Search results for: Fuzzy Sets
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1445

Search results for: Fuzzy Sets

245 Language Processing of Seniors with Alzheimer’s Disease: From the Perspective of Temporal Parameters

Authors: Lai Yi-Hsiu

Abstract:

The present paper aims to examine the language processing of Chinese-speaking seniors with Alzheimer’s disease (AD) from the perspective of temporal cues. Twenty healthy adults, 17 healthy seniors, and 13 seniors with AD in Taiwan participated in this study to tell stories based on two sets of pictures. Nine temporal cues were fetched and analyzed. Oral productions in Mandarin Chinese were compared and discussed to examine to what extent and in what way these three groups of participants performed with significant differences. Results indicated that the age effects were significant in filled pauses. The dementia effects were significant in mean duration of pauses, empty pauses, filled pauses, lexical pauses, normalized mean duration of filled pauses and lexical pauses. The findings reported in the current paper help characterize the nature of language processing in seniors with or without AD, and contribute to the interactions between the AD neural mechanism and their temporal parameters.

Keywords: Language processing, Alzheimer’s disease, Mandarin Chinese, temporal cues.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1033
244 Topology Optimization of Aircraft Fuselage Structure

Authors: Muniyasamy Kalanchiam, Baskar Mannai

Abstract:

Topology Optimization is a defined as the method of determining optimal distribution of material for the assumed design space with functionality, loads and boundary conditions [1]. Topology optimization can be used to optimize shape for the purposes of weight reduction, minimizing material requirements or selecting cost effective materials [2]. Topology optimization has been implemented through the use of finite element methods for the analysis, and optimization techniques based on the method of moving asymptotes, genetic algorithms, optimality criteria method, level sets and topological derivatives. Case study of Typical “Fuselage design" is considered for this paper to explain the benefits of Topology Optimization in the design cycle. A cylindrical shell is assumed as the design space and aerospace standard pay loads were applied on the fuselage with wing attachments as constraints. Then topological optimization is done using Finite Element (FE) based software. This optimization results in the structural concept design which satisfies all the design constraints using minimum material.

Keywords: Fuselage, Topology optimization, payloads, designoptimization, Finite Element Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4105
243 A Parametric Study: Frame Analysis Method for Masonry Arch Bridges

Authors: M. E. Rahman, D. Sujan, V. Pakrashi, P. Fanning

Abstract:

The predictability of masonry arch bridges and their behaviour is widely considered doubtful due to the lack of knowledge about the conditions of a given masonry arch bridge. The assessment methods for masonry arch bridges are MEXE, ARCHIE, RING and Frame Analysis Method. The material properties of the masonry and fill material are extremely difficult to determine accurately. Consequently, it is necessary to examine the effect of load dispersal angle through the fill material, the effect of variations in the stiffness of the masonry, the tensile strength of the masonry mortar continuum and the compressive strength of the masonry mortar continuum. It is also important to understand the effect of fill material on load dispersal angle to determine their influence on ratings. In this paper a series of parametric studies, to examine the sensitivity of assessment ratings to the various sets of input data required by the frame analysis method, are carried out.

Keywords: Arch Bridge, Frame Analyses Method, Masonry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196
242 Autohydrolysis Treatment of Olive Cake to Extract Fructose and Sucrose

Authors: G. Blázquez, A. Gálvez-Pérez, M. Calero, I. Iáñez-Rodríguez, M. A. Martín-Lara, A. Pérez

Abstract:

The production of olive oil is considered as one of the most important agri-food industries. However, some of the by-products generated in the process are potential pollutants and cause environmental problems. Consequently, the management of these by-products is currently considered as a challenge for the olive oil industry. In this context, several technologies have been developed and tested. In this sense, the autohydrolysis of these by-products could be considered as a promising technique. Therefore, this study focused on autohydrolysis treatments of a solid residue from the olive oil industry denominated olive cake. This one comes from the olive pomace extraction with hexane. Firstly, a water washing was carried out to eliminate the water soluble compounds. Then, an experimental design was developed for the autohydrolysis experiments carried out in the hydrothermal pressure reactor. The studied variables were temperature (30, 60 and 90 ºC) and time (30, 60, 90 min). On the other hand, aliquots of liquid obtained fractions were analysed by HPLC to determine the fructose and sucrose contents present in the liquid fraction. Finally, the obtained results of sugars contents and the yields of the different experiments were fitted to a neuro-fuzzy and to a polynomial model.

Keywords: ANFIS, olive cake, polyols, saccharides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 662
241 Swarmed Discriminant Analysis for Multifunction Prosthesis Control

Authors: Rami N. Khushaba, Ahmed Al-Ani, Adel Al-Jumaily

Abstract:

One of the approaches enabling people with amputated limbs to establish some sort of interface with the real world includes the utilization of the myoelectric signal (MES) from the remaining muscles of those limbs. The MES can be used as a control input to a multifunction prosthetic device. In this control scheme, known as the myoelectric control, a pattern recognition approach is usually utilized to discriminate between the MES signals that belong to different classes of the forearm movements. Since the MES is recorded using multiple channels, the feature vector size can become very large. In order to reduce the computational cost and enhance the generalization capability of the classifier, a dimensionality reduction method is needed to identify an informative yet moderate size feature set. This paper proposes a new fuzzy version of the well known Fisher-s Linear Discriminant Analysis (LDA) feature projection technique. Furthermore, based on the fact that certain muscles might contribute more to the discrimination process, a novel feature weighting scheme is also presented by employing Particle Swarm Optimization (PSO) for estimating the weight of each feature. The new method, called PSOFLDA, is tested on real MES datasets and compared with other techniques to prove its superiority.

Keywords: Discriminant Analysis, Pattern Recognition, SignalProcessing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
240 Enhancing Multi-Frame Images Using Self-Delaying Dynamic Networks

Authors: Lewis E. Hibell, Honghai Liu, David J. Brown

Abstract:

This paper presents the use of a newly created network structure known as a Self-Delaying Dynamic Network (SDN) to create a high resolution image from a set of time stepped input frames. These SDNs are non-recurrent temporal neural networks which can process time sampled data. SDNs can store input data for a lifecycle and feature dynamic logic based connections between layers. Several low resolution images and one high resolution image of a scene were presented to the SDN during training by a Genetic Algorithm. The SDN was trained to process the input frames in order to recreate the high resolution image. The trained SDN was then used to enhance a number of unseen noisy image sets. The quality of high resolution images produced by the SDN is compared to that of high resolution images generated using Bi-Cubic interpolation. The SDN produced images are superior in several ways to the images produced using Bi-Cubic interpolation.

Keywords: Image Enhancement, Neural Networks, Multi-Frame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206
239 Structural and Computational Studies of N-[(2,6-Diethylphenyl) carbamothioyl]-2,2-diphenylacetamide, N-[(3 Ethylphenyl) carbamothioyl]-2,2-diphenylacetamide and 2,2-Diphenyl-N-{[2-(trifluoromethyl) phenyl]carbamothioyl}acetamide

Authors: Ibrahim Abdul Razak, Suhana Arshad, Nur Rafikah Razali, Azhar Abdul Rahman, Mohd Sukeri Mohd Yusof

Abstract:

Theoretical investigations are performed by DFT method of B3LYP/6-31G+(2d,p) and B3LYP/6-311G+(2d,p) basis sets for three carbonyl thiourea compounds, namely N-[(2,6-Diethylphenyl)carbamothioyl]-2,2-diphenylacetamide (Compound I), N-[(3-Ethylphenyl)carbamothioyl]-2,2-diphenylacetamide (Compound II) and 2,2-Diphenyl-N-{[2-(trifluoromethyl)phenyl]carbamothioyl}acetamide (Compound III). Theoretical calculations for bond parameters, harmonic vibration frequencies and isotropic chemical shifts are in good agreement with the experimental results. The calculated molecular vibrations show good correlation values, which are 0.998 and 0.999 with the experimental data. The energy gap for compounds I, II and III calculated at B3LYP/6-31G+(2d,p) basis set are 4.455866117, 4.297495791 and 4.313550514 eV respectively, while for B3LYP/6-311G+(2d,p) basis set the energy gap obtained are 4.453689205 (Compound I), 4.311373603 (Compound II) and 4.315727426 (Compound III) eV.

Keywords: Crystallization, DFT studies, Spectroscopic Analysis, Thiourea.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
238 Embodied Cognition and Its Implications in Education: An Overview of Recent Literature

Authors: Panagiotis Kosmas, Panayiotis Zaphiris

Abstract:

Embodied Cognition (EC) as a learning paradigm is based on the idea of an inseparable link between body, mind, and environment. In recent years, the advent of theoretical learning approaches around EC theory has resulted in a number of empirical studies exploring the implementation of the theory in education. This systematic literature overview identifies the mainstream of EC research and emphasizes on the implementation of the theory across learning environments. Based on a corpus of 43 manuscripts, published between 2013 and 2017, it sets out to describe the range of topics covered under the umbrella of EC and provides a holistic view of the field. The aim of the present review is to investigate the main issues in EC research related to the various learning contexts. Particularly, the study addresses the research methods and technologies that are utilized, and it also explores the integration of body into the learning context. An important finding from the overview is the potential of the theory in different educational environments and disciplines. However, there is a lack of an explicit pedagogical framework from an educational perspective for a successful implementation in various learning contexts.

Keywords: Embodied cognition, embodied learning, education, technology, schools.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
237 Power System Security Constrained Economic Dispatch Using Real Coded Quantum Inspired Evolution Algorithm

Authors: A. K. Al-Othman, F. S. Al-Fares, K. M. EL-Nagger

Abstract:

This paper presents a new optimization technique based on quantum computing principles to solve a security constrained power system economic dispatch problem (SCED). The proposed technique is a population-based algorithm, which uses some quantum computing elements in coding and evolving groups of potential solutions to reach the optimum following a partially directed random approach. The SCED problem is formulated as a constrained optimization problem in a way that insures a secure-economic system operation. Real Coded Quantum-Inspired Evolution Algorithm (RQIEA) is then applied to solve the constrained optimization formulation. Simulation results of the proposed approach are compared with those reported in literature. The outcome is very encouraging and proves that RQIEA is very applicable for solving security constrained power system economic dispatch problem (SCED).

Keywords: State Estimation, Fuzzy Linear Regression, FuzzyLinear State Estimator (FLSE) and Measurements Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
236 Denoising by Spatial Domain Averaging for Wireless Local Area Network Terminal Localization

Authors: Diego Felix, Eugene Hyun, Michael McGuire, Mihai Sima

Abstract:

Terminal localization for indoor Wireless Local Area Networks (WLANs) is critical for the deployment of location-aware computing inside of buildings. A major challenge is obtaining high localization accuracy in presence of fluctuations of the received signal strength (RSS) measurements caused by multipath fading. This paper focuses on reducing the effect of the distance-varying noise by spatial filtering of the measured RSS. Two different survey point geometries are tested with the noise reduction technique: survey points arranged in sets of clusters and survey points uniformly distributed over the network area. The results show that the location accuracy improves by 16% when the filter is used and by 18% when the filter is applied to a clustered survey set as opposed to a straight-line survey set. The estimated locations are within 2 m of the true location, which indicates that clustering the survey points provides better localization accuracy due to superior noise removal.

Keywords: Position measurement, Wireless LAN, Radio navigation, Filtering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
235 Determining Cluster Boundaries Using Particle Swarm Optimization

Authors: Anurag Sharma, Christian W. Omlin

Abstract:

Self-organizing map (SOM) is a well known data reduction technique used in data mining. Data visualization can reveal structure in data sets that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOMs, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of a generic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOMs. The application of our method to unlabeled call data for a mobile phone operator demonstrates its feasibility. PSO algorithm utilizes U-matrix of SOMs to determine cluster boundaries; the results of this novel automatic method correspond well to boundary detection through visual inspection of code vectors and k-means algorithm.

Keywords: Particle swarm optimization, self-organizing maps, clustering, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
234 Lifetime Maximization in Wireless Ad Hoc Networks with Network Coding and Matrix Game

Authors: Jain-Shing Liu

Abstract:

In this paper, we present a matrix game-theoretic cross-layer optimization formulation to maximize the network lifetime in wireless ad hoc networks with network coding. To this end, we introduce a cross-layer formulation of general NUM (network utility maximization) that accommodates routing, scheduling, and stream control from different layers in the coded networks. Specifically, for the scheduling problem and then the objective function involved, we develop a matrix game with the strategy sets of the players corresponding to hyperlinks and transmission modes, and design the payoffs specific to the lifetime. In particular, with the inherit merit that matrix game can be solved with linear programming, our cross-layer programming formulation can benefit from both game-based and NUM-based approaches at the same time by cooperating the programming model for the matrix game with that for the other layers in a consistent framework. Finally, our numerical example demonstrates its performance results on a well-known wireless butterfly network to verify the cross-layer optimization scheme.

Keywords: Cross-layer design, Lifetime maximization, Matrix game, Network coding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
233 New Hybrid Method to Model Extreme Rainfalls

Authors: Y. Laaroussi, Z. Guennoun, A. Amar

Abstract:

Modeling and forecasting dynamics of rainfall occurrences constitute one of the major topics, which have been largely treated by statisticians, hydrologists, climatologists and many other groups of scientists. In the same issue, we propose, in the present paper, a new hybrid method, which combines Extreme Values and fractal theories. We illustrate the use of our methodology for transformed Emberger Index series, constructed basing on data recorded in Oujda (Morocco). The index is treated at first by Peaks Over Threshold (POT) approach, to identify excess observations over an optimal threshold u. In the second step, we consider the resulting excess as a fractal object included in one dimensional space of time. We identify fractal dimension by the box counting. We discuss the prospect descriptions of rainfall data sets under Generalized Pareto Distribution, assured by Extreme Values Theory (EVT). We show that, despite of the appropriateness of return periods given by POT approach, the introduction of fractal dimension provides accurate interpretation results, which can ameliorate apprehension of rainfall occurrences.

Keywords: Extreme values theory, Fractals dimensions, Peaks Over Threshold, Rainfall occurrences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
232 A Serializability Condition for Multi-step Transactions Accessing Ordered Data

Authors: Rafat Alshorman, Walter Hussak

Abstract:

In mobile environments, unspecified numbers of transactions arrive in continuous streams. To prove correctness of their concurrent execution a method of modelling an infinite number of transactions is needed. Standard database techniques model fixed finite schedules of transactions. Lately, techniques based on temporal logic have been proposed as suitable for modelling infinite schedules. The drawback of these techniques is that proving the basic serializability correctness condition is impractical, as encoding (the absence of) conflict cyclicity within large sets of transactions results in prohibitively large temporal logic formulae. In this paper, we show that, under certain common assumptions on the graph structure of data items accessed by the transactions, conflict cyclicity need only be checked within all possible pairs of transactions. This results in formulae of considerably reduced size in any temporal-logic-based approach to proving serializability, and scales to arbitrary numbers of transactions.

Keywords: multi-step transactions, serializability, directed graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
231 Voice Driven Applications in Non-stationary and Chaotic Environment

Authors: C. Kwan, X. Li, D. Lao, Y. Deng, Z. Ren, B. Raj, R. Singh, R. Stern

Abstract:

Automated operations based on voice commands will become more and more important in many applications, including robotics, maintenance operations, etc. However, voice command recognition rates drop quite a lot under non-stationary and chaotic noise environments. In this paper, we tried to significantly improve the speech recognition rates under non-stationary noise environments. First, 298 Navy acronyms have been selected for automatic speech recognition. Data sets were collected under 4 types of noisy environments: factory, buccaneer jet, babble noise in a canteen, and destroyer. Within each noisy environment, 4 levels (5 dB, 15 dB, 25 dB, and clean) of Signal-to-Noise Ratio (SNR) were introduced to corrupt the speech. Second, a new algorithm to estimate speech or no speech regions has been developed, implemented, and evaluated. Third, extensive simulations were carried out. It was found that the combination of the new algorithm, the proper selection of language model and a customized training of the speech recognizer based on clean speech yielded very high recognition rates, which are between 80% and 90% for the four different noisy conditions. Fourth, extensive comparative studies have also been carried out.

Keywords: Non-stationary, speech recognition, voice commands.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
230 A Review on Comparative Analysis of Path Planning and Collision Avoidance Algorithms

Authors: Divya Agarwal, Pushpendra S. Bharti

Abstract:

Autonomous mobile robots (AMR) are expected as smart tools for operations in every automation industry. Path planning and obstacle avoidance is the backbone of AMR as robots have to reach their goal location avoiding obstacles while traversing through optimized path defined according to some criteria such as distance, time or energy. Path planning can be classified into global and local path planning where environmental information is known and unknown/partially known, respectively. A number of sensors are used for data collection. A number of algorithms such as artificial potential field (APF), rapidly exploring random trees (RRT), bidirectional RRT, Fuzzy approach, Purepursuit, A* algorithm, vector field histogram (VFH) and modified local path planning algorithm, etc. have been used in the last three decades for path planning and obstacle avoidance for AMR. This paper makes an attempt to review some of the path planning and obstacle avoidance algorithms used in the field of AMR. The review includes comparative analysis of simulation and mathematical computations of path planning and obstacle avoidance algorithms using MATLAB 2018a. From the review, it could be concluded that different algorithms may complete the same task (i.e. with a different set of instructions) in less or more time, space, effort, etc.

Keywords: Autonomous mobile robots, obstacle avoidance, path planning, and processing time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
229 A New Hybrid K-Mean-Quick Reduct Algorithm for Gene Selection

Authors: E. N. Sathishkumar, K. Thangavel, T. Chandrasekhar

Abstract:

Feature selection is a process to select features which are more informative. It is one of the important steps in knowledge discovery. The problem is that all genes are not important in gene expression data. Some of the genes may be redundant, and others may be irrelevant and noisy. Here a novel approach is proposed Hybrid K-Mean-Quick Reduct (KMQR) algorithm for gene selection from gene expression data. In this study, the entire dataset is divided into clusters by applying K-Means algorithm. Each cluster contains similar genes. The high class discriminated genes has been selected based on their degree of dependence by applying Quick Reduct algorithm to all the clusters. Average Correlation Value (ACV) is calculated for the high class discriminated genes. The clusters which have the ACV value as 1 is determined as significant clusters, whose classification accuracy will be equal or high when comparing to the accuracy of the entire dataset. The proposed algorithm is evaluated using WEKA classifiers and compared. The proposed work shows that the high classification accuracy.

Keywords: Clustering, Gene Selection, K-Mean-Quick Reduct, Rough Sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303
228 OCR for Script Identification of Hindi (Devnagari) Numerals using Feature Sub Selection by Means of End-Point with Neuro-Memetic Model

Authors: Banashree N. P., R. Vasanta

Abstract:

Recognition of Indian languages scripts is challenging problems. In Optical Character Recognition [OCR], a character or symbol to be recognized can be machine printed or handwritten characters/numerals. There are several approaches that deal with problem of recognition of numerals/character depending on the type of feature extracted and different way of extracting them. This paper proposes a recognition scheme for handwritten Hindi (devnagiri) numerals; most admired one in Indian subcontinent. Our work focused on a technique in feature extraction i.e. global based approach using end-points information, which is extracted from images of isolated numerals. These feature vectors are fed to neuro-memetic model [18] that has been trained to recognize a Hindi numeral. The archetype of system has been tested on varieties of image of numerals. . In proposed scheme data sets are fed to neuro-memetic algorithm, which identifies the rule with highest fitness value of nearly 100 % & template associates with this rule is nothing but identified numerals. Experimentation result shows that recognition rate is 92-97 % compared to other models.

Keywords: OCR, Global Feature, End-Points, Neuro-Memetic model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
227 Effect of Aging on the Second Law Efficiency, Exergy Destruction and Entropy Generation in the Skeletal Muscles during Exercise

Authors: Jale Çatak, Bayram Yılmaz, Mustafa Ozilgen

Abstract:

The second law muscle work efficiency is obtained by multiplying the metabolic and mechanical work efficiencies. Thermodynamic analyses are carried out with 19 sets of arms and legs exercise data which were obtained from the healthy young people. These data are used to simulate the changes occurring during aging. The muscle work efficiency decreases with aging as a result of the reduction of the metabolic energy generation in the mitochondria. The reduction of the mitochondrial energy efficiency makes it difficult to carry out the maintenance of the muscle tissue, which in turn causes a decline of the muscle work efficiency. When the muscle attempts to produce more work, entropy generation and exergy destruction increase. Increasing exergy destruction may be regarded as the result of the deterioration of the muscles. When the exergetic efficiency is 0.42, exergy destruction becomes 1.49 folds of the work performance. This proportionality becomes 2.50 and 5.21 folds when the exergetic efficiency decreases to 0.30 and 0.17 respectively.

Keywords: Aging mitochondria, entropy generation, exergy destruction, muscle work performance, second law efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1384
226 Entrepreneurship Education as a 21st Century Strategy for Economic Growth and Sustainable Development

Authors: M. Fems Kurotimi, Agada Franklin, Godsave Aladei, Opigo Helen

Abstract:

Within the last 30 years, entrepreneurship education (EE) has continued to gain massive interest both in the field of research and among policy makers. This surge in interest can be attributed to the perceived importance EE plays in the equipping of potential entrepreneurs and as a 21st century strategy to foster economic growth and development. This paper sets out to ascertain the correlation between EE and economic growth and development. A desk research approach was adopted where a multiplicity of literatures in the field were studied intensely. The findings reveal that indeed EE has a positive effect on entrepreneurship engagement thereby fostering economic growth and development. However, some research studies reported the contrary. That although EE may be able to equip potential entrepreneurs with requisite entrepreneurial skills and competencies, it will only be successful in producing entrepreneurs if they are internally driven to become entrepreneurs, because we cannot make people what they are not. The findings also reveal that countries that adopted EE early have more innovations inspired by entrepreneurs and are more developed than those that only recently adopted EE as a viable tool for entrepreneurship and economic development.

Keywords: Entrepreneurship, entrepreneurship education, economic development, economic growth, sustainable development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
225 Comparison of Different Neural Network Approaches for the Prediction of Kidney Dysfunction

Authors: Ali Hussian Ali AlTimemy, Fawzi M. Al Naima

Abstract:

This paper presents the prediction of kidney dysfunction using different neural network (NN) approaches. Self organization Maps (SOM), Probabilistic Neural Network (PNN) and Multi Layer Perceptron Neural Network (MLPNN) trained with Back Propagation Algorithm (BPA) are used in this study. Six hundred and sixty three sets of analytical laboratory tests have been collected from one of the private clinical laboratories in Baghdad. For each subject, Serum urea and Serum creatinin levels have been analyzed and tested by using clinical laboratory measurements. The collected urea and cretinine levels are then used as inputs to the three NN models in which the training process is done by different neural approaches. SOM which is a class of unsupervised network whereas PNN and BPNN are considered as class of supervised networks. These networks are used as a classifier to predict whether kidney is normal or it will have a dysfunction. The accuracy of prediction, sensitivity and specificity were found for each type of the proposed networks .We conclude that PNN gives faster and more accurate prediction of kidney dysfunction and it works as promising tool for predicting of routine kidney dysfunction from the clinical laboratory data.

Keywords: Kidney Dysfunction, Prediction, SOM, PNN, BPNN, Urea and Creatinine levels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
224 Estimation of Real Power Transfer Allocation Using Intelligent Systems

Authors: H. Shareef, A. Mohamed, S. A. Khalid, Aziah Khamis

Abstract:

This paper presents application artificial intelligent (AI) techniques, namely artificial neural network (ANN), adaptive neuro fuzzy interface system (ANFIS), to estimate the real power transfer between generators and loads. Since these AI techniques adopt supervised learning, it first uses modified nodal equation method (MNE) to determine real power contribution from each generator to loads. Then the results of MNE method and load flow information are utilized to estimate the power transfer using AI techniques. The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of both AI methods compared to that of the MNE method. The mean squared error of the estimate of ANN and ANFIS power transfer allocation methods are 1.19E-05 and 2.97E-05, respectively. Furthermore, when compared to MNE method, ANN and ANFIS methods computes generator contribution to loads within 20.99 and 39.37msec respectively whereas the MNE method took 360msec for the calculation of same real power transfer allocation. 

Keywords: Artificial intelligence, Power tracing, Artificial neural network, ANFIS, Power system deregulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2594
223 Gene Expression Signature for Classification of Metastasis Positive and Negative Oral Cancer in Homosapiens

Authors: A. Shukla, A. Tarsauliya, R. Tiwari, S. Sharma

Abstract:

Cancer classification to their corresponding cohorts has been key area of research in bioinformatics aiming better prognosis of the disease. High dimensionality of gene data has been makes it a complex task and requires significance data identification technique in order to reducing the dimensionality and identification of significant information. In this paper, we have proposed a novel approach for classification of oral cancer into metastasis positive and negative patients. We have used significance analysis of microarrays (SAM) for identifying significant genes which constitutes gene signature. 3 different gene signatures were identified using SAM from 3 different combination of training datasets and their classification accuracy was calculated on corresponding testing datasets using k-Nearest Neighbour (kNN), Fuzzy C-Means Clustering (FCM), Support Vector Machine (SVM) and Backpropagation Neural Network (BPNN). A final gene signature of only 9 genes was obtained from above 3 individual gene signatures. 9 gene signature-s classification capability was compared using same classifiers on same testing datasets. Results obtained from experimentation shows that 9 gene signature classified all samples in testing dataset accurately while individual genes could not classify all accurately.

Keywords: Cancer, Gene Signature, SAM, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2082
222 Neural Network Based Approach of Software Maintenance Prediction for Laboratory Information System

Authors: Vuk M. Popovic, Dunja D. Popovic

Abstract:

Software maintenance phase is started once a software project has been developed and delivered. After that, any modification to it corresponds to maintenance. Software maintenance involves modifications to keep a software project usable in a changed or a changing environment, to correct discovered faults, and modifications, and to improve performance or maintainability. Software maintenance and management of software maintenance are recognized as two most important and most expensive processes in a life of a software product. This research is basing the prediction of maintenance, on risks and time evaluation, and using them as data sets for working with neural networks. The aim of this paper is to provide support to project maintenance managers. They will be able to pass the issues planned for the next software-service-patch to the experts, for risk and working time evaluation, and afterward to put all data to neural networks in order to get software maintenance prediction. This process will lead to the more accurate prediction of the working hours needed for the software-service-patch, which will eventually lead to better planning of budget for the software maintenance projects.

Keywords: Laboratory information system, maintenance engineering, neural networks, software maintenance, software maintenance costs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1139
221 Single Phase Fluid Flow in Series of Microchannel Connected via Converging-Diverging Section with or without Throat

Authors: Abhishek Kumar Chandra, Kaushal Kishor, Wasim Khan, Dhananjay Singh, M. S. Alam

Abstract:

Single phase fluid flow through series of uniform microchannels connected via transition section (converging-diverging section with or without throat) was analytically and numerically studied to characterize the flow within the channel and in the transition sections. Three sets of microchannels of diameters 100, 184, and 249 μm were considered for investigation. Each set contains 10 numbers of microchannels of length 20 mm, connected to each other in series via transition sections. Transition section consists of either converging-diverging section with throat or without throat. The effect of non-uniformity in microchannels on pressure drop was determined by passing water/air through the set of channels for Reynolds number 50 to 1000. Compressibility and rarefaction effects in transition sections were also tested analytically and numerically for air flow. The analytical and numerical results show that these configurations can be used in enhancement of transport processes. However, converging-diverging section without throat shows superior performance over with throat configuration.

Keywords: Contraction-expansion flow, integrated microchannel, microchannel network, single phase flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914
220 Classification of Political Affiliations by Reduced Number of Features

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

By the evolvement in technology, the way of expressing opinions switched direction to the digital world. The domain of politics, as one of the hottest topics of opinion mining research, merged together with the behavior analysis for affiliation determination in texts, which constitutes the subject of this paper. This study aims to classify the text in news/blogs either as Republican or Democrat with the minimum number of features. As an initial set, 68 features which 64 were constituted by Linguistic Inquiry and Word Count (LIWC) features were tested against 14 benchmark classification algorithms. In the later experiments, the dimensions of the feature vector reduced based on the 7 feature selection algorithms. The results show that the “Decision Tree”, “Rule Induction” and “M5 Rule” classifiers when used with “SVM” and “IGR” feature selection algorithms performed the best up to 82.5% accuracy on a given dataset. Further tests on a single feature and the linguistic based feature sets showed the similar results. The feature “Function”, as an aggregate feature of the linguistic category, was found as the most differentiating feature among the 68 features with the accuracy of 81% in classifying articles either as Republican or Democrat.

Keywords: Politics, machine learning, feature selection, LIWC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
219 A Procedure to Assess Streamflow Rating Curves and Streamflow Sequences

Authors: Elena Carcano, Mirzi Betasolo

Abstract:

This study aims to provide sub-hourly streamflow predictions and associated rating curves for small catchments of intermittent and torrential flow regime characterized by flash floods occurring especially during April and November. The methodology entails two lumped conceptual hydrological models which work in series. The total model is based upon eleven parameters and shows good flexibility in handling different input sets. Runoff Coefficient has contributed to improving the model’s performances and has been treated as an additional parameter; while Sensitivity Analysis has highlighted how slight changes in the model’s input can lead to changes in model’s output. The adopted procedure is steady and useful to give very practical engineering information at the expense of a parsimonious request both in input data and in the number of adopted parameters. According to the obtained results, the authors encourage the test of this combined procedure on different hydrological scenarios in order to provide information for poorly monitored catchments and not updated sites.

Keywords: Streamflow rating curve, chronological data, streamflow sequences, conceptual models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 430
218 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms

Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang

Abstract:

Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.

Keywords: Bioassay, machine learning, preprocessing, virtual screen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990
217 Effect of Personality Traits on Classification of Political Orientation

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

Today, there is a large number of political transcripts available on the Web to be mined and used for statistical analysis, and product recommendations. As the online political resources are used for various purposes, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do an automatic classification are based on different features that are classified under categories such as Linguistic, Personality etc. Considering the ideological differences between Liberals and Conservatives, in this paper, the effect of Personality traits on political orientation classification is studied. The experiments in this study were based on the correlation between LIWC features and the BIG Five Personality traits. Several experiments were conducted using Convote U.S. Congressional- Speech dataset with seven benchmark classification algorithms. The different methodologies were applied on several LIWC feature sets that constituted by 8 to 64 varying number of features that are correlated to five personality traits. As results of experiments, Neuroticism trait was obtained to be the most differentiating personality trait for classification of political orientation. At the same time, it was observed that the personality trait based classification methodology gives better and comparable results with the related work.

Keywords: Politics, personality traits, LIWC, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178
216 Piezoelectric Power Output Predictions Using Single-Phase Flow to Power Flow Meters

Authors: Umar Alhaji Mukhtar, Abubakar Mohammed El-jummah

Abstract:

This research involved the utilization of fluid flow energy to predict power output using Lead Zirconate Titanate (PZT) piezoelectric stacks. The aim of this work is to extract energy from a controlled level of pressure fluctuation in single-phase flow which forms a part of the energy harvesting technology that powers flow meters. A device- Perspex box was developed and fixed to 50.8 mm rig to induce pressure fluctuation in the flow. An experimental test was carried out using the single-phase water flow in the developed rig in order to measure the power output generation from the piezoelectric stacks. 16 sets of experimental tests were conducted to ensure the maximum output result. The acquired signal of the pressure fluctuation was used to simulate the expected electrical output from the piezoelectric material. The results showed a maximum output voltage of 12 V with an instantaneous output power of 1 µW generated, when the pressure amplitude is 2.6 kPa at a frequency of 2.4 Hz.

Keywords: Energy harvesting, experimental test, perspex rig, pressure fluctuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 712