Search results for: Particle Swarm Optimization algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5076

Search results for: Particle Swarm Optimization algorithm

3876 Solution of Optimal Reactive Power Flow using Biogeography-Based Optimization

Authors: Aniruddha Bhattacharya, Pranab Kumar Chattopadhyay

Abstract:

Optimal reactive power flow is an optimization problem with one or more objective of minimizing the active power losses for fixed generation schedule. The control variables are generator bus voltages, transformer tap settings and reactive power output of the compensating devices placed on different bus bars. Biogeography- Based Optimization (BBO) technique has been applied to solve different kinds of optimal reactive power flow problems subject to operational constraints like power balance constraint, line flow and bus voltages limits etc. BBO searches for the global optimum mainly through two steps: Migration and Mutation. In the present work, BBO has been applied to solve the optimal reactive power flow problems on IEEE 30-bus and standard IEEE 57-bus power systems for minimization of active power loss. The superiority of the proposed method has been demonstrated. Considering the quality of the solution obtained, the proposed method seems to be a promising one for solving these problems.

Keywords: Active Power Loss, Biogeography-Based Optimization, Migration, Mutation, Optimal Reactive Power Flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4284
3875 A Genetic Algorithm for Optimum Design of PID Controller in Load Frequency Control

Authors: T. Hussein

Abstract:

In this paper, determining the optimal proportionalintegral- derivative (PID) controller gains of an single-area load frequency control (LFC) system using genetic algorithm (GA) is presented. The LFC is notoriously difficult to control optimally using conventionally tuning a PID controller because the system parameters are constantly changing. It is for this reason the GA as tuning strategy was applied. The simulation has been conducted in MATLAB Simulink package for single area power system. the simulation results shows the effectiveness performance of under various disturbance.

Keywords: Load Frequency Control (LFC), PID controller and Genetic Algorithm (GA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3747
3874 SMCC: Self-Managing Congestion Control Algorithm

Authors: Sh. Jamali, A. Eftekhari

Abstract:

Transmission control protocol (TCP) Vegas detects network congestion in the early stage and successfully prevents periodic packet loss that usually occurs in TCP Reno. It has been demonstrated that TCP Vegas outperforms TCP Reno in many aspects. However, TCP Vegas suffers several problems that affect its congestion avoidance mechanism. One of the most important weaknesses in TCP Vegas is that alpha and beta depend on a good expected throughput estimate, which as we have seen, depends on a good minimum RTT estimate. In order to make the system more robust alpha and beta must be made responsive to network conditions (they are currently chosen statically). This paper proposes a modified Vegas algorithm, which can be adjusted to present good performance compared to other transmission control protocols (TCPs). In order to do this, we use PSO algorithm to tune alpha and beta. The simulation results validate the advantages of the proposed algorithm in term of performance.

Keywords: Self-managing, Congestion control, TCP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
3873 Self Organizing Mixture Network in Mixture Discriminant Analysis: An Experimental Study

Authors: Nazif Çalış, Murat Erişoğlu, Hamza Erol, Tayfun Servi

Abstract:

In the recent works related with mixture discriminant analysis (MDA), expectation and maximization (EM) algorithm is used to estimate parameters of Gaussian mixtures. But, initial values of EM algorithm affect the final parameters- estimates. Also, when EM algorithm is applied two times, for the same data set, it can be give different results for the estimate of parameters and this affect the classification accuracy of MDA. Forthcoming this problem, we use Self Organizing Mixture Network (SOMN) algorithm to estimate parameters of Gaussians mixtures in MDA that SOMN is more robust when random the initial values of the parameters are used [5]. We show effectiveness of this method on popular simulated waveform datasets and real glass data set.

Keywords: Self Organizing Mixture Network, MixtureDiscriminant Analysis, Waveform Datasets, Glass Identification, Mixture of Multivariate Normal Distributions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
3872 Scheduling a Flexible Flow Shops Problem using DEA

Authors: Fatemeh Dadkhah, Hossein Ali Akbarpour

Abstract:

This paper considers a scheduling problem in flexible flow shops environment with the aim of minimizing two important criteria including makespan and cumulative tardiness of jobs. Since the proposed problem is known as an Np-hard problem in literature, we have to develop a meta-heuristic to solve it. We considered general structure of Genetic Algorithm (GA) and developed a new version of that based on Data Envelopment Analysis (DEA). Two objective functions assumed as two different inputs for each Decision Making Unit (DMU). In this paper we focused on efficiency score of DMUs and efficient frontier concept in DEA technique. After introducing the method we defined two different scenarios with considering two types of mutation operator. Also we provided an experimental design with some computational results to show the performance of algorithm. The results show that the algorithm implements in a reasonable time.

Keywords: Data envelopment analysis, Efficiency, Flexible flow shops, Genetic algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
3871 Detecting Subsurface Circular Objects from Low Contrast Noisy Images: Applications in Microscope Image Enhancement

Authors: Soham De, Nupur Biswas, Abhijit Sanyal, Pulak Ray, Alokmay Datta

Abstract:

Particle detection in very noisy and low contrast images is an active field of research in image processing. In this article, a method is proposed for the efficient detection and sizing of subsurface spherical particles, which is used for the processing of softly fused Au nanoparticles. Transmission Electron Microscopy is used for imaging the nanoparticles, and the proposed algorithm has been tested with the two-dimensional projected TEM images obtained. Results are compared with the data obtained by transmission optical spectroscopy, as well as with conventional circular object detection algorithms.

Keywords: Transmission Electron Microscopy, Circular Hough Transform, Au Nanoparticles, Median Filter, Laplacian Sharpening Filter, Canny Edge Detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2589
3870 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data

Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz

Abstract:

In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.

Keywords: Real-Time Spatial Big Data, Quality Of Service, Vertical partitioning, Horizontal partitioning, Matching algorithm, Hamming distance, Stream query.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1063
3869 A Text Clustering System based on k-means Type Subspace Clustering and Ontology

Authors: Liping Jing, Michael K. Ng, Xinhua Yang, Joshua Zhexue Huang

Abstract:

This paper presents a text clustering system developed based on a k-means type subspace clustering algorithm to cluster large, high dimensional and sparse text data. In this algorithm, a new step is added in the k-means clustering process to automatically calculate the weights of keywords in each cluster so that the important words of a cluster can be identified by the weight values. For understanding and interpretation of clustering results, a few keywords that can best represent the semantic topic are extracted from each cluster. Two methods are used to extract the representative words. The candidate words are first selected according to their weights calculated by our new algorithm. Then, the candidates are fed to the WordNet to identify the set of noun words and consolidate the synonymy and hyponymy words. Experimental results have shown that the clustering algorithm is superior to the other subspace clustering algorithms, such as PROCLUS and HARP and kmeans type algorithm, e.g., Bisecting-KMeans. Furthermore, the word extraction method is effective in selection of the words to represent the topics of the clusters.

Keywords: Subspace Clustering, Text Mining, Feature Weighting, Cluster Interpretation, Ontology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2466
3868 Real Time Video Based Smoke Detection Using Double Optical Flow Estimation

Authors: Anton Stadler, Thorsten Ike

Abstract:

In this paper, we present a video based smoke detection algorithm based on TVL1 optical flow estimation. The main part of the algorithm is an accumulating system for motion angles and upward motion speed of the flow field. We optimized the usage of TVL1 flow estimation for the detection of smoke with very low smoke density. Therefore, we use adapted flow parameters and estimate the flow field on difference images. We show in theory and in evaluation that this improves the performance of smoke detection significantly. We evaluate the smoke algorithm using videos with different smoke densities and different backgrounds. We show that smoke detection is very reliable in varying scenarios. Further we verify that our algorithm is very robust towards crowded scenes disturbance videos.

Keywords: Low density, optical flow, upward smoke motion, video based smoke detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
3867 Multiple Input Multiple Output Detection Using Roulette Wheel Based Ant Colony Optimization Technique

Authors: B. Rebekka, B. Malarkodi

Abstract:

This paper describes an approach to detect the transmitted signals for 2×2 Multiple Input Multiple Output (MIMO) setup using roulette wheel based ant colony optimization technique. The results obtained are compared with classical zero forcing and least mean square techniques. The detection rates achieved using this technique are consistently larger than the one achieved using classical methods for 50 number of attempts with two different antennas transmitting the input stream from a user. This paves the path to use alternative techniques to improve the throughput achieved in advanced networks like Long Term Evolution (LTE) networks.

Keywords: MIMO, ant colony optimization, roulette wheel, soft computing, LTE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1084
3866 An Image Segmentation Algorithm for Gradient Target Based on Mean-Shift and Dictionary Learning

Authors: Yanwen Li, Shuguo Xie

Abstract:

In electromagnetic imaging, because of the diffraction limited system, the pixel values could change slowly near the edge of the image targets and they also change with the location in the same target. Using traditional digital image segmentation methods to segment electromagnetic gradient images could result in lots of errors because of this change in pixel values. To address this issue, this paper proposes a novel image segmentation and extraction algorithm based on Mean-Shift and dictionary learning. Firstly, the preliminary segmentation results from adaptive bandwidth Mean-Shift algorithm are expanded, merged and extracted. Then the overlap rate of the extracted image block is detected before determining a segmentation region with a single complete target. Last, the gradient edge of the extracted targets is recovered and reconstructed by using a dictionary-learning algorithm, while the final segmentation results are obtained which are very close to the gradient target in the original image. Both the experimental results and the simulated results show that the segmentation results are very accurate. The Dice coefficients are improved by 70% to 80% compared with the Mean-Shift only method.

Keywords: Gradient image, segmentation and extract, mean-shift algorithm, dictionary learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 978
3865 OPTIMAL Placement of FACTS Devices by Genetic Algorithm for the Increased Load Ability of a Power System

Authors: A. B.Bhattacharyya, B. S.K.Goswami

Abstract:

This paper presents Genetic Algorithm (GA) based approach for the allocation of FACTS (Flexible AC Transmission System) devices for the improvement of Power transfer capacity in an interconnected Power System. The GA based approach is applied on IEEE 30 BUS System. The system is reactively loaded starting from base to 200% of base load. FACTS devices are installed in the different locations of the power system and system performance is noticed with and without FACTS devices. First, the locations, where the FACTS devices to be placed is determined by calculating active and reactive power flows in the lines. Genetic Algorithm is then applied to find the amount of magnitudes of the FACTS devices. This approach of GA based placement of FACTS devices is tremendous beneficial both in terms of performance and economy is clearly observed from the result obtained.

Keywords: FACTS Devices, Line Power Flow, OptimalLocation of FACTS Devices, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4142
3864 Study of Adaptive Filtering Algorithms and the Equalization of Radio Mobile Channel

Authors: Said Elkassimi, Said Safi, B. Manaut

Abstract:

This paper presented a study of three algorithms, the equalization algorithm to equalize the transmission channel with ZF and MMSE criteria, application of channel Bran A, and adaptive filtering algorithms LMS and RLS to estimate the parameters of the equalizer filter, i.e. move to the channel estimation and therefore reflect the temporal variations of the channel, and reduce the error in the transmitted signal. So far the performance of the algorithm equalizer with ZF and MMSE criteria both in the case without noise, a comparison of performance of the LMS and RLS algorithm.

Keywords: Adaptive filtering second equalizer, LMS, RLS Bran A, Proakis (B) MMSE, ZF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
3863 Crashworthiness Optimization of an Automotive Front Bumper in Composite Material

Authors: S. Boria

Abstract:

In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.

Keywords: Composite material, crashworthiness, finite element analysis, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1138
3862 A Method to Compute Efficient 3D Helicopters Flight Trajectories Based on a Motion Polymorph-Primitives Algorithm

Authors: Konstanca Nikolajevic, Nicolas Belanger, David Duvivier, Rabie Ben Atitallah, Abdelhakim Artiba

Abstract:

Finding the optimal 3D path of an aerial vehicle under flight mechanics constraints is a major challenge, especially when the algorithm has to produce real time results in flight. Kinematics models and Pythagorian Hodograph curves have been widely used in mobile robotics to solve this problematic. The level of difficulty is mainly driven by the number of constraints to be saturated at the same time while minimizing the total length of the path. In this paper, we suggest a pragmatic algorithm capable of saturating at the same time most of dimensioning helicopter 3D trajectories’ constraints like: curvature, curvature derivative, torsion, torsion derivative, climb angle, climb angle derivative, positions. The trajectories generation algorithm is able to generate versatile complex 3D motion primitives feasible by a helicopter with parameterization of the curvature and the climb angle. An upper ”motion primitives’ concatenation” algorithm is presented based. In this article we introduce a new way of designing three-dimensional trajectories based on what we call the ”Dubins gliding symmetry conjecture”. This extremely performing algorithm will be soon integrated to a real-time decisional system dealing with inflight safety issues.

Keywords: Aerial robots, Motion primitives, Robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
3861 A Modified Spiral Search Algorithm and Its Embedded System Architecture Design

Authors: Nikolaos Kroupis, Minas Dasygenis, Dimitrios Soudris, Antonios Thanailakis

Abstract:

One of the most growing areas in the embedded community is multimedia devices. Multimedia devices incorporate a number of complicated functions for their operation, like motion estimation. A multitude of different implementations have been proposed to reduce motion estimation complexity, such as spiral search. We have studied the implementations of spiral search and identified areas of improvement. We propose a modified spiral search algorithm, with lower computational complexity compared to the original spiral search. We have implemented our algorithm on an embedded ARM based architecture, with custom memory hierarchy. The resulting system yields energy consumption reduction up to 64% and performance increase up to 77%, with a small penalty of 2.3 dB, in average, of video quality compared with the original spiral search algorithm.

Keywords: Spiral Search, Motion Estimation, Embedded Systems, Low Power

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
3860 Training Radial Basis Function Networks with Differential Evolution

Authors: Bing Yu , Xingshi He

Abstract:

In this paper, Differential Evolution (DE) algorithm, a new promising evolutionary algorithm, is proposed to train Radial Basis Function (RBF) network related to automatic configuration of network architecture. Classification tasks on data sets: Iris, Wine, New-thyroid, and Glass are conducted to measure the performance of neural networks. Compared with a standard RBF training algorithm in Matlab neural network toolbox, DE achieves more rational architecture for RBF networks. The resulting networks hence obtain strong generalization abilities.

Keywords: differential evolution, neural network, Rbf function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
3859 Effect of Changing Iron Content and Excitation Frequency on Magnetic Particle Imaging Signal: A Comparative Study of Synomag® Nanoparticles

Authors: Kalthoum Riahi, Max T. Rietberg, Javier Perez y Perez, Corné Dijkstra, Bennie ten Haken, Lejla Alic

Abstract:

Magnetic nanoparticles (MNPs) are widely used to facilitate magnetic particle imaging (MPI) which has the potential to become the leading diagnostic instrument for biomedical imaging. This comparative study assesses the effects of changing iron content and excitation frequency on point-spread function (PSF) representing the effect of magnetization reversal. PSF is quantified by features of interest for MPI: i.e., drive field amplitude and full-width-at-half-maximum (FWHM). A superparamagnetic quantifier (SPaQ) is used to assess differential magnetic susceptibility of two commercially available MNPs: Synomag®-D50 and Synomag®-D70. For both MNPs, the signal output depends on increase in drive field frequency and amount of iron-oxide, which might be hampering the sensitivity of MPI systems that perform on higher frequencies. Nevertheless, there is a clear potential of Synomag®-D for a stable MPI resolution, especially in case of 70 nm version, that is independent of either drive field frequency or amount of iron-oxide.

Keywords: Magnetic nanoparticles, MNPs, Differential magnetic susceptibility, DMS, Magnetic particle imaging, MPI, magnetic relaxation, Synomag®-D.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 727
3858 ROC Analysis of PVC Detection Algorithm using ECG and Vector-ECG Charateristics

Authors: J. S. Nah, A. Y. Jeon, J. H. Ro, G. R. Jeon

Abstract:

ECG analysis method was developed using ROC analysis of PVC detecting algorithm. ECG signal of MIT-BIH arrhythmia database was analyzed by MATLAB. First of all, the baseline was removed by median filter to preprocess the ECG signal. R peaks were detected for ECG analysis method, and normal VCG was extracted for VCG analysis method. Four PVC detecting algorithm was analyzed by ROC curve, which parameters are maximum amplitude of QRS complex, width of QRS complex, r-r interval and geometric mean of VCG. To set cut-off value of parameters, ROC curve was estimated by true-positive rate (sensitivity) and false-positive rate. sensitivity and false negative rate (specificity) of ROC curve calculated, and ECG was analyzed using cut-off value which was estimated from ROC curve. As a result, PVC detecting algorithm of VCG geometric mean have high availability, and PVC could be detected more accurately with amplitude and width of QRS complex.

Keywords: Vectorcardiogram (VCG), Premature Ventricular contraction (PVC), ROC (receiver operating characteristic) curve, ECG

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2950
3857 Design Optimization of a Compact Quadrupole Electromagnet for CLS 2.0

Authors: Md. Armin Islam, Les Dallin, Mark Boland, W. J. Zhang

Abstract:

This paper reports a study on the optimal magnetic design of a compact quadrupole electromagnet for the Canadian Light Source (CLS 2.0). The nature of the design is to determine a quadrupole with low relative higher order harmonics and better field quality. The design problem was formulated as an optimization model, in which the objective function is the higher order harmonics (multipole errors) and the variable to be optimized is the material distribution on the pole. The higher order harmonics arose in the quadrupole due to truncating the ideal hyperbola at a certain point to make the pole. In this project, the arisen harmonics have been optimized both transversely and longitudinally by adjusting material on the poles in a controlled way. For optimization, finite element analysis (FEA) has been conducted. A better higher order harmonics amplitudes and field quality have been achieved through the optimization. On the basis of the optimized magnetic design, electrical and cooling calculation has been performed for the magnet.

Keywords: Drift, electrical, and cooling calculation, integrated field, higher order harmonics (multipole errors), magnetic field gradient, quadrupole.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
3856 Supremacy of Differential Evolution Algorithm in Designing Multiplier-Less Low-Pass FIR Filter

Authors: Abhijit Chandra, Sudipta Chattopadhyay

Abstract:

In this communication, we have made an attempt to design multiplier-less low-pass finite impulse response (FIR) filter with the aid of various mutation strategies of Differential Evolution (DE) algorithm. Impulse response coefficient of the designed FIR filter has been represented as sums or differences of powers of two. Performance of the proposed filter has been evaluated in terms of its frequency response and associated hardware cost. Supremacy of our approach has been substantiated by comparing our result with many of the existing multiplier-less filter design algorithms of recent interest. It has also been demonstrated that DE-optimized filter outperforms Genetic Algorithm (GA) based design by a large margin.  Hardware efficiency of our algorithm has further been validated by implementing those filters on a Field Programmable Gate Array (FPGA) chip.

Keywords: Convergence speed, Differential Evolution (DE), error histogram, finite impulse response (FIR) filter, total power of two (TPT), zero-valued filter coefficient (ZFC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
3855 A High-Speed Multiplication Algorithm Using Modified Partial Product Reduction Tree

Authors: P. Asadee

Abstract:

Multiplication algorithms have considerable effect on processors performance. A new high-speed, low-power multiplication algorithm has been presented using modified Dadda tree structure. Three important modifications have been implemented in inner product generation step, inner product reduction step and final addition step. Optimized algorithms have to be used into basic computation components, such as multiplication algorithms. In this paper, we proposed a new algorithm to reduce power, delay, and transistor count of a multiplication algorithm implemented using low power modified counter. This work presents a novel design for Dadda multiplication algorithms. The proposed multiplication algorithm includes structured parts, which have important effect on inner product reduction tree. In this paper, a 1.3V, 64-bit carry hybrid adder is presented for fast, low voltage applications. The new 64-bit adder uses a new circuit to implement the proposed carry hybrid adder. The new adder using 80 nm CMOS technology has been implemented on 700 MHz clock frequency. The proposed multiplication algorithm has achieved 14 percent improvement in transistor count, 13 percent reduction in delay and 12 percent modification in power consumption in compared with conventional designs.

Keywords: adder, CMOS, counter, Dadda tree, encoder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2311
3854 On Discretization of Second-order Derivatives in Smoothed Particle Hydrodynamics

Authors: R. Fatehi, M.A. Fayazbakhsh, M.T. Manzari

Abstract:

Discretization of spatial derivatives is an important issue in meshfree methods especially when the derivative terms contain non-linear coefficients. In this paper, various methods used for discretization of second-order spatial derivatives are investigated in the context of Smoothed Particle Hydrodynamics. Three popular forms (i.e. "double summation", "second-order kernel derivation", and "difference scheme") are studied using one-dimensional unsteady heat conduction equation. To assess these schemes, transient response to a step function initial condition is considered. Due to parabolic nature of the heat equation, one can expect smooth and monotone solutions. It is shown, however in this paper, that regardless of the type of kernel function used and the size of smoothing radius, the double summation discretization form leads to non-physical oscillations which persist in the solution. Also, results show that when a second-order kernel derivative is used, a high-order kernel function shall be employed in such a way that the distance of inflection point from origin in the kernel function be less than the nearest particle distance. Otherwise, solutions may exhibit oscillations near discontinuities unlike the "difference scheme" which unconditionally produces monotone results.

Keywords: Heat conduction, Meshfree methods, Smoothed ParticleHydrodynamics (SPH), Second-order derivatives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3094
3853 An Optimization Tool-Based Design Strategy Applied to Divide-by-2 Circuits with Unbalanced Loads

Authors: Agord M. Pinto Jr., Yuzo Iano, Leandro T. Manera, Raphael R. N. Souza

Abstract:

This paper describes an optimization tool-based design strategy for a Current Mode Logic CML divide-by-2 circuit. Representing a building block for output frequency generation in a RFID protocol based-frequency synthesizer, the circuit was designed to minimize the power consumption for driving of multiple loads with unbalancing (at transceiver level). Implemented with XFAB XC08 180 nm technology, the circuit was optimized through MunEDA WiCkeD tool at Cadence Virtuoso Analog Design Environment ADE.

Keywords: Divide-by-2 circuit, CMOS technology, PLL phase locked-loop, optimization tool, CML current mode logic, RF transceiver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
3852 Artificial Intelligent in Optimization of Steel Moment Frame Structures: A Review

Authors: Mohsen Soori, Fooad Karimi Ghaleh Jough

Abstract:

The integration of Artificial Intelligence (AI) techniques in the optimization of steel moment frame structures represents a transformative approach to enhance the design, analysis, and performance of these critical engineering systems. The review encompasses a wide spectrum of AI methods, including machine learning algorithms, evolutionary algorithms, neural networks, and optimization techniques, applied to address various challenges in the field. The synthesis of research findings highlights the interdisciplinary nature of AI applications in structural engineering, emphasizing the synergy between domain expertise and advanced computational methodologies. This synthesis aims to serve as a valuable resource for researchers, practitioners, and policymakers seeking a comprehensive understanding of the state-of-the-art in AI-driven optimization for steel moment frame structures. The paper commences with an overview of the fundamental principles governing steel moment frame structures and identifies the key optimization objectives, such as efficiency of structures. Subsequently, it delves into the application of AI in the conceptual design phase, where algorithms aid in generating innovative structural configurations and optimizing material utilization. The review also explores the use of AI for real-time structural health monitoring and predictive maintenance, contributing to the long-term sustainability and reliability of steel moment frame structures. Furthermore, the paper investigates how AI-driven algorithms facilitate the calibration of structural models, enabling accurate prediction of dynamic responses and seismic performance. Thus, by reviewing and analyzing the recent achievements in applications artificial intelligent in optimization of steel moment frame structures, the process of designing, analysis, and performance of the structures can be analyzed and modified.

Keywords: Artificial Intelligent, optimization process, steel moment frame, structural engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 303
3851 Knowledge-Driven Decision Support System Based on Knowledge Warehouse and Data Mining by Improving Apriori Algorithm with Fuzzy Logic

Authors: Pejman Hosseinioun, Hasan Shakeri, Ghasem Ghorbanirostam

Abstract:

In recent years, we have seen an increasing importance of research and study on knowledge source, decision support systems, data mining and procedure of knowledge discovery in data bases and it is considered that each of these aspects affects the others. In this article, we have merged information source and knowledge source to suggest a knowledge based system within limits of management based on storing and restoring of knowledge to manage information and improve decision making and resources. In this article, we have used method of data mining and Apriori algorithm in procedure of knowledge discovery one of the problems of Apriori algorithm is that, a user should specify the minimum threshold for supporting the regularity. Imagine that a user wants to apply Apriori algorithm for a database with millions of transactions. Definitely, the user does not have necessary knowledge of all existing transactions in that database, and therefore cannot specify a suitable threshold. Our purpose in this article is to improve Apriori algorithm. To achieve our goal, we tried using fuzzy logic to put data in different clusters before applying the Apriori algorithm for existing data in the database and we also try to suggest the most suitable threshold to the user automatically.

Keywords: Decision support system, data mining, knowledge discovery, data discovery, fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139
3850 A Video Watermarking Algorithm Based on Chaotic and Wavelet Neural Network

Authors: Jiadong Liang

Abstract:

This paper presented a video watermarking algorithm based on wavelet chaotic neural network. First, to enhance binary image’s security, the algorithm encrypted it with double chaotic based on Arnold and Logistic map, Then, the host video was divided into some equal frames and distilled the key frame through chaotic sequence which generated by Logistic. Meanwhile, we distilled the low frequency coefficients of luminance component and self-adaptively embedded the processed image watermark into the low frequency coefficients of the wavelet transformed luminance component with the wavelet neural network. The experimental result suggested that the presented algorithm has better invisibility and robustness against noise, Gaussian filter, rotation, frame loss and other attacks.

Keywords: Video watermark, double chaotic encryption, wavelet neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1057
3849 Multi-Factor Optimization Method through Machine Learning in Building Envelope Design: Focusing on Perforated Metal Façade

Authors: Jinwooung Kim, Jae-Hwan Jung, Seong-Jun Kim, Sung-Ah Kim

Abstract:

Because the building envelope has a significant impact on the operation and maintenance stage of the building, designing the facade considering the performance can improve the performance of the building and lower the maintenance cost of the building. In general, however, optimizing two or more performance factors confronts the limits of time and computational tools. The optimization phase typically repeats infinitely until a series of processes that generate alternatives and analyze the generated alternatives achieve the desired performance. In particular, as complex geometry or precision increases, computational resources and time are prohibitive to find the required performance, so an optimization methodology is needed to deal with this. Instead of directly analyzing all the alternatives in the optimization process, applying experimental techniques (heuristic method) learned through experimentation and experience can reduce resource waste. This study proposes and verifies a method to optimize the double envelope of a building composed of a perforated panel using machine learning to the design geometry and quantitative performance. The proposed method is to achieve the required performance with fewer resources by supplementing the existing method which cannot calculate the complex shape of the perforated panel.

Keywords: Building envelope, machine learning, perforated metal, multi-factor optimization, façade.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1232
3848 Enhanced Interference Management Technique for Multi-Cell Multi-Antenna System

Authors: Simon E. Uguru, Victor E. Idigo, Obinna S. Oguejiofor, Naveed Nawaz

Abstract:

As the deployment of the Fifth Generation (5G) mobile communication networks take shape all over the world, achieving spectral efficiency, energy efficiency, and dealing with interference are among the greatest challenges encountered so far. The aim of this study is to mitigate inter-cell interference (ICI) in a multi-cell multi-antenna system while maximizing the spectral efficiency of the system. In this study, a system model was devised that showed a miniature representation of a multi-cell multi-antenna system. Based on this system model, a convex optimization problem was formulated to maximize the spectral efficiency of the system while mitigating the ICI. This optimization problem was solved using CVX, which is a modeling system for constructing and solving discipline convex programs. The solutions to the optimization problem are sub-optimal coordinated beamformers. These coordinated beamformers direct each data to the served user equipments (UEs) in each cell without interference during downlink transmission, thereby maximizing the system-wide spectral efficiency.

Keywords: coordinated beamforming, convex optimization, inter-cell interference, multi-antenna, multi-cell, spectral efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 460
3847 Practical Design Procedures of 3D Reinforced Concrete Shear Wall-Frame Structure Based on Structural Optimization Method

Authors: H. Nikzad, S. Yoshitomi

Abstract:

This study investigates and develops the structural optimization method. The effect of size constraints on practical solution of reinforced concrete (RC) building structure with shear wall is proposed. Cross-sections of beam and column, and thickness of shear wall are considered as design variables. The objective function to be minimized is total cost of the structure by using a simple and efficient automated MATLAB platform structural optimization methodology. With modification of mathematical formulations, the result is compared with optimal solution without size constraints. The most suitable combination of section sizes is selected as for the final design application based on linear static analysis. The findings of this study show that defining higher value of upper bound of sectional sizes significantly affects optimal solution, and defining of size constraints play a vital role in finding of global and practical solution during optimization procedures. The result and effectiveness of proposed method confirm the ability and efficiency of optimal solutions for 3D RC shear wall-frame structure.

Keywords: Structural optimization, linear static analysis, ETABS, MATLAB, RC shear wall-frame structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306