input signals, electrical powers and the flow of coolant in the coil are used. Simulation results show that the proposed controller has a remarkable performance for tracking reference trajectory while at the same time it is robust against noise imposed to system output.Keywords: Generalized Predictive Control (GPC), TemperatureControl, Global Linearizing Control (GLC), Batch Reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782273 Implementation of a Motion Detection System
Authors: Asif Ansari, T.C.Manjunath, C. Ardil
Abstract:
In today-s competitive environment, the security concerns have grown tremendously. In the modern world, possession is known to be 9/10-ths of the law. Hence, it is imperative for one to be able to safeguard one-s property from worldly harms such as thefts, destruction of property, people with malicious intent etc. Due to the advent of technology in the modern world, the methodologies used by thieves and robbers for stealing have been improving exponentially. Therefore, it is necessary for the surveillance techniques to also improve with the changing world. With the improvement in mass media and various forms of communication, it is now possible to monitor and control the environment to the advantage of the owners of the property. The latest technologies used in the fight against thefts and destruction are the video surveillance and monitoring. By using the technologies, it is possible to monitor and capture every inch and second of the area in interest. However, so far the technologies used are passive in nature, i.e., the monitoring systems only help in detecting the crime but do not actively participate in stopping or curbing the crime while it takes place. Therefore, we have developed a methodology to detect the motion in a video stream environment and this is an idea to ensure that the monitoring systems not only actively participate in stopping the crime, but do so while the crime is taking place. Hence, a system is used to detect any motion in a live streaming video and once motion has been detected in the live stream, the software will activate a warning system and capture the live streaming video.
Keywords: Motion, Detection, System, Video, Crime, Matlab, Surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4290272 Localizing Acoustic Touch Impacts using Zip-stuffing in Complex k-space Domain
Authors: R. Bremananth, Andy W. H. Khong, A. Chitra
Abstract:
Visualizing sound and noise often help us to determine an appropriate control over the source localization. Near-field acoustic holography (NAH) is a powerful tool for the ill-posed problem. However, in practice, due to the small finite aperture size, the discrete Fourier transform, FFT based NAH couldn-t predict the activeregion- of-interest (AROI) over the edges of the plane. Theoretically few approaches were proposed for solving finite aperture problem. However most of these methods are not quite compatible for the practical implementation, especially near the edge of the source. In this paper, a zip-stuffing extrapolation approach has suggested with 2D Kaiser window. It is operated on wavenumber complex space to localize the predicted sources. We numerically form a practice environment with touch impact databases to test the localization of sound source. It is observed that zip-stuffing aperture extrapolation and 2D window with evanescent components provide more accuracy especially in the small aperture and its derivatives.Keywords: Acoustic source localization, Near-field acoustic holography (NAH), FFT, Extrapolation, k-space wavenumber errors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648271 Speaker Identification using Neural Networks
Authors: R.V Pawar, P.P.Kajave, S.N.Mali
Abstract:
The speech signal conveys information about the identity of the speaker. The area of speaker identification is concerned with extracting the identity of the person speaking the utterance. As speech interaction with computers becomes more pervasive in activities such as the telephone, financial transactions and information retrieval from speech databases, the utility of automatically identifying a speaker is based solely on vocal characteristic. This paper emphasizes on text dependent speaker identification, which deals with detecting a particular speaker from a known population. The system prompts the user to provide speech utterance. System identifies the user by comparing the codebook of speech utterance with those of the stored in the database and lists, which contain the most likely speakers, could have given that speech utterance. The speech signal is recorded for N speakers further the features are extracted. Feature extraction is done by means of LPC coefficients, calculating AMDF, and DFT. The neural network is trained by applying these features as input parameters. The features are stored in templates for further comparison. The features for the speaker who has to be identified are extracted and compared with the stored templates using Back Propogation Algorithm. Here, the trained network corresponds to the output; the input is the extracted features of the speaker to be identified. The network does the weight adjustment and the best match is found to identify the speaker. The number of epochs required to get the target decides the network performance.Keywords: Average Mean Distance function, Backpropogation, Linear Predictive Coding, MultilayeredPerceptron,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893270 Design of a Telemetry, Tracking, and Command Radio-Frequency Receiver for Small Satellites Based on Commercial Off-The-Shelf Components
Authors: A. Lovascio, A. D’Orazio, V. Centonze
Abstract:
From several years till now the aerospace industry is developing more and more small satellites for Low-Earth Orbit (LEO) missions. Such satellites have a low cost of making and launching since they have a size and weight smaller than other types of satellites. However, because of size limitations, small satellites need integrated electronic equipment based on digital logic. Moreover, the LEOs require telecommunication modules with high throughput to transmit to earth a big amount of data in a short time. In order to meet such requirements, in this paper we propose a Telemetry, Tracking & Command module optimized through the use of the Commercial Off-The-Shelf components. The proposed approach exploits the major flexibility offered by these components in reducing costs and optimizing the performance. The method has been applied in detail for the design of the front-end receiver, which has a low noise figure (1.5 dB) and DC power consumption (smaller than 2 W). Such a performance is particularly attractive since it allows fulfilling the energy budget stringent constraints that are typical for LEO small platforms.
Keywords: COTS, small satellites, sub-sampling, TT&C.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 737269 Identification of Aircraft Gas Turbine Engines Temperature Condition
Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.
Abstract:
Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.
Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660268 Implementation of MPPT Algorithm for Grid Connected PV Module with IC and P&O Method
Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati
Abstract:
In recent years, the use of renewable energy resources instead of pollutant fossil fuels and other forms has increased. Photovoltaic generation is becoming increasingly important as a renewable resource since it does not cause in fuel costs, pollution, maintenance, and emitting noise compared with other alternatives used in power applications. In this paper, Perturb and Observe and Incremental Conductance methods are used to improve energy conversion efficiency under different environmental conditions. PI controllers are used to control easily DC-link voltage, active and reactive currents. The whole system is simulated under standard climatic conditions (1000 W/m2, 250C) in MATLAB and the irradiance is varied from 1000 W/m2 to 300 W/m2. The use of PI controller makes it easy to directly control the power of the grid connected PV system. Finally the validity of the system will be verified through the simulations in MATLAB/Simulink environment.Keywords: Incremental conductance algorithm, modeling of PV panel, perturb and observe algorithm, photovoltaic system and simulation results.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863267 Multi Band Frequency Synthesizer Based on ISPD PLL with Adapted LC Tuned VCO
Authors: Bilel Gassara, Mahmoud Abdellaoui, Nouri Masmoud
Abstract:
The 4G front-end transceiver needs a high performance which can be obtained mainly with an optimal architecture and a multi-band Local Oscillator. In this study, we proposed and presented a new architecture of multi-band frequency synthesizer based on an Inverse Sine Phase Detector Phase Locked Loop (ISPD PLL) without any filters and any controlled gain block and associated with adapted multi band LC tuned VCO using a several numeric controlled capacitive branches but not binary weighted. The proposed architecture, based on 0.35μm CMOS process technology, supporting Multi-band GSM/DCS/DECT/ UMTS/WiMax application and gives a good performances: a phase noise @1MHz -127dBc and a Factor Of Merit (FOM) @ 1MHz - 186dB and a wide band frequency range (from 0.83GHz to 3.5GHz), that make the proposed architecture amenable for monolithic integration and 4G multi-band application.Keywords: GSM/DCS/DECT/UMTS/WiMax, ISPD PLL, keep and capture range, Multi-Band, Synthesizer, Wireless.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000266 Identification of Aircraft Gas Turbine Engine's Temperature Condition
Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.
Abstract:
Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.
Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673265 Modeling and Numerical Simulation of Sound Radiation by the Boundary Element Method
Authors: Costa, E.S., Borges, E.N.M., Afonso, M.M.
Abstract:
The modeling of sound radiation is of fundamental importance for understanding the propagation of acoustic waves and, consequently, develop mechanisms for reducing acoustic noise. The propagation of acoustic waves, are involved in various phenomena such as radiation, absorption, transmission and reflection. The radiation is studied through the linear equation of the acoustic wave that is obtained through the equation for the Conservation of Momentum, equation of State and Continuity. From these equations, is the Helmholtz differential equation that describes the problem of acoustic radiation. In this paper we obtained the solution of the Helmholtz differential equation for an infinite cylinder in a pulsating through free and homogeneous. The analytical solution is implemented and the results are compared with the literature. A numerical formulation for this problem is obtained using the Boundary Element Method (BEM). This method has great power for solving certain acoustical problems in open field, compared to differential methods. BEM reduces the size of the problem, thereby simplifying the input data to be worked and reducing the computational time used.
Keywords: Acoustic radiation, boundary element
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476264 Logistics Outsourcing: Performance Models and Financial and Operational Indicators
Authors: Carlos Sanchís-Pedregosa, José A. D. M achuca, María del Mar González-Zamora
Abstract:
The growing outsourcing of logistics services resulting from the ongoing current in firms of costs reduction/increased efficiency means that it is becoming more and more important for the companies doing the outsourcing to carry out a proper evaluation. The multiple definitions and measures of logistics service performance found in research on the topic create a certain degree of confusion and do not clear the way towards the proper measurement of their performance. Do a model and a specific set of indicators exist that can be considered appropriate for measuring the performance of logistics services outsourcing in industrial environments? Are said indicators in keeping with the objectives pursued by outsourcing? We aim to answer these and other research questions in the study we have initiated in the field within the framework of the international High Performance Manufacturing (HPM) project of which this paper forms part. As the first stage of this research, this paper reviews articles dealing with the topic published in the last 15 years with the aim of detecting the models most used to make this measurement and determining which performance indicators are proposed as part of said models and which are most used. The first steps are also taken in determining whether these indicators, financial and operational, cover the aims that are being pursued when outsourcing logistics services. The findings show there is a wide variety of both models and indicators used. This would seem to testify to the need to continue with our research in order to try to propose a model and a set of indicators for measuring the performance of logistics services outsourcing in industrial environments.Keywords: Logistics, objectives, outsourcing, performancemeasurement systems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136263 Optimization of Process Parameters in Wire Electrical Discharge Machining of Inconel X-750 for Dimensional Deviation Using Taguchi Technique
Authors: Mandeep Kumar, Hari Singh
Abstract:
The effective optimization of machining process parameters affects dramatically the cost and production time of machined components as well as the quality of the final products. This paper presents the optimization aspects of a Wire Electrical Discharge Machining operation using Inconel X-750 as work material. The objective considered in this study is minimization of the dimensional deviation. Six input process parameters of WEDM namely spark gap voltage, pulse-on time, pulse-off time, wire feed rate, peak current and wire tension, were chosen as variables to study the process performance. Taguchi's design of experiments methodology has been used for planning and designing the experiments. The analysis of variance was carried out for raw data as well as for signal to noise ratio. Four input parameters and one two-factor interaction have been found to be statistically significant for their effects on the response of interest. The confirmation experiments were also performed for validating the predicted results.
Keywords: ANOVA, DOE, inconel, machining, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421262 Prediction of the Thermal Parameters of a High-Temperature Metallurgical Reactor Using Inverse Heat Transfer
Authors: Mohamed Hafid, Marcel Lacroix
Abstract:
This study presents an inverse analysis for predicting the thermal conductivities and the heat flux of a high-temperature metallurgical reactor simultaneously. Once these thermal parameters are predicted, the time-varying thickness of the protective phase-change bank that covers the inside surface of the brick walls of a metallurgical reactor can be calculated. The enthalpy method is used to solve the melting/solidification process of the protective bank. The inverse model rests on the Levenberg-Marquardt Method (LMM) combined with the Broyden method (BM). A statistical analysis for the thermal parameter estimation is carried out. The effect of the position of the temperature sensors, total number of measurements and measurement noise on the accuracy of inverse predictions is investigated. Recommendations are made concerning the location of temperature sensors.
Keywords: Inverse heat transfer, phase change, metallurgical reactor, Levenberg–Marquardt method, Broyden method, bank thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693261 An Improved Method to Watermark Images Sensitive to Blocking Artifacts
Authors: Afzel Noore
Abstract:
A new digital watermarking technique for images that are sensitive to blocking artifacts is presented. Experimental results show that the proposed MDCT based approach produces highly imperceptible watermarked images and is robust to attacks such as compression, noise, filtering and geometric transformations. The proposed MDCT watermarking technique is applied to fingerprints for ensuring security. The face image and demographic text data of an individual are used as multiple watermarks. An AFIS system was used to quantitatively evaluate the matching performance of the MDCT-based watermarked fingerprint. The high fingerprint matching scores show that the MDCT approach is resilient to blocking artifacts. The quality of the extracted face and extracted text images was computed using two human visual system metrics and the results show that the image quality was high.Keywords: Digital watermarking, data hiding, modified discretecosine transformation (MDCT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605260 Surface Roughness Optimization in End Milling Operation with Damper Inserted End Milling Cutters
Authors: Krishna Mohana Rao, G. Ravi Kumar, P. Sowmya
Abstract:
This paper presents a study of the Taguchi design application to optimize surface quality in damper inserted end milling operation. Maintaining good surface quality usually involves additional manufacturing cost or loss of productivity. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various factors, using fewer resources than a factorial design. This Study included spindle speed, feed rate, and depth of cut as control factors, usage of different tools in the same specification, which introduced tool condition and dimensional variability. An orthogonal array of L9(3^4)was used; ANOVA analyses were carried out to identify the significant factors affecting surface roughness, and the optimal cutting combination was determined by seeking the best surface roughness (response) and signal-to-noise ratio. Finally, confirmation tests verified that the Taguchi design was successful in optimizing milling parameters for surface roughness.Keywords: ANOVA, Damper, End Milling, Optimization, Surface roughness, Taguchi design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2349259 Neural Network Ensemble-based Solar Power Generation Short-Term Forecasting
Authors: A. Chaouachi, R.M. Kamel, R. Ichikawa, H. Hayashi, K. Nagasaka
Abstract:
This paper presents the applicability of artificial neural networks for 24 hour ahead solar power generation forecasting of a 20 kW photovoltaic system, the developed forecasting is suitable for a reliable Microgrid energy management. In total four neural networks were proposed, namely: multi-layred perceptron, radial basis function, recurrent and a neural network ensemble consisting in ensemble of bagged networks. Forecasting reliability of the proposed neural networks was carried out in terms forecasting error performance basing on statistical and graphical methods. The experimental results showed that all the proposed networks achieved an acceptable forecasting accuracy. In term of comparison the neural network ensemble gives the highest precision forecasting comparing to the conventional networks. In fact, each network of the ensemble over-fits to some extent and leads to a diversity which enhances the noise tolerance and the forecasting generalization performance comparing to the conventional networks.Keywords: Neural network ensemble, Solar power generation, 24 hour forecasting, Comparative study
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3277258 Efficient Detection Using Sequential Probability Ratio Test in Mobile Cognitive Radio Systems
Authors: Yeon-Jea Cho, Sang-Uk Park, Won-Chul Choi, Dong-Jo Park
Abstract:
This paper proposes a smart design strategy for a sequential detector to reliably detect the primary user-s signal, especially in fast fading environments. We study the computation of the log-likelihood ratio for coping with a fast changing received signal and noise sample variances, which are considered random variables. First, we analyze the detectability of the conventional generalized log-likelihood ratio (GLLR) scheme when considering fast changing statistics of unknown parameters caused by fast fading effects. Secondly, we propose an efficient sensing algorithm for performing the sequential probability ratio test in a robust and efficient manner when the channel statistics are unknown. Finally, the proposed scheme is compared to the conventional method with simulation results with respect to the average number of samples required to reach a detection decision.
Keywords: Cognitive radio, fast fading, sequential detection, spectrum sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744257 Enhanced Particle Swarm Optimization Approach for Solving the Non-Convex Optimal Power Flow
Authors: M. R. AlRashidi, M. F. AlHajri, M. E. El-Hawary
Abstract:
An enhanced particle swarm optimization algorithm (PSO) is presented in this work to solve the non-convex OPF problem that has both discrete and continuous optimization variables. The objective functions considered are the conventional quadratic function and the augmented quadratic function. The latter model presents non-differentiable and non-convex regions that challenge most gradient-based optimization algorithms. The optimization variables to be optimized are the generator real power outputs and voltage magnitudes, discrete transformer tap settings, and discrete reactive power injections due to capacitor banks. The set of equality constraints taken into account are the power flow equations while the inequality ones are the limits of the real and reactive power of the generators, voltage magnitude at each bus, transformer tap settings, and capacitor banks reactive power injections. The proposed algorithm combines PSO with Newton-Raphson algorithm to minimize the fuel cost function. The IEEE 30-bus system with six generating units is used to test the proposed algorithm. Several cases were investigated to test and validate the consistency of detecting optimal or near optimal solution for each objective. Results are compared to solutions obtained using sequential quadratic programming and Genetic Algorithms.Keywords: Particle Swarm Optimization, Optimal Power Flow, Economic Dispatch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368256 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning
Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul
Abstract:
In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.Keywords: Electrocardiogram, dictionary learning, sparse coding, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095255 Design and Fabrication of a Programmable Stiffness-Sensitive Gripper for Object Handling
Authors: Mehdi Modabberifar, Sanaz Jabary, Mojtaba Ghodsi
Abstract:
Stiffness sensing is an important issue in medical diagnostic, robotics surgery, safe handling, and safe grasping of objects in production lines. Detecting and obtaining the characteristics in dwelling lumps embedded in a soft tissue and safe removing and handling of detected lumps is needed in surgery. Also in industry, grasping and handling an object without damaging in a place where it is not possible to access a human operator is very important. In this paper, a method for object handling is presented. It is based on the use of an intelligent gripper to detect the object stiffness and then setting a programmable force for grasping the object to move it. The main components of this system includes sensors (sensors for measuring force and displacement), electrical (electrical and electronic circuits, tactile data processing and force control system), mechanical (gripper mechanism and driving system for the gripper) and the display unit. The system uses a rotary potentiometer for measuring gripper displacement. A microcontroller using the feedback received by the load cell, mounted on the finger of the gripper, calculates the amount of stiffness, and then commands the gripper motor to apply a certain force on the object. Results of Experiments on some samples with different stiffness show that the gripper works successfully. The gripper can be used in haptic interfaces or robotic systems used for object handling.Keywords: Gripper, haptic, stiffness, robotic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155254 Video Super-Resolution Using Classification ANN
Authors: Ming-Hui Cheng, Jyh-Horng Jeng
Abstract:
In this study, a classification-based video super-resolution method using artificial neural network (ANN) is proposed to enhance low-resolution (LR) to high-resolution (HR) frames. The proposed method consists of four main steps: classification, motion-trace volume collection, temporal adjustment, and ANN prediction. A classifier is designed based on the edge properties of a pixel in the LR frame to identify the spatial information. To exploit the spatio-temporal information, a motion-trace volume is collected using motion estimation, which can eliminate unfathomable object motion in the LR frames. In addition, temporal lateral process is employed for volume adjustment to reduce unnecessary temporal features. Finally, ANN is applied to each class to learn the complicated spatio-temporal relationship between LR and HR frames. Simulation results show that the proposed method successfully improves both peak signal-to-noise ratio and perceptual quality.
Keywords: Super-resolution, classification, spatio-temporal information, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805253 Blind Identification Channel Using Higher Order Cumulants with Application to Equalization for MC−CDMA System
Authors: Mohammed Zidane, Said Safi, Mohamed Sabri, Ahmed Boumezzough
Abstract:
In this paper we propose an algorithm based on higher order cumulants, for blind impulse response identification of frequency radio channels and downlink (MC−CDMA) system Equalization. In order to test its efficiency, we have compared with another algorithm proposed in the literature, for that we considered on theoretical channel as the Proakis’s ‘B’ channel and practical frequency selective fading channel, called Broadband Radio Access Network (BRAN C), normalized for (MC−CDMA) systems, excited by non-Gaussian sequences. In the part of (MC−CDMA), we use the Minimum Mean Square Error (MMSE) equalizer after the channel identification to correct the channel’s distortion. The simulation results, in noisy environment and for different signal to noise ratio (SNR), are presented to illustrate the accuracy of the proposed algorithm.
Keywords: Blind identification and equalization, Higher Order Cumulants, (MC−CDMA) system, MMSE equalizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781252 A Novel NIRS Index to Evaluate Brain Activity in Prefrontal Regions While Listening to First and Second Languages for Long Time Periods
Authors: Kensho Takahashi, Ko Watanabe, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara
Abstract:
Near-infrared spectroscopy (NIRS) has been widely used as a non-invasive method to measure brain activity, but it is corrupted by baseline drift noise. Here we present a method to measure regional cerebral blood flow as a derivative of NIRS output. We investigate whether, when listening to languages, blood flow can reasonably localize and represent regional brain activity or not. The prefrontal blood flow distribution pattern when advanced second-language listeners listened to a second language (L2) was most similar to that when listening to their first language (L1) among the patterns of mean and standard deviation. In experiments with 25 healthy subjects, the maximum blood flow was localized to the left BA46 of advanced listeners. The blood flow presented is robust to baseline drift and stably localizes regional brain activity.
Keywords: NIRS, oxy-hemoglobin, baseline drift, blood flow, working memory, BA46, first language, second language.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277251 Mitigation of ISI for Next Generation Wireless Channels in Outdoor Vehicular Environments
Authors: Mohd. Israil, M. Salim Beg
Abstract:
In order to accommodate various multimedia services, next generation wireless networks are characterized by very high transmission bit rates. Thus, in such systems and networks, the received signal is not only limited by noise but - especially with increasing symbols rate often more significantly by the intersymbol interference (ISI) caused by the time dispersive radio channels such as those are used in this work. This paper deals with the study of the performance of detector for high bit rate transmission on some worst case models of frequency selective fading channels for outdoor mobile radio environments. This paper deals with a number of different wireless channels with different power profiles and different number of resolvable paths. All the radio channels generated in this paper are for outdoor vehicular environments with Doppler spread of 100 Hz. A carrier frequency of 1800 MHz is used and all the channels used in this work are such that they are useful for next generation wireless systems. Schemes for mitigation of ISI with adaptive equalizers of different types have been investigated and their performances have been investigated in terms of BER measured as a function of SNR.Keywords: Mobile channels, Rayleigh Fading, Equalization, NMLD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421250 Influence of Inertial Forces of Large Bearings Utilized in Wind Energy Assemblies
Authors: S. Barabas, F. Sarbu, B. Barabas, A. Fota
Abstract:
Main objective of this paper is to establish a link between inertial forces of the bearings used in construction of wind power plant and its behavior. Using bearings with lower inertial forces has the immediate effect of decreasing inertia rotor system, with significant results in increased energy efficiency, due to decreased friction forces between rollers and raceways. The F.E.M. analysis shows the appearance of uniform contact stress at the ends of the rollers, demonstrated the necessity of production of low mass bearings. Favorable results are expected in the economic field, by reducing material consumption and by increasing the durability of bearings. Using low mass bearings with hollow rollers instead of solid rollers has an impact on working temperature, on vibrations and noise which decrease. Implementation of types of hollow rollers of cylindrical tubular type, instead of expensive rollers with logarithmic profile, will bring significant inertial forces decrease with large benefits in behavior of wind power plant.Keywords: Inertial forces, Von Mises stress, hollow rollers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267249 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques
Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas
Abstract:
The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.
Keywords: Artificial neural network, competitive dynamics, logistic regression, text classification, text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 536