Search results for: active learning.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2896

Search results for: active learning.

1696 An Active Solar Energy System to Supply Heating Demands of the Teaching Staff Dormitory of Islamic Azad University Ramhormoz Branch

Authors: M. Talebzadegan, S. Bina, I. Riazi

Abstract:

The purpose of this paper is to present an active solar energy system to supply heating demands of the teaching staff dormitory of the Islamic Azad University of Ramhormoz. The design takes into account the solar radiations and climate data of Ramhormoz town and is based on the daily warm water consumption for health demands of 450 residents of the dormitory, which is equal to 27000 lit of 50-C° water, and building heating requirements with an area of 3500 m² well-protected by heatproof materials. First, heating demands of the building were calculated, then a hybrid system made up of solar and fossil energies was developed and finally, the design was economically evaluated. Since there is only roof space for using 110 flat solar water heaters, the calculations were made to hybridize solar water heating system with heat pumping system in which solar energy contributes 67% of the heat generated. According to calculations, the net present value “N.P.V.” of revenue stream exceeds “N.P.V.” of cash paid off in this project over three years, which makes economically quite promising. The return of investment and payback period of the project is 4 years. Also, the internal rate of return (IRR) of the project was 25%, which exceeds bank rate of interest in Iran and emphasizes the desirability of the project.

Keywords: Solar energy, heat demand, renewable, pollution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 688
1695 Data Analysis Techniques for Predictive Maintenance on Fleet of Heavy-Duty Vehicles

Authors: Antonis Sideris, Elias Chlis Kalogeropoulos, Konstantia Moirogiorgou

Abstract:

The present study proposes a methodology for the efficient daily management of fleet vehicles and construction machinery. The application covers the area of remote monitoring of heavy-duty vehicles operation parameters, where specific sensor data are stored and examined in order to provide information about the vehicle’s health. The vehicle diagnostics allow the user to inspect whether maintenance tasks need to be performed before a fault occurs. A properly designed machine learning model is proposed for the detection of two different types of faults through classification. Cross validation is used and the accuracy of the trained model is checked with the confusion matrix.

Keywords: Fault detection, feature selection, machine learning, predictive maintenance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
1694 Endeavoring Innovation via Research and Development Management: A Case of Iranian Industrial Sector

Authors: Reihaneh Montazeri Shatouri, Rosmini Omar, Wan Khairuzzaman Wan Ismail

Abstract:

This study aims at investigating factors in research and development (R&D) growth and exploring the role of R&D management in enhancing social innovation and productivity improvement in Iran-s industrial sector. It basically explores the common types of R&D activities and the industries which benefited the most from active R&D units in Iran. The researchers generated qualitative analyses obtained from primary and secondary data. The primary data have been retrieved through interviews with five key players (Managing Director, Internal Manager, General Manager, Executive Manager, and Project Manager) in the industrial sector. The secondary data acquired from an investigation on Mazandaran, a province of northern Iran. The findings highlight Iran-s focuses of R & D on cost reduction and upgrading productivity. Industries that have benefited the most from active R&D units are metallic, machinery and equipment design, and automotive. We rank order the primary effects of R&D on productivity improvement as follows, industry improvement, economic growth, using professional human resources, generating productivity and creativity culture, creating a competitive and innovative environment, and increasing people-s knowledge. Generally, low budget dedication and insufficient supply of highly skilled scientists and engineers are two important obstacles for R&D in Iran. Whereas, R&D has resulted in improvement in Iranian society, transfer of contemporary knowledge into the international market is still lacking.

Keywords: Productivity, R&D, Transfer of Knowledge

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
1693 Applying the Extreme-Based Teaching Model in Post-Secondary Online Classroom Setting: A Field Experiment

Authors: Leon Pan

Abstract:

The first programming course within post-secondary education has long been recognized as a challenging endeavor for both educators and students alike. Historically, these courses have exhibited high failure rates and a notable number of dropouts. Instructors often lament students' lack of effort on their coursework, and students often express frustration that the teaching methods employed are not effective. Drawing inspiration from the successful principles of Extreme Programming, this study introduces an approach—the Extremes-based teaching model—aimed at enhancing the teaching of introductory programming courses. To empirically determine the effectiveness of the model, a comparison was made between a section taught using the extreme-based model and another utilizing traditional teaching methods. Notably, the extreme-based teaching class required students to work collaboratively on projects, while also demanding continuous assessment and performance enhancement within groups. This paper details the application of the extreme-based model within the post-secondary online classroom context and presents the compelling results that emphasize its effectiveness in advancing the teaching and learning experiences. The extreme-based model led to a significant increase of 13.46 points in the weighted total average and a commendable 10% reduction in the failure rate.

Keywords: Extreme-based teaching model, innovative pedagogical methods, project-based learning, team-based learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 130
1692 Learning an Overcomplete Dictionary using a Cauchy Mixture Model for Sparse Decay

Authors: E. S. Gower, M. O. J. Hawksford

Abstract:

An algorithm for learning an overcomplete dictionary using a Cauchy mixture model for sparse decomposition of an underdetermined mixing system is introduced. The mixture density function is derived from a ratio sample of the observed mixture signals where 1) there are at least two but not necessarily more mixture signals observed, 2) the source signals are statistically independent and 3) the sources are sparse. The basis vectors of the dictionary are learned via the optimization of the location parameters of the Cauchy mixture components, which is shown to be more accurate and robust than the conventional data mining methods usually employed for this task. Using a well known sparse decomposition algorithm, we extract three speech signals from two mixtures based on the estimated dictionary. Further tests with additive Gaussian noise are used to demonstrate the proposed algorithm-s robustness to outliers.

Keywords: expectation-maximization, Pitman estimator, sparsedecomposition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
1691 Effective Online Staff Training: Is This Possible?

Authors: C. Rogerson, E. Scott

Abstract:

The purpose of this paper is to consider the introduction of online courses to replace the current classroom-based staff training. The current training is practical, and must be completed before access to the financial computer system is authorized. The long term objective is to measure the efficacy, effectiveness and efficiency of the training, and to establish whether a transfer of knowledge back to the workplace has occurred. This paper begins with an overview explaining the importance of staff training in an evolving, competitive business environment and defines the problem facing this particular organization. A summary of the literature review is followed by a brief discussion of the research methodology and objective. The implementation of the alpha version of the online course is then described. This paper may be of interest to those seeking insights into, or new theory regarding, practical interventions of online learning in the real world.

Keywords: Computer-based courses, e-learning, online training, workplace training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
1690 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow

Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat

Abstract:

Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.

Keywords: Affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, Signal Detection Theory, student engagement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1262
1689 Discovering the Dimension of Abstractness: Structure-Based Model that Learns New Categories and Categorizes on Different Levels of Abstraction

Authors: Georgi I. Petkov, Ivan I. Vankov, Yolina A. Petrova

Abstract:

A structure-based model of category learning and categorization at different levels of abstraction is presented. The model compares different structures and expresses their similarity implicitly in the forms of mappings. Based on this similarity, the model can categorize different targets either as members of categories that it already has or creates new categories. The model is novel using two threshold parameters to evaluate the structural correspondence. If the similarity between two structures exceeds the higher threshold, a new sub-ordinate category is created. Vice versa, if the similarity does not exceed the higher threshold but does the lower one, the model creates a new category on higher level of abstraction.

Keywords: Analogy-making, categorization, learning of categories, abstraction, hierarchical structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
1688 A Case Study to Observe How Students’ Perception of the Possibility of Success Impacts Their Performance in Summative Exams

Authors: Rochelle Elva

Abstract:

Faculty in Higher Education today are faced with the challenge of convincing their students of the importance of the mastery of skills through learning. This is because most students often have a single motivation -to get high grades. If it appears that this goal will not be met, they lose their motivation and their academic efforts wane. This is true even for students in the competitive fields of STEM, including Computer Science majors. As educators, we have to understand our students and leverage what motivates them, to achieve our learning outcomes. This paper presents a case study that utilizes cognitive psychology’s Expectancy-Value Theory and Motivation Theory, to investigate the effect of sustained expectancy for success on students’ learning outcomes. In our case study, we explore how students’ motivation and persistence in their academic efforts are impacted by providing them with an unexpected path to success, which continues to the end of the semester. The approach was tested in an undergraduate computer science course with n = 56. The results of the study indicate that when presented with the real possibility of success, despite existing low grades, both low and high-scoring students persisted in their efforts to improve their performance. Their final grades were on average one place higher on the +/-letter grade scale, with some students scoring as high as three places above their predicted grade.

Keywords: Expectancy for success and persistence, motivation and performance, computer science education, motivation and performance in computer science.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 298
1687 Multi-Factor Optimization Method through Machine Learning in Building Envelope Design: Focusing on Perforated Metal Façade

Authors: Jinwooung Kim, Jae-Hwan Jung, Seong-Jun Kim, Sung-Ah Kim

Abstract:

Because the building envelope has a significant impact on the operation and maintenance stage of the building, designing the facade considering the performance can improve the performance of the building and lower the maintenance cost of the building. In general, however, optimizing two or more performance factors confronts the limits of time and computational tools. The optimization phase typically repeats infinitely until a series of processes that generate alternatives and analyze the generated alternatives achieve the desired performance. In particular, as complex geometry or precision increases, computational resources and time are prohibitive to find the required performance, so an optimization methodology is needed to deal with this. Instead of directly analyzing all the alternatives in the optimization process, applying experimental techniques (heuristic method) learned through experimentation and experience can reduce resource waste. This study proposes and verifies a method to optimize the double envelope of a building composed of a perforated panel using machine learning to the design geometry and quantitative performance. The proposed method is to achieve the required performance with fewer resources by supplementing the existing method which cannot calculate the complex shape of the perforated panel.

Keywords: Building envelope, machine learning, perforated metal, multi-factor optimization, façade.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1224
1686 Malaysia Folk Literature in Early Childhood Education

Authors: F. P. Chew, Z. Ishak

Abstract:

Malay Folk Literature in early childhood education served as an important agent in child development that involved emotional, thinking and language aspects. Up to this moment not much research has been carried out in Malaysia particularly in the teaching and learning aspects nor has there been an effort to publish “big books." Hence this article will discuss the stance taken by university undergraduate students, teachers and parents in evaluating Malay Folk Literature in early childhood education to be used as big books. The data collated and analyzed were taken from 646 respondents comprising 347 undergraduates and 299 teachers. Results of the study indicated that Malay Folk Literature can be absorbed into teaching and learning for early childhood with a mean of 4.25 while it can be in big books with a mean of 4.14. Meanwhile the highest mean value required for placing Malay Folk Literature genre as big books in early childhood education rests on exemplary stories for undergraduates with mean of 4.47; animal fables for teachers with a mean of 4.38. The lowest mean value of 3.57 is given to lipurlara stories. The most popular Malay Folk Literature found suitable for early children is Sang Kancil and the Crocodile, followed by Bawang Putih Bawang Merah. Pak Padir, Legends of Mahsuri, Origin of Malacca, and Origin of Rainbow are among the popular stories as well. Overall the undergraduates show a positive attitude toward all the items compared to teachers. The t-test analysis has revealed a non significant relationship between the undergraduate students and teachers with all the items for the teaching and learning of Malay Folk Literature.

Keywords: Big Book, Early Childhood Education, Malay FolkLiterature

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4303
1685 To Design Holistic Health Service Systems on the Internet

Authors: Åsa Smedberg

Abstract:

There are different kinds of online systems on the Internet for people who need support and develop new knowledge. Online communities and Ask the Expert systems are two such systems. In the health care area, the number of users of these systems has increased at a rapid pace. Interactions with medical trained experts take place online, and people with concerns about similar health problems come together to share experiences and advice. The systems are also used as storages and browsed for health information. Over the years, studies have been conducted of the usage of the different systems. However, in what ways the systems can be used together to enhance learning has not been explored. This paper presents results from a study of online health-communities and an Ask the Expert system for people who suffer from overweight. Differences and similarities in regards to posted issues and replies are discussed, and suggestions for a new holistic design of the two systems are presented.

Keywords: Learning, Ask the Expert, online community, healthcare, holistic, overweight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
1684 Echo State Networks for Arabic Phoneme Recognition

Authors: Nadia Hmad, Tony Allen

Abstract:

This paper presents an ESN-based Arabic phoneme recognition system trained with supervised, forced and combined supervised/forced supervised learning algorithms. Mel-Frequency Cepstrum Coefficients (MFCCs) and Linear Predictive Code (LPC) techniques are used and compared as the input feature extraction technique. The system is evaluated using 6 speakers from the King Abdulaziz Arabic Phonetics Database (KAPD) for Saudi Arabia dialectic and 34 speakers from the Center for Spoken Language Understanding (CSLU2002) database of speakers with different dialectics from 12 Arabic countries. Results for the KAPD and CSLU2002 Arabic databases show phoneme recognition performances of 72.31% and 38.20% respectively.

Keywords: Arabic phonemes recognition, echo state networks (ESNs), neural networks (NNs), supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2409
1683 The Techno-Pedagogical Pivot: Designing and Implementing a Digital Writing Tool

Authors: Justin D. Olmanson, Katrina S. Kennett, Bill Cope

Abstract:

In educational technology, the idea of innovation is usually tethered to contemporary technological inventions and emerging technologies. Yet, using long-known technologies in ways that are pedagogically or experimentially new can reposition them as emerging educational technologies. In this study we explore how a subtle pivot in pedagogical thinking led to an innovative education technology. We describe the design and implementation of an online writing tool that scaffolds students in the evaluation of their own informational texts. We think about how pathways to innovation can emerge from pivots, namely a leveraging of longstanding practices in novel ways has the potential to cultivate new opportunities for learning. We first unpack Infowriter in terms of its design, then we describe some results of a study in which we implemented an intervention which included our designed application.

Keywords: Design, innovation, learning, technology, writing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
1682 Input Data Balancing in a Neural Network PM-10 Forecasting System

Authors: Suk-Hyun Yu, Heeyong Kwon

Abstract:

Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.

Keywords: AI, air quality prediction, neural networks, pattern recognition, PM-10.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826
1681 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite

Authors: F. Lazzeri, I. Reiter

Abstract:

Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.

Keywords: Time-series, features engineering methods for forecasting, energy demand forecasting, Azure machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
1680 Artificial Neural Networks for Cognitive Radio Network: A Survey

Authors: Vishnu Pratap Singh Kirar

Abstract:

The main aim of a communication system is to achieve maximum performance. In Cognitive Radio any user or transceiver has ability to sense best suitable channel, while channel is not in use. It means an unlicensed user can share the spectrum of a licensed user without any interference. Though, the spectrum sensing consumes a large amount of energy and it can reduce by applying various artificial intelligent methods for determining proper spectrum holes. It also increases the efficiency of Cognitive Radio Network (CRN). In this survey paper we discuss the use of different learning models and implementation of Artificial Neural Network (ANN) to increase the learning and decision making capacity of CRN without affecting bandwidth, cost and signal rate.

Keywords: Artificial Neural Network, Cognitive Radio, Cognitive Radio Networks, Back Propagation, Spectrum Sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4106
1679 Embedding a Large Amount of Information Using High Secure Neural Based Steganography Algorithm

Authors: Nameer N. EL-Emam

Abstract:

In this paper, we construct and implement a new Steganography algorithm based on learning system to hide a large amount of information into color BMP image. We have used adaptive image filtering and adaptive non-uniform image segmentation with bits replacement on the appropriate pixels. These pixels are selected randomly rather than sequentially by using new concept defined by main cases with sub cases for each byte in one pixel. According to the steps of design, we have been concluded 16 main cases with their sub cases that covere all aspects of the input information into color bitmap image. High security layers have been proposed through four layers of security to make it difficult to break the encryption of the input information and confuse steganalysis too. Learning system has been introduces at the fourth layer of security through neural network. This layer is used to increase the difficulties of the statistical attacks. Our results against statistical and visual attacks are discussed before and after using the learning system and we make comparison with the previous Steganography algorithm. We show that our algorithm can embed efficiently a large amount of information that has been reached to 75% of the image size (replace 18 bits for each pixel as a maximum) with high quality of the output.

Keywords: Adaptive image segmentation, hiding with high capacity, hiding with high security, neural networks, Steganography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
1678 Factors Affecting General Practitioners’ Transfer of Specialized Self-Care Knowledge to Patients

Authors: Weidong Xia, Malgorzata Kolotylo, Xuan Tan

Abstract:

This study examines the key factors that influence general practitioners’ learning and transfer of specialized arthritis knowledge and self-care techniques to patients during normal patient visits. Drawing on the theory of planed behavior and using matched survey data collected from general practitioners before and after training sessions provided by specialized orthopedic physicians, the study suggests that the general practitioner’s intention to use and transfer learned knowledge was influenced mainly by intrinsic motivation, organizational learning culture and absorptive capacity, but was not influenced by extrinsic motivation. The results provide both theoretical and practical implications.

Keywords: Empirical study, healthcare knowledge management, patient self-care, physician knowledge transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1238
1677 On the Continuous Service of Distributed e-Learning System

Authors: Kazunari Meguro, Shinichi Motomura, Takao Kawamura, Kazunori Sugahara

Abstract:

In this paper, backup and recovery technique for Peer to Peer applications, such as a distributed asynchronous Web-Based Training system that we have previously proposed. In order to improve the scalability and robustness of this system, all contents and function are realized on mobile agents. These agents are distributed to computers, and they can obtain using a Peer to Peer network that modified Content-Addressable Network. In the proposed system, although entire services do not become impossible even if some computers break down, the problem that contents disappear occurs with an agent-s disappearance. As a solution for this issue, backups of agents are distributed to computers. If a failure of a computer is detected, other computers will continue service using backups of the agents belonged to the computer.

Keywords: Distributed Multimedia Systems, e-Learning, P2P, Mobile Agent

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
1676 Creative Experience and Revisit Intention of Handmade Oriental Parasol Umbrella in Kaohsiung

Authors: Yi-Ju Lee

Abstract:

This study identified the hypothesised relationship between creative experience, and revisit intention of handmade oriental parasol umbrella in Kaohsiung, Taiwan. A face-to-face questionnaire survey was administered in Meinong town, Kaohsiung. The components of creative experience were found as “sense of achievement”, “unique learning” and “interaction with instructors” in creative tourism. The result also revealed significant positive relationships between creative experience and revisit intention in handmade activities. This paper provides additional suggestions for enhancing revisit intention and guidance regarding creative tourism.

Keywords: Creative tourism, Sense of achievement, Unique learning, Interaction with instructors, Folk art.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105
1675 The Impact of Information and Communication Technology in Education: Opportunities and Challenges

Authors: M. Nadeem, S. Nasir, K. A. Moazzam, R. Kashif

Abstract:

The remarkable growth and evolution in information and communication technology (ICT) in the past few decades has transformed modern society in almost every aspect of life. The impact and application of ICT have been observed in almost all walks of life including science, arts, business, health, management, engineering, sports, and education. ICT in education is being used extensively for student learning, creativity, interaction, and knowledge sharing and as a valuable source of teaching instrument. Apart from the student’s perspective, it plays a vital role for teacher education, instructional methods and curriculum development. There is a significant difference in growth of ICT enabled education in developing countries compared to developed nations and according to research, this gap is widening. ICT gradually infiltrate in almost every aspect of life. It has a deep and profound impact on our social, economic, health, environment, development, work, learning, and education environments. ICT provides very effective and dominant tools for information and knowledge processing. It is firmly believed that the coming generation should be proficient and confident in the use of ICT to cope with the existing international standards. This is only possible if schools can provide basic ICT infrastructure to students and to develop an ICT-integrated curriculum which covers all aspects of learning and creativity in students. However, there is a digital divide and steps must be taken to reduce this digital divide considerably to have the profound impact of ICT in education all around the globe. This study is based on theoretical approach and an extensive literature review is being conducted to see the successful implementations of ICT integration in education and to identify technologies and models which have been used in education in developed countries. This paper deals with the modern applications of ICT in schools for both teachers and students to uplift the learning and creativity amongst the students. A brief history of technology in education is presented and discussed are some important ICT tools for both student and teacher’s perspective. Basic ICT-based infrastructure for academic institutions is presented. The overall conclusion leads to the positive impact of ICT in education by providing an interactive, collaborative and challenging environment to students and teachers for knowledge sharing, learning and critical thinking.

Keywords: Information and communication technology, ICT, education, ICT infrastructure, teacher education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3880
1674 Improving the Convergence of the Backpropagation Algorithm Using Local Adaptive Techniques

Authors: Z. Zainuddin, N. Mahat, Y. Abu Hassan

Abstract:

Since the presentation of the backpropagation algorithm, a vast variety of improvements of the technique for training a feed forward neural networks have been proposed. This article focuses on two classes of acceleration techniques, one is known as Local Adaptive Techniques that are based on weightspecific only, such as the temporal behavior of the partial derivative of the current weight. The other, known as Dynamic Adaptation Methods, which dynamically adapts the momentum factors, α, and learning rate, η, with respect to the iteration number or gradient. Some of most popular learning algorithms are described. These techniques have been implemented and tested on several problems and measured in terms of gradient and error function evaluation, and percentage of success. Numerical evidence shows that these techniques improve the convergence of the Backpropagation algorithm.

Keywords: Backpropagation, Dynamic Adaptation Methods, Local Adaptive Techniques, Neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
1673 Application of Digital Tools for Improving Learning

Authors: José L. Jiménez

Abstract:

The use of technology in the classroom is an issue that is constantly evolving. Digital age students learn differently than their teachers did, so now the teacher should be constantly evolving their methods and teaching techniques to be more in touch with the student. In this paper a case study presents how were used some of these technologies by accompanying a classroom course, this in order to provide students with a different and innovative experience as their teacher usually presented the activities to develop. As students worked in the various activities, they increased their digital skills by employing unknown tools that helped them in their professional training. The twenty-first century teacher should consider the use of Information and Communication Technologies in the classroom thinking in skills that students of the digital age should possess. It also takes a brief look at the history of distance education and it is also highlighted the importance of integrating technology as part of the student's training.

Keywords: Digital tools, on-line learning, social networks, technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
1672 Markov Game Controller Design Algorithms

Authors: Rajneesh Sharma, M. Gopal

Abstract:

Markov games are a generalization of Markov decision process to a multi-agent setting. Two-player zero-sum Markov game framework offers an effective platform for designing robust controllers. This paper presents two novel controller design algorithms that use ideas from game-theory literature to produce reliable controllers that are able to maintain performance in presence of noise and parameter variations. A more widely used approach for controller design is the H∞ optimal control, which suffers from high computational demand and at times, may be infeasible. Our approach generates an optimal control policy for the agent (controller) via a simple Linear Program enabling the controller to learn about the unknown environment. The controller is facing an unknown environment, and in our formulation this environment corresponds to the behavior rules of the noise modeled as the opponent. Proposed controller architectures attempt to improve controller reliability by a gradual mixing of algorithmic approaches drawn from the game theory literature and the Minimax-Q Markov game solution approach, in a reinforcement-learning framework. We test the proposed algorithms on a simulated Inverted Pendulum Swing-up task and compare its performance against standard Q learning.

Keywords: Reinforcement learning, Markov Decision Process, Matrix Games, Markov Games, Smooth Fictitious play, Controller, Inverted Pendulum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
1671 From Mother Tongue Education to Multilingual Higher Education

Authors: Mario R. Acevedo Amaya, Fernanda M. Martinez Reyes

Abstract:

Through the time, the higher education has changed the learning system since mother tongue to bilingual, and in this new century has been coming develop a multilingual education. All as part of globalization process of the countries and the education. Nevertheless, this change only has been effectively in countries of the first world, the rest have been lagging. Therefore, these countries require strengthen their higher education systems through models that give way to multilingual and bilingual education. In this way, shows a new model adapted from a systemic form to allow a higher bilingual and multilingual education in Latin America. This systematization aims to increase the skills and competencies student’s, decrease the time learning of a second tongue, add to multilingualism in the American Latin Universities, also, contribute to position the region´s countries in a better global status, and stimulate the development of new research in this area.

Keywords: Bilingual Education, Higher Education, Multilingual Education, Multilingual Education Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
1670 Hand Gesture Interpretation Using Sensing Glove Integrated with Machine Learning Algorithms

Authors: Aqsa Ali, Aleem Mushtaq, Attaullah Memon, Monna

Abstract:

In this paper, we present a low cost design for a smart glove that can perform sign language recognition to assist the speech impaired people. Specifically, we have designed and developed an Assistive Hand Gesture Interpreter that recognizes hand movements relevant to the American Sign Language (ASL) and translates them into text for display on a Thin-Film-Transistor Liquid Crystal Display (TFT LCD) screen as well as synthetic speech. Linear Bayes Classifiers and Multilayer Neural Networks have been used to classify 11 feature vectors obtained from the sensors on the glove into one of the 27 ASL alphabets and a predefined gesture for space. Three types of features are used; bending using six bend sensors, orientation in three dimensions using accelerometers and contacts at vital points using contact sensors. To gauge the performance of the presented design, the training database was prepared using five volunteers. The accuracy of the current version on the prepared dataset was found to be up to 99.3% for target user. The solution combines electronics, e-textile technology, sensor technology, embedded system and machine learning techniques to build a low cost wearable glove that is scrupulous, elegant and portable.

Keywords: American sign language, assistive hand gesture interpreter, human-machine interface, machine learning, sensing glove.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2731
1669 The Traits That Facilitate Successful Student Performance in Distance Education: The Case of the Distance Education Unit at European University Cyprus

Authors: D. Vlachopoulos, G. Tsokkas

Abstract:

Although it is not intended to identify distance education students as a homogeneous group, recent research has demonstrated that there are some demographic and personality common traits among most of them that provide the basis for the description of a typical distance learning student. The purpose of this paper is to describe these common traits and to facilitate their learning journey within a distance education program. The described research is an initiative of the Distance Education Unit at the European University Cyprus (Laureate International Universities) in the context of its action for the improvement of the students’ performance.

Keywords: Distance education students, successful student performance, European University Cyprus, common traits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
1668 Prediction of Cardiovascular Disease by Applying Feature Extraction

Authors: Nebi Gedik

Abstract:

Heart disease threatens the lives of a great number of people every year around the world. Heart issues lead to many of all deaths; therefore, early diagnosis and treatment are critical. The diagnosis of heart disease is complicated due to several factors affecting health such as high blood pressure, raised cholesterol, an irregular pulse rhythm, and more. Artificial intelligence has the potential to assist in the early detection and treatment of diseases. Improving heart failure prediction is one of the primary goals of research on heart disease risk assessment. This study aims to determine the features that provide the most successful classification prediction in detecting cardiovascular disease. The performances of each feature are compared using the K-Nearest Neighbor machine learning method. The feature that gives the most successful performance has been identified.

Keywords: Cardiovascular disease, feature extraction, supervised learning, k-NN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 134
1667 Gamification of eHealth Business Cases to Enhance Rich Learning Experience

Authors: Kari Björn

Abstract:

Introduction of games has expanded the application area of computer-aided learning tools to wide variety of age groups of learners. Serious games engage the learners into a real-world -type of simulation and potentially enrich the learning experience. Institutional background of a Bachelor’s level engineering program in Information and Communication Technology is introduced, with detailed focus on one of its majors, Health Technology. As part of a Customer Oriented Software Application thematic semester, one particular course of “eHealth Business and Solutions” is described and reflected in a gamified framework. Learning a consistent view into vast literature of business management, strategies, marketing and finance in a very limited time enforces selection of topics relevant to the industry. Health Technology is a novel and growing industry with a growing sector in consumer wearable devices and homecare applications. The business sector is attracting new entrepreneurs and impatient investor funds. From engineering education point of view the sector is driven by miniaturizing electronics, sensors and wireless applications. However, the market is highly consumer-driven and usability, safety and data integrity requirements are extremely high. When the same technology is used in analysis or treatment of patients, very strict regulatory measures are enforced. The paper introduces a course structure using gamification as a tool to learn the most essential in a new market: customer value proposition design, followed by a market entry game. Students analyze the existing market size and pricing structure of eHealth web-service market and enter the market as a steering group of their company, competing against the legacy players and with each other. The market is growing but has its rules of demand and supply balance. New products can be developed with an R&D-investment, and targeted to market with unique quality- and price-combinations. Product cost structure can be improved by investing to enhanced production capacity. Investments can be funded optionally by foreign capital. Students make management decisions and face the dynamics of the market competition in form of income statement and balance sheet after each decision cycle. The focus of the learning outcome is to understand customer value creation to be the source of cash flow. The benefit of gamification is to enrich the learning experience on structure and meaning of financial statements. The paper describes the gamification approach and discusses outcomes after two course implementations. Along the case description of learning challenges, some unexpected misconceptions are noted. Improvements of the game or the semi-gamified teaching pedagogy are discussed. The case description serves as an additional support to new game coordinator, as well as helps to improve the method. Overall, the gamified approach has helped to engage engineering student to business studies in an energizing way.

Keywords: Engineering education, integrated curriculum, learning experience, learning outcomes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 957