Search results for: velocity triple product.
898 On the Mechanism Broadening of Optical Spectrum of a Solvated Electron in Ammonia
Authors: V.K. Mukhomorov
Abstract:
The solvated electron is self-trapped (polaron) owing to strong interaction with the quantum polarization field. If the electron and quantum field are strongly coupled then the collective localized state of the field and quasi-particle is formed. In such a formation the electron motion is rather intricate. On the one hand the electron oscillated within a rather deep polarization potential well and undergoes the optical transitions, and on the other, it moves together with the center of inertia of the system and participates in the thermal random walk. The problem is to separate these motions correctly, rigorously taking into account the conservation laws. This can be conveniently done using Bogolyubov-Tyablikov method of canonical transformation to the collective coordinates. This transformation removes the translational degeneracy and allows one to develop the successive approximation algorithm for the energy and wave function while simultaneously fulfilling the law of conservation of total momentum of the system. The resulting equations determine the electron transitions and depend explicitly on the translational velocity of the quasi-particle as whole. The frequency of optical transition is calculated for the solvated electron in ammonia, and an estimate is made for the thermal-induced spectral bandwidth.Keywords: Canonical transformations, solvated electron, width of the optical spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321897 Rainfall–Runoff Simulation Using WetSpa Model in Golestan Dam Basin, Iran
Authors: M. R. Dahmardeh Ghaleno, M. Nohtani, S. Khaledi
Abstract:
Flood simulation and prediction is one of the most active research areas in surface water management. WetSpa is a distributed, continuous, and physical model with daily or hourly time step that explains precipitation, runoff, and evapotranspiration processes for both simple and complex contexts. This model uses a modified rational method for runoff calculation. In this model, runoff is routed along the flow path using Diffusion-Wave equation which depends on the slope, velocity, and flow route characteristics. Golestan Dam Basin is located in Golestan province in Iran and it is passing over coordinates 55° 16´ 50" to 56° 4´ 25" E and 37° 19´ 39" to 37° 49´ 28"N. The area of the catchment is about 224 km2, and elevations in the catchment range from 414 to 2856 m at the outlet, with average slope of 29.78%. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. Drawing upon Nash-Sutcliffe model efficiency coefficient for calibration periodic model estimated daily hydrographs and maximum flow rate with an accuracy up to 59% and 80.18%, respectively.
Keywords: Watershed simulation, WetSpa, stream flow, flood prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038896 Numerical Simulation on Heat Transfer Enhancement in Channel by Triangular Ribs
Authors: Tuqa Abdulrazzaq, Hussein Togun, M. K. A. Ariffin, S. N. Kazi, NM Adam, S. Masuri
Abstract:
Turbulent heat transfer to fluid flow through channel with triangular ribs of different angles are presented in this paper. Ansys 14 ICEM and Ansys 14 Fluent are used for meshing process and solving Navier stokes equations respectively. In this investigation three angles of triangular ribs with the range of Reynolds number varied from 20000 to 60000 at constant surface temperature are considered. The results show that the Nusselt number increases with the increase of Reynolds number for all cases at constant surface temperature. According to the profile of local Nusselt number on ribs walled of channel, the peak is at the midpoint between the two ribs. The maximum value of average Nusselt number is obtained for triangular ribs of angel 60°and at Reynolds number of 60000 compared to the Nusselt number for the ribs of angel 90° and 45° and at same Reynolds number. The recirculation regions generated by the ribs corresponding to the velocity streamline show the largest recirculation region at triangular ribs of angle 60° which also provides the highest enhancement of heat transfer.
Keywords: Ribs channel, Turbulent flow, Heat transfer enhancement, Recirculation flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3214895 Effects of Stream Tube Numbers on Flow and Sediments using GSTARS-3-A Case Study of the Karkheh Reservoir Dam in Western Dezful
Authors: M. H. Ayazi, M. Qamari, N.Hedayat, A. Rohani
Abstract:
Simulation of the flow and sedimentation process in the reservoir dams can be made by two methods of physical and mathematical modeling. The study area was within a region which ranged from the Jelogir hydrometric station to the Karkheh reservoir dam aimed at investigating the effects of stream tubes on the GSTARS-3 model behavior. The methodologies was to run the model based on 5 stream tubes in order to observe the influence of each scenario on longitudinal profiles, cross-section, flow velocity and bed load sediment size. Results further suggest that the use of two stream tubes or more which result in the semi-two-dimensional model will yield relatively closer results to the observational data than a singular stream tube modeling. Moreover, the results of modeling with three stream tubes shown to yield a relatively close results with the observational data. The overall conclusion of the paper is with applying various stream tubes; it would be possible to yield a significant influence on the modeling behavior Vis-a Vis the bed load sediment size.Keywords: Karkheh, stream tubes, GSTARS-3 Model, Jelogir hydrometric station.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606894 The Composting Process from a Waste Management Method to a Remediation Procedure
Authors: G. Petruzzelli, F. Pedron, M. Grifoni, F. Gorini, I. Rosellini, B. Pezzarossa
Abstract:
Composting is a controlled technology to enhance the natural aerobic process of organic wastes degradation. The resulting product is a humified material that is principally recyclable for agricultural purpose. The composting process is one of the most important tools for waste management, by the European Community legislation. In recent years composting has been increasingly used as a remediation technology to remove biodegradable contaminants from soil, and to modulate heavy metals bioavailability in phytoremediation strategies. An optimization in the recovery of resources from wastes through composting could enhance soil fertility and promote its use in the remediation biotechnologies of contaminated soils.
Keywords: Agriculture, biopile, compost, soil clean-up, waste recycling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293893 Investigation of the GFR2400 Reactivity Control System
Authors: Ján Haščík, Štefan Čerba, Jakub Lüley, Branislav Vrban
Abstract:
The presented paper is related to the design methods and neutronic characterization of the reactivity control system in the large power unit of Generation IV Gas cooled Fast Reactor – GFR2400. The reactor core is based on carbide pin fuel type with the application of refractory metallic liners used to enhance the fission product retention of the SiCcladding. The heterogeneous design optimization of control rod is presented and the results of rods worth and their interferences in a core are evaluated. In addition, the idea of reflector removal as an additive reactivity management option is investigated and briefly described.
Keywords: Control rods design, GFR2400, hot spot, movable reflector, reactivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817892 The Impact of Modeling Method of Moisture Emission from the Swimming Pool on the Accuracy of Numerical Calculations of Air Parameters in Ventilated Natatorium
Authors: Piotr Ciuman, Barbara Lipska
Abstract:
The aim of presented research was to improve numerical predictions of air parameters distribution in the actual natatorium by the selection of calculation formula of mass flux of moisture emitted from the pool. Selected correlation should ensure the best compliance of numerical results with the measurements' results of these parameters in the facility. The numerical model of the natatorium was developed, for which boundary conditions were prepared on the basis of measurements' results carried out in the actual facility. Numerical calculations were carried out with the use of ANSYS CFX software, with six formulas being implemented, which in various ways made the moisture emission dependent on water surface temperature and air parameters in the natatorium. The results of calculations with the use of these formulas were compared for air parameters' distributions: Specific humidity, velocity and temperature in the facility. For the selection of the best formula, numerical results of these parameters in occupied zone were validated by comparison with the measurements' results carried out at selected points of this zone.
Keywords: Experimental validation, indoor swimming pool, moisture emission, natatorium, numerical calculations, CFD, thermal and humidity conditions, ventilation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504891 Wind-tunnel Measurement of the Drag-reducing Effect of Compliant Coating
Authors: Inwon Lee, Victor M. Kulik, Andrey V. Boiko, Ho Hwan Chun
Abstract:
A specially designed flat plate was mounted vertically over the axial line in the wind tunnel of the Aerospace Department of the Pusan National University. The plate is 2 m long, 0.8 m high and 8 cm thick. The measurements were performed in velocity range from 15 to 60 m/s. A sand paper turbulizer was placed close to the plate nose to provide fully developed turbulent boundary layer over the most part of the plate. Strain balances were mounted in the trailing part of the plate to measure the skin friction drag over removable insertions of 0.55×0.25m2 size. A set of the insertions was designed and manufactured: 3mm thick polished metal surface and three compliant surfaces. The compliant surfaces were manufactured of a silicone rubber Silastic® S2 (Dow Corning company). To modify the viscoelastic properties of the rubber, its composition was varied: 90% of the rubber + 10% catalyst (standard), 92.5% + 7.5% (weak), 85% + 15% (strong). Modulus of elasticity and the loss tangent were measured accurately for these materials in the frequency range from 40 Hz to 3 KHz using the unique proposed technique.Keywords: boundary layer, compliant coating, drag reduction, hot wire, wind tunnel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691890 RussiAnglicized© Slang and Translation: A Clockwork Orange Tick-Tock
Authors: Mahnaz Movahedi
Abstract:
Slang argot plays a fundamental role in Burgess’ teenage special sociolect in his novel A Clockwork Orange, offered a wide variety of instances to be analyzed. Consequently, translation of the notions and keeping the effect would be of great importance. Burgess named his interesting RussiAnglicized©-slang word as Nadsat, stands for –teen, mostly derived from Russian and Cockney rhyming. The paper discusses the lexical origin and Persian translation of his weird slang words illustrating a teenage-gang argot. The product depicts creativity but mistranslation that leads to the loss of slang meaning load and atmosphere in the target text.
Keywords: Argot, mistranslation, slang, sociolect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2496889 Secure and Efficient Transmission of Aggregated Data for Mobile Wireless Sensor Networks
Authors: A. Krishna Veni, R.Geetha
Abstract:
Wireless Sensor Networks (WSNs) are suitable for many scenarios in the real world. The retrieval of data is made efficient by the data aggregation techniques. Many techniques for the data aggregation are offered and most of the existing schemes are not energy efficient and secure. However, the existing techniques use the traditional clustering approach where there is a delay during the packet transmission since there is no proper scheduling. The presented system uses the Velocity Energy-efficient and Link-aware Cluster-Tree (VELCT) scheme in which there is a Data Collection Tree (DCT) which improves the lifetime of the network. The VELCT scheme and the construction of DCT reduce the delay and traffic. The network lifetime can be increased by avoiding the frequent change in cluster topology. Secure and Efficient Transmission of Aggregated data (SETA) improves the security of the data transmission via the trust value of the nodes prior the aggregation of data. Since SETA considers the data only from the trustworthy nodes for aggregation, it is more secure in transmitting the data thereby improving the accuracy of aggregated data.
Keywords: Aggregation, lifetime, network security, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1223888 Utilizing Dutch Auction in an Agent-based Model E-commerce System
Authors: Costin Badica, Maria Ganzha, Maciej Gawinecki, Pawel Kobzdej, Marcin Paprzycki
Abstract:
Recently, we have presented an initial implementation of a model agent-based e-commerce system, which utilized a simple price negotiation mechanism–English Auction. In this note we discuss how a Dutch Auction involving multiple units of a product can be included in our system. We present UML diagrams of agents involved in price negotiations and briefly discuss rule-based mechanism exemplifying Dutch Auction.Keywords: e-commerce, rule-based price negotiation mechanism, Dutch Auction, agent system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747887 Design of a CMOS Differential Operational Transresistance Amplifier in 90 nm CMOS Technology
Authors: Hafiz Muhammad Obaid, Umais Tayyab, Shabbir Majeed Ch.
Abstract:
In this paper, a CMOS differential operational transresistance amplifier (OTRA) is presented. The amplifier is designed and implemented in a standard umc90-nm CMOS technology. The differential OTRA provides wider bandwidth at high gain. It also shows much better rise and fall time and exhibits a very good input current dynamic range of 50 to 50 μA. The OTRA can be used in many analog VLSI applications. The presented amplifier has high gain bandwidth product of 617.6 THz Ω. The total power dissipation of the presented amplifier is also very low and it is 0.21 mW.
Keywords: CMOS, differential, operational transresistance amplifier, OTRA, 90 nm, VLSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1143886 A New Computational Tool for Noise Prediction of Rotating Surfaces (FACT)
Authors: Ana Vieira, Fernando Lau, João Pedro Mortágua, Luís Cruz, Rui Santos
Abstract:
The air transport impact on environment is more than ever a limitative obstacle to the aeronautical industry continuous growth. Over the last decades, considerable effort has been carried out in order to obtain quieter aircraft solutions, whether by changing the original design or investigating more silent maneuvers. The noise propagated by rotating surfaces is one of the most important sources of annoyance, being present in most aerial vehicles. Bearing this is mind, CEIIA developed a new computational chain for noise prediction with in-house software tools to obtain solutions in relatively short time without using excessive computer resources. This work is based on the new acoustic tool, which aims to predict the rotor noise generated during steady and maneuvering flight, making use of the flexibility of the C language and the advantages of GPU programming in terms of velocity. The acoustic tool is based in the Formulation 1A of Farassat, capable of predicting two important types of noise: the loading and thickness noise. The present work describes the most important features of the acoustic tool, presenting its most relevant results and framework analyses for helicopters and UAV quadrotors.
Keywords: Rotor noise, acoustic tool, GPU Programming, UAV noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062885 The Marketing Mix in Small Sized Hotels: A Case of Pattaya, Thailand
Authors: Anyapak Prapannetivuth
Abstract:
The purpose of this research is to investigate the marketing mix that is perceived to be important for the small sized hotels in Pattaya. This research provides insights through a review of the marketing activities performed by the small sized hotels. Nine owners & marketing manager of small sized hotels and resorts, all local Chonburi people, were selected for an in-depth interview. The research suggests that seven marketing mixes (e.g. Product, Price, Place, Promotion, People, Physical Evidence and Process) were commonly used by these hotels, however, three types – People, Price and Physical Evidence were considered most important by the owners.Keywords: Marketing Mix, Marketing Tools, and Small Sized Hotels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3495884 On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation
Authors: Gyo Woo Lee, Man Young Kim
Abstract:
A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time.
Keywords: Reheating Furnace, Steel Slab, Radiative Heat Transfer, WSGGM, Emissivity, Residence Time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4182883 Global Kinetics of Direct Dimethyl Ether Synthesis Process from Syngas in Slurry Reactor over a Novel Cu-Zn-Al-Zr Slurry Catalyst
Authors: Zhen Chen, Haitao Zhang, Weiyong Ying, Dingye Fang
Abstract:
The direct synthesis process of dimethyl ether (DME) from syngas in slurry reactors is considered to be promising because of its advantages in caloric transfer. In this paper, the influences of operating conditions (temperature, pressure and weight hourly space velocity) on the conversion of CO, selectivity of DME and methanol were studied in a stirred autoclave over Cu-Zn-Al-Zr slurry catalyst, which is far more suitable to liquid phase dimethyl ether synthesis process than bifunctional catalyst commercially. A Langmuir- Hinshelwood mechanism type global kinetics model for liquid phase DME direct synthesis based on methanol synthesis models and a methanol dehydration model has been investigated by fitting our experimental data. The model parameters were estimated with MATLAB program based on general Genetic Algorithms and Levenberg-Marquardt method, which is suitably fitting experimental data and its reliability was verified by statistical test and residual error analysis.Keywords: alcohol/ether fuel, Cu-Zn-Al-Zr slurry catalyst, global kinetics, slurry reactor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5530882 Reflection of Plane Waves at Free Surface of an Initially Stressed Dissipative Medium
Authors: M. M. Selim
Abstract:
The paper discuses the effect of initial stresses on the reflection coefficients of plane waves in a dissipative medium. Basic governing equations are formulated in context of Biot's incremental deformation theory. These governing equations are solved analytically to obtain the dimensional phase velocities of plane waves propagating in plane of symmetry. Closed-form expressions for the reflection coefficients of P and SV waves- incident at the free surface of an initially stressed dissipative medium are obtained. Numerical computations, using these expressions, are carried out for a particular model. Computations made with the results predicted in presence and absence of the initial stresses and the results have been shown graphically. The study shows that the presence of compressive initial stresses increases the velocity of longitudinal wave (P-wave) but diminishes that of transverse wave (SV-wave). Also the numerical results presented indicate that initial stresses and dissipation might affect the reflection coefficients significantly.
Keywords: Dissipation medium, initial stress, longitudinal waves, reflection coefficients, reflection of plane waves, transverse waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1065881 A Numerical Framework to Investigate Intake Aerodynamics Behavior in Icing Conditions
Authors: Ali Mirmohammadi, Arash Taheri, Meysam Mohammadi-Amin
Abstract:
One of the major parts of a jet engine is air intake, which provides proper and required amount of air for the engine to operate. There are several aerodynamic parameters which should be considered in design, such as distortion, pressure recovery, etc. In this research, the effects of lip ice accretion on pitot intake performance are investigated. For ice accretion phenomenon, two supervised multilayer neural networks (ANN) are designed, one for ice shape prediction and another one for ice roughness estimation based on experimental data. The Fourier coefficients of transformed ice shape and parameters include velocity, liquid water content (LWC), median volumetric diameter (MVD), spray time and temperature are used in neural network training. Then, the subsonic intake flow field is simulated numerically using 2D Navier-Stokes equations and Finite Volume approach with Hybrid mesh includes structured and unstructured meshes. The results are obtained in different angles of attack and the variations of intake aerodynamic parameters due to icing phenomenon are discussed. The results show noticeable effects of ice accretion phenomenon on intake behavior.Keywords: Artificial Neural Network, Ice Accretion, IntakeAerodynamics, Design Parameters, Finite Volume Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208880 Gyrotactic Microorganisms Mixed Convection Nanofluid Flow along an Isothermal Vertical Wedge in Porous Media
Authors: A. Mahdy
Abstract:
The main objective of the present article is to explore the state of mixed convection nanofluid flow of gyrotactic microorganisms from an isothermal vertical wedge in porous medium. In our pioneering investigation, the easiest possible boundary conditions have been employed, in other words when the temperature, the nanofluid and motile microorganisms’ density have been considered to be constant on the wedge wall. Adding motile microorganisms to the nanofluid tends to enhance microscale mixing, mass transfer, and improve the nanofluid stability. Upon the Oberbeck–Boussinesq approximation and non-similarity transmutation, the paradigm of nonlinear equations are obtained and tackled numerically by using the R.K. Gill and shooting methods to obtain the dimensionless velocity, temperature, nanoparticle concentration and motile microorganisms density together with the reduced Sherwood, Nusselt, and numbers. Bioconvection parameters have strong effect upon the motile microorganism, heat, and volume fraction of nanoparticle transport rates. In the case when bioconvection is neglected, the obtained computations were found in very good agreement with the previous published data.
Keywords: Bioconvection, wedge, gyrotactic microorganisms, porous media, nanofluid, mixed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546879 The Application of Rhizophora Wood to Design: A Walking Stick for Elderly
Authors: Noppadon Sangwalpetch
Abstract:
The objective of this research is to use Rhizophora wood to design a walking stick for elderly. The research was conducted by studying the behavior and the type of walking sticks used by 70 elderly aged between 60-80 years in Pragnamdaeng Sub-District, Samudsongkram Province. Questionnaires were used to collect data which were calculated to find percentage, mean, and standard deviation. The results are as follows: 1) most elderly use walking sticks due to the Osteoarthritis of the knees. 2) Most elderly need to use walking sticks because the walking sticks help to balance their positioning and prevent from stumble. 3) Most elderly agree that Rhizophora wood is suitable to make a walking stick because of its strength and toughness. 4) The design of the walking stick should be fine and practical with comfortable handle and the tip of the stick must not be slippery.
Keywords: Elderly, Product design, Rhizophora wood, Walking Stick.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052878 Analysis of Foaming Flow Instabilities for Dynamic Liquid Saturation in Trickle Bed Reactor
Authors: Vijay Sodhi, Ajay Bansal
Abstract:
The effects of different parameters on the hydrodynamics of trickle bed reactors were discussed for Newtonian and non-Newtonian foaming systems. The varying parameters are varying liquid velocities, gas flow velocities and surface tension. The range for gas velocity is particularly large, thanks to the use of dense gas to simulate very high pressure conditions. This data bank has been used to compare the prediction accuracy of the different trendlines and transition points from the literature. More than 240 experimental points for the trickle flow (GCF) and foaming pulsing flow (PF/FPF) regime were obtained for present study. Hydrodynamic characteristics involving dynamic liquid saturation significantly influenced by gas and liquid flow rates. For 15 and 30 ppm air-aqueous surfactant solutions, dynamic liquid saturation decreases with higher liquid and gas flow rates considerably in high interaction regime. With decrease in surface tension i.e. for 45 and 60 ppm air-aqueous surfactant systems, effect was more pronounced with decreases dynamic liquid saturation very sharply during regime transition significantly at both low liquid and gas flow rates.Keywords: Trickle Bed Reactor, Dynamic Liquid Saturation, Foaming, Flow Regime Transition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841877 Numerical Study of Laminar Mixed Convection Heat Transfer of a Nanofluid in a Concentric Annular Tube Using Two-Phase Mixture Model
Authors: Roghayyeh Motallebzadeh, Shahin Hajizadeh, Mohammad Reza Ghasemi
Abstract:
Laminar mixed Convection heat transfer of a nanofluid with prescribed constant heat flux on the inner wall of horizontal annular tube has been studied numerically based on two-phase mixture model in different Rayleigh Numbers and Azimuth angles. Effects of applying of different volume fractions of Al2O3 nanoparticles in water as a base fluid on hydrodynamic and thermal behaviors of the fluid flow such as axial velocity, secondary flow, temperature, heat transfer coefficient and friction coefficient at the inner and outer wall region, has been investigated. Conservation equations in elliptical form has been utilized and solved in three dimensions for a steady flow. It is observed that, there is a good agreement between results in this work and previously published experimental and numerical works on mixed convection in horizontal annulus. These particles cause to increase convection heat transfer coefficient of the fluid, meanwhile there is no considerable effect on friction coefficient.
Keywords: Buoyancy force, Laminar mixed convection, Mixture model, Nanofluid, Two-phase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2834876 Study of Unsteady Swirling Flow in a Hydrodynamic Vortex Chamber
Authors: Sergey I. Shtork, Aleksey P. Vinokurov, Sergey V. Alekseenko
Abstract:
The paper reports on the results of experimental and numerical study of nonstationary swirling flow in an isothermal model of vortex burner. It has been identified that main source of the instability is related to a precessing vortex core (PVC) phenomenon. The PVC induced flow pulsation characteristics such as precession frequency and its variation as a function of flowrate and swirl number have been explored making use of acoustic probes. Additionally pressure transducers were used to measure the pressure drops on the working chamber and across the vortex flow. The experiments have been included also the mean velocity measurements making use of a laser-Doppler anemometry. The features of instantaneous flowfield generated by the PVC were analyzed employing a commercial CFD code (Star-CCM+) based on Detached Eddy Simulation (DES) approach. Validity of the numerical code has been checked by comparison calculated flowfield data with the obtained experimental results. It has been confirmed particularly that the CFD code applied correctly reproduces the flow features.Keywords: Acoustic probes, detached eddy simulation (DES), laser-Doppler anemometry (LDA), precessing vortex core (PVC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2279875 Analysis of Nonlinear Pulse Propagation Characteristics in Semiconductor Optical Amplifier for Different Input Pulse Shapes
Authors: Suchi Barua, Narottam Das, Sven Nordholm, Mohammad Razaghi
Abstract:
This paper presents nonlinear pulse propagation characteristics for different input optical pulse shapes with various input pulse energy levels in semiconductor optical amplifiers. For simulation of nonlinear pulse propagation, finite-difference beam propagation method is used to solve the nonlinear Schrödinger equation. In this equation, gain spectrum dynamics, gain saturation are taken into account which depends on carrier depletion, carrier heating, spectral-hole burning, group velocity dispersion, self-phase modulation and two photon absorption. From this analysis, we obtained the output waveforms and spectra for different input pulse shapes as well as for different input energies. It shows clearly that the peak position of the output waveforms are shifted toward the leading edge which due to the gain saturation of the SOA for higher input pulse energies. We also analyzed and compared the normalized difference of full-width at half maximum for different input pulse shapes in the SOA.
Keywords: Finite-difference beam propagation method, pulse shape, pulse propagation, semiconductor optical amplifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375874 Conjugate Heat transfer over an Unsteady Stretching Sheet Mixed Convection with Magnetic Effect
Authors: Kai-Long Hsiao
Abstract:
A conjugate heat transfer for steady two-dimensional mixed convection with magnetic hydrodynamic (MHD) flow of an incompressible quiescent fluid over an unsteady thermal forming stretching sheet has been studied. A parameter, M, which is used to represent the dominance of the magnetic effect has been presented in governing equations. The similar transformation and an implicit finite-difference method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, the wall unknown values of f''(0) and '(θ (0) for calculating the heat transfer of the similar boundary-layer flow are carried out as functions of the unsteadiness parameter (S), the Prandtl number (Pr), the space-dependent parameter (A) and temperature-dependent parameter (B) for heat source/sink and the magnetic parameter (M). The effects of these parameters have also discussed. At the results, it will produce greater heat transfer effect with a larger Pr and M, S, A, B will reduce heat transfer effects. At last, conjugate heat transfer for the free convection with a larger G has a good heat transfer effect better than a smaller G=0.Keywords: Finite-difference method, Conjugate heat transfer, Unsteady Stretching Sheet, MHD, Mixed convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593873 Bright–Dark Pulses in Nonlinear Polarisation Rotation Based Erbium-Doped Fiber Laser
Authors: R. Z. R. R. Rosdin, N. M. Ali, S. W. Harun, H. Arof
Abstract:
We have experimentally demonstrated bright-dark pulses in a nonlinear polarization rotation (NPR) based mode-locked Erbium-doped fiber laser (EDFL) with a long cavity configuration. Bright–dark pulses could be achieved when the laser works in the passively mode-locking regime and the net group velocity dispersion is quite anomalous. The EDFL starts to generate a bright pulse train with degenerated dark pulse at the mode-locking threshold pump power of 35.09 mW by manipulating the polarization states of the laser oscillation modes using a polarization controller (PC). A split bright–dark pulse is generated when further increasing the pump power up to 37.95 mW. Stable bright pulses with no obvious evidence of a dark pulse can also be generated when further adjusting PC and increasing the pump power up to 52.19 mW. At higher pump power of 54.96 mW, a new form of bright-dark pulse emission was successfully identified with the repetition rate of 29 kHz. The bright and dark pulses have a duration of 795.5 ns and 640 ns, respectively.
Keywords: Erbium-doped fiber laser, Nonlinear polarization rotation, bright-dark pulse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2489872 Holografic Interferometry used for Measurement of Temperature Field in Fluid
Authors: Vít Lédl, Tomáš Vít, Pavel Psota, Roman Doleček
Abstract:
The presented paper shows the possibility of using holographic interferometry for measurement of temperature field in moving fluids. There are a few methods for identification of velocity fields in fluids, such us LDA, PIV, hot wire anemometry. It is very difficult to measure the temperature field in moving fluids. One of the often used methods is Constant Current Anemometry (CCA), which is a point temperature measurement method. Data are possibly acquired at frequencies up to 1000Hz. This frequency should be limiting factor for using of CCA in fluid when fast change of temperature occurs. This shortcoming of CCA measurements should be overcome by using of optical methods such as holographic interferometry. It is necessary to employ a special holographic setup with double sensitivity instead of the commonly used Mach-Zehnder type of holographic interferometer in order to attain the parameters sufficient for the studied case. This setup is not light efficient like the Mach-Zehnder type but has double sensitivity. The special technique of acquiring and phase averaging of results from holographic interferometry is also presented. The results from the holographic interferometry experiments will be compared with the temperature field achieved by methods CCA method.Keywords: Holographic interferometry, pulsatile flow, temperature measurement, hot-wire anemometry
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603871 Economic Factorial Analysis of CO2 Emissions: The Divisia Index with Interconnected Factors Approach
Authors: Alexander Y. Vaninsky
Abstract:
This paper presents a method of economic factorial analysis of the CO2 emissions based on the extension of the Divisia index to interconnected factors. This approach, contrary to the Kaya identity, considers three main factors of the CO2 emissions: gross domestic product, energy consumption, and population - as equally important, and allows for accounting of all of them simultaneously. The three factors are included into analysis together with their carbon intensities that allows for obtaining a comprehensive picture of the change in the CO2 emissions. A computer program in R-language that is available for free download serves automation of the calculations. A case study of the U.S. carbon dioxide emissions is used as an example.
Keywords: CO2 emissions, Economic analysis, Factorial analysis, Divisia index, Interconnected factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2572870 Material Flow Modeling in Friction Stir Welding of AA6061-T6 Alloy and Study of the Effect of Process Parameters
Authors: B. Saha Roy, T. Medhi, S. C. Saha
Abstract:
To understand the friction stir welding process, it is very important to know the nature of the material flow in and around the tool. The process is a combination of both thermal as well as mechanical work i.e. it is a coupled thermo-mechanical process. Numerical simulations are very much essential in order to obtain a complete knowledge of the process as well as the physics underlying it. In the present work a model based approach is adopted in order to study material flow. A thermo-mechanical based CFD model is developed using a Finite Element package, Comsol Multiphysics. The fluid flow analysis is done. The model simultaneously predicts shear strain fields, shear strain rates and shear stress over the entire workpiece for the given conditions. The flow fields generated by the streamline plot give an idea of the material flow. The variation of dynamic viscosity, velocity field and shear strain fields with various welding parameters is studied. Finally the result obtained from the above mentioned conditions is discussed elaborately and concluded.Keywords: AA6061-T6, friction stir welding, material flow, CFD modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586869 Layers of Commerce: Modelling the Onion Trade of Dubai
Authors: Priti Bajpai, Mohammed Shibil
Abstract:
This paper utilizes a comparative case study design to examine a regional onion market. The particular case of onion markets is used to understand perishable product supply chains. The site for the study is Dubai, United Arab Emirates. Results from a six-month field study are outlined. In particular, the findings suggest that firms should examine adding additional destinations to their supply chain. Further, we argue that utilizing Dubai as a supply chain hub is in certain cases counterproductive. Implications for food supply chains and regional trade are discussed.Keywords: Supply chains, Food markets, Onion trade, Field study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213