Structural and Computational Studies of N-[(2,6-Diethylphenyl) carbamothioyl]-2,2-diphenylacetamide, N-[(3 Ethylphenyl) carbamothioyl]-2,2-diphenylacetamide and 2,2-Diphenyl-N-{[2-(trifluoromethyl) phenyl]carbamothioyl}acetamide
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Structural and Computational Studies of N-[(2,6-Diethylphenyl) carbamothioyl]-2,2-diphenylacetamide, N-[(3 Ethylphenyl) carbamothioyl]-2,2-diphenylacetamide and 2,2-Diphenyl-N-{[2-(trifluoromethyl) phenyl]carbamothioyl}acetamide

Authors: Ibrahim Abdul Razak, Suhana Arshad, Nur Rafikah Razali, Azhar Abdul Rahman, Mohd Sukeri Mohd Yusof

Abstract:

Theoretical investigations are performed by DFT method of B3LYP/6-31G+(2d,p) and B3LYP/6-311G+(2d,p) basis sets for three carbonyl thiourea compounds, namely N-[(2,6-Diethylphenyl)carbamothioyl]-2,2-diphenylacetamide (Compound I), N-[(3-Ethylphenyl)carbamothioyl]-2,2-diphenylacetamide (Compound II) and 2,2-Diphenyl-N-{[2-(trifluoromethyl)phenyl]carbamothioyl}acetamide (Compound III). Theoretical calculations for bond parameters, harmonic vibration frequencies and isotropic chemical shifts are in good agreement with the experimental results. The calculated molecular vibrations show good correlation values, which are 0.998 and 0.999 with the experimental data. The energy gap for compounds I, II and III calculated at B3LYP/6-31G+(2d,p) basis set are 4.455866117, 4.297495791 and 4.313550514 eV respectively, while for B3LYP/6-311G+(2d,p) basis set the energy gap obtained are 4.453689205 (Compound I), 4.311373603 (Compound II) and 4.315727426 (Compound III) eV.

Keywords: Crystallization, DFT studies, Spectroscopic Analysis, Thiourea.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1088618

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605

References:


[1] M. G. Babashkina, D. A. Safin, K. Robeyns and Y. Garcia, “Influence of polymorphism on N-thiophosphorylated thiourea 4- Me2NC6H4NHC(S)NHP(S)(OiPr)2 crystal design,” Inorganic Chemistry Communications, vol 18, pp. 34-37, 2012.
[2] A. Saeed, M. F. Erben and U. Flörke, “Effect of fluorine substitution on the crystal structures and vibrational properties of phenylthiourea isomers,” Journal of Molecular Structure, vol 982, pp. 91-99, 2010.
[3] N. Selvakumaran, S. W. Ng, E. R.T. Tiekink and R. Karvembu, “Versatile coordination behavior of N,N-di(alkyl/aryl)-N′- benzoylthiourea ligands: Synthesis, crystal structure and cytotoxicity of palladium(II) complexes,” Inorganica Chimica Acta, vol 376, pp. 278- 284, 2011.
[4] M. K. Rauf, Imtiaz-ud-Din,A. Badshah, M. Gielen, M. Ebihara, D. de Vos and S. Ahmed, “Synthesis, structural characterization and in vitro cytotoxicity and anti-bacterial activity of some copper(I) complexes with N,N′-disubstituted thioureas,” Journal of Inorganic Biochemistry, vol 103, pp. 1135-1144, 2009.
[5] R. del Campo, J. J. Criado, R. Gheorghe, F. J. González, M. R. Hermosa, F. Sanz, J. L. Manzano, E. Monte and E. Rodrı]guez- Fernández, “N-benzoyl-N′-alkylthioureas and their complexes with Ni(II), Co(III) and Pt(II) – crystal structure of 3-benzoyl-1-butyl-1- methyl-thiourea: activity against fungi and yeast,” Journal of Inorganic Biochemistry, vol 98, pp. 1307-1314, 2004.
[6] S. Saeed, N. Rashid, M. Ali, R. Hussain and P. G. Jones, “Synthesis, spectroscopic characterization, crystal structure and pharmacological properties of some novel thiophene-thiourea core derivatives,” European Journal of Chemistry, vol 1, pp. 221-227, 2010
[7] S. Saeed, N. Rashid, P. G. Jones, M. Ali and R. Hussain, “Synthesis, characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents,” European Journal of Medicinal Chemistry, vol 45, pp. 1232- 1331, 2010.
[8] P. C. Nair and M. E. Sobhia, “Quantitative structure activity relationship studies on thiourea analogues as influenza virus neuraminidase inhibitors,” European Journal of Medicinal Chemistry, vol 43, pp. 293- 299, 2008.
[9] H. Arslan, U. Flörke, N. Külcü and G. Binzet, “The molecular structure and vibrational spectra of 2-chloro-N-(diethylcarbamothioyl)benzamide by Harthree-Fork and density functional methods,” Spectrochemica Acta Part A, vol 68, pp. 1347-1355, 2007.
[10] M. S. M. Yusof, S. Arshad, I. A. Razak and A. A. Rahman, “4-tert- Butyl-N-
[(2,6-dimethylphenyl)-carbamothioyl]benzamide” Acta Crystallographica Section E, vol 68, pp o2670, 2012.
[11] M. S. M. Yusof, N. F. Embong, S. Arshad and I. A. Razak, “N-(4- Chlorobutanoyl)-N′-
[2-(trifluoromethyl) phenyl]thiourea” Acta Crystallographica Section E, vol 68, pp. o1029, 2012.
[12] M. S. M. Yusof, N. R. Razali, S. Arshad, A. A. Rahman and I. A. Razak, “N-
[(2,6-Diethylphenyl)carbamothioyl]-2,2-diphenylacetamide” Acta Crystallographica Section E, vol 69, pp o967, 2013.
[13] M. S. M. Yusof, N. R. Razali, S. Arshad, A. A. Rahman and I. A. Razak, “N-
[(3-Ethylphenyl)carbamothioyl]-2,2-diphenylacetamide” Acta Crystallographica Section E, vol 69, pp o1016-o1017, 2013.
[14] M. S. M. Yusof, N. R. Razali, S. Arshad, A. A. Rahman and I. A. Razak, “2,2-Diphenyl-N-{
[(2-(trifluoromethyl)phenyl]carbamothioyl}acetamide” Acta Crystallographica Section E, vol 69, pp o1255-o1256, 2013.
[15] J. Cosier and A. M. Glazer, J. Appl. Cryst., vol 19, pp. 105-107, 1986.
[16] Bruker. SADABS, APEX2 and SAINT. Bruker AXS Inc.: Madison, Wisconsin, USA. 2009
[17] G. M, Sheldrick, Acta Cryst. A, vol 64, pp. 112-122, 2008.
[18] A. L. Spek, Acta Cryst. D, vol 65, pp. 148-155, 2009.
[19] Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
[20] M. Atis, F. Karipchi, B. Sariboğa, M. Tas and H. çelik, “Structural, antimicrobial and computational characterization of 1-benzoyl-3-(5- chloro-2-hydroxyphenyl)thiourea,” Spectrochimica. Acta Part A: Molecular and Biomolecular Spectroscopy, vol 98, pp. 290-301, 2012.
[21] GaussView, Version 5, R. Dennington, T. Keith and J. Millam, Semichem Inc., Shawnee Mission KS, 2009.
[22] X.-E. Duan, X.-H. Wei, H.-B. Tong, S.-D. Bai, Y.-B Zhang, D.-S. Liu, “Ferrocene-modified pyrimidinyl acyl-thiourea derivatives: Synthesis, structures and electrochemistry,” Journal of Molecular Structure, vol 1005, pp. 91-99, 2011.
[23] O. Hritzová, J. Černák, P. Šafař, Z. Frıhlichová and I. Csıregh, “Furan derivatives of substituted phenylthiourea: spectral studies, semiempirical quantum-chemical calculations and X-ray structure analyses” Journal of Molecular Structure, vol 743, pp. 29-48, 2005.
[24] H. Arslan, D. S. Mansuroglu, D. VanDerveer and G. Binzet, “The molecular structure and vibrational spectra of N-(2-,2-diphenylacetyl)- N’-(naphthalene-1yl)-thiourea by Harthree-Fork and density Functional methods,” Spectrochemica Acta Part A: Molecular and Biomolecular Spectroscopy, vol 72, pp. 561-571, 2009.
[25] N. B. Arslan, C. Kazak and F. Aydin, “N-(4-Nitrobenzoyl)-N’-(1,5- dimethyl-3-oxo-2-phenyl-1H-3(2H)-pyrazolyl)-thiourea hydrate: Synthesis, spectroscopic characterization, X-ray structure and DFT studies,” Spectrochemica Acta Part A: Molecular and Biomolecular.