
A Serializability Condition for Multi-step
Transactions Accessing Ordered Data

Rafat Alshorman, Walter Hussak

Abstract—In mobile environments, unspecified numbers of trans-
actions arrive in continuous streams. To prove correctness of their
concurrent execution a method of modelling an infinite number of
transactions is needed. Standard database techniques model fixed
finite schedules of transactions. Lately, techniques based on temporal
logic have been proposed as suitable for modelling infinite sched-
ules. The drawback of these techniques is that proving the basic
serializability correctness condition is impractical, as encoding (the
absence of) conflict cyclicity within large sets of transactions results
in prohibitively large temporal logic formulae. In this paper, we show
that, under certain common assumptions on the graph structure of
data items accessed by the transactions, conflict cyclicity need only
be checked within all possible pairs of transactions. This results in
formulae of considerably reduced size in any temporal-logic-based
approach to proving serializability, and scales to arbitrary numbers
of transactions.

Keywords—multi-step transactions, serializability, directed graph.

I. INTRODUCTION

MOBILE computing and the World Wide Web (WWW)
have produced huge numbers of simultaneous users

executing transactions in transaction processing systems. The
scenario is one of unbounded numbers of transactions in-
coming and outgoing to databases in continuous streams and
accessing common data items [1]. It has been noted [2], [3],
[5] that modelling such systems, from the point of view of
ascertaining such properties as correctness and absence of star-
vation, requires modelling infinite rather than the fixed finite
schedules of classical database theory [4]. Infinite schedules
can be modelled in temporal logic [2], [3], [5]. However, there
is a significant drawback to modelling the main serializability
correctness condition.

The problem with specifying serializability is with spec-
ifying the existence of cycles in the infinite conflict graph
of a schedule or ‘history’ h. There are n! ways that a
cycle can occur between n transactions and an encoding
into temporal logic results in a formula whose length is of
order a factorial of the number of propositions that represent
different active transactions at any point in time. In the case
of a scheduler dealing with at most n active transactions
at any point in time, exhaustive proofs of serializability are
beyond even the most powerful model checkers available for
any realistic value of n. The work [5] gives an encoding of
serializability that is polynomial in such n, but uses a temporal

R. Alshorman is with the Department of computer science,
Loughborough University, Loughborough, LE11 3TU, UK, e-mail:
R.alshorman@lboro.ac.uk.

W. Hussak is with the Department of computer science, Loughborough
University, Loughborough, LE11 3TU, UK, e-mail: W.Hussak@lboro.ac.uk.

Manuscript received April 30, 2009; revised May 11, 2009.

logic of non-elementary computational complexity. In [2], a
polynomial encoding into plain LTL is achieved for 2-step
transactions. A much simpler encoding of serializability, that
is more amenable to model checking, is given for multi-step
transactions in [8], and requires cycles only to be checked
between pairs of transactions. However, the assumption there
is that all transactions access the same set of data items. In the
general case, where transactions access different sets of data
items, it is not sufficient to check for cycles between pairs of
transactions. Consider the case of 3 transactions T1, T2 and T3

which access the sets of data items {x, y}, {y, z} and {x, z}
respectively, where x, y and z are all different, and the history
h1 whose steps occur in the following order:

h1 = r3(x)w3(x)r1(x)w1(x)r1(y)

w1(y)r2(y)w2(y)r2(z)w2(z)r3(z)w3(z)

Here, for example, r3(x) denotes transaction T3 reading x,
and w3(x) transaction T3 writing to x. History h1 has the
following cycle of conflicts:

T3 → T1 → T2 → T3

(and is therefore not serializable). However, as can be checked,
there is no cycle between two transactions. In fact, as the
history h2 below shows, the absence of a cycle between any
n − 1 transactions does not guarantee the absence of a cycle
between n transactions:

h2 = rn(x1)wn(x1)r1(x1)w1(x1)r1(x2)w1(x2) . . .

. . . ri(xi)wi(xi)ri(xi+1)wi(xi+1) . . .

. . . rn−1(xn−1)wn−1(xn−1)rn−1(xn)wn−1(xn)rn(xn)wn(xn)

Here,
T1, . . . , Ti, . . . , Tn

access sets of data items

{x1, x2}, . . . , {xi, xi+1} . . . , {xn, x1}
where x1, . . . , xn are distinct. History h2 has the cycle

Tn → T1 → . . . Tn−1 → Tn

but no cycle of fewer than n transactions - if Ti (1 ≤ i ≤ n)
is removed from the history, the (acyclic) order of conflicts is:

Ti+1 → . . . → Tn → T1 → . . . → Ti−1

We notice that in the examples h1 and h2 above, it is
impossible to define an order on the data items, so that
each transaction only accesses sets of contiguous data items.
In this paper, we show that if such an order exists, then

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1064International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

4,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

67
8.

pd
f

to check for conflict cyclicity within sets of transactions,
it is sufficient to check for conflict cyclicity between pairs
of transactions. This results in a test for serializability of
concurrent multi-step transactions, similar to that in [8], but
for an entirely different class of transactions where the sets
of data items accessed by transactions need not be the same.
This paper is structured as follows. First of all, in Section II,
we give a model for infinite numbers of concurrent multi-step
transactions accessing ordered data. In Section III, we prove
that, in this model, a cycle exists in the (infinite) conflict graph
if and only if a cycle exists between two transactions. A formal
condition for serializability, that can be encoded into temporal
logic, is given in Section IV. Applications that satisfy this
model are discussed in Section V and concluding remarks are
given in Section VI.

II. CONCURRENT MULTI-STEP TRANSACTIONS MODEL

A. Histories

We shall denote the set of multi-step transactions by T =
{Ti : i ∈ N1}, where N1 is the set of positive integers. A
history (or schedule) h for the set T is an interleaved sequence
of all the read and write steps of all the transactions in T such
that the subsequence of h comprising the steps of Ti is exactly
the sequence of steps of Ti occurring in the order that they do
in Ti. We write si <h si′ if step si of Ti occurs before step
si′ of Ti′ in h. A read (respectively write) step, of transaction
i on data item x, is denoted ri(x) (respectively wi(x)). In the
next definition, we define formally an order on the set of the
data items from which data is accessed by transactions.

Definition 1. Let D = {x1, x2, . . . , xm} be an irreflexively
totally ordered, by <D say, set of data items such that

x1 <D . . . <D xm

and T = {Ti : i ∈ N1} be the set of transactions participating
in history h. Denote by Di the totally ordered set of data items
accessed in turn by transaction Ti assumed to be of the form

Di = {xa, xa+1, . . . , xb−1, xb},
where 1 ≤ a ≤ b ≤ m and Di ⊆ D. For the remainder
of this paper, if a set of data items D′ ⊆ D is denoted by
{xa, . . . , xb}, this will mean that xa <D . . . <D xb. We
shall denote the case of transaction Ti preceding transaction
Ti′ in accessing data items xp, . . . , xs in both read and
write operations over history h, as Ti <

xp,...,xs

h Ti′ where
xp, xp+1, . . . , xs ∈ Di ∩ Di′ .

For example, assume that Di and Di′ are:

Di = {x1, x2, x3}
Di′ = {x2, x3, x4, x5}

where x1 <D x2 <D x3 <D x4 <D x5. Then, in the history

h = . . . ri(x2)wi(x2) . . . ri(x3)wi(x3) . . . ri′(x2)wi′(x2)
. . . ri′(x3)wi′(x3) . . .

we have that Ti <x2,x3
h Ti′ .

B. Serializability

A serial history is a history in which all operations of
any transaction Ti are executed consecutively in the history.
Otherwise, the history is called nonserial. A ‘serializable’
history is a history h, that is ‘equivalent’ to some serial history
of the same transactions. Various notions of equivalence have
been defined as in, for example, [4] and [2] . In this paper, we
shall adopt the common ‘conflict equivalence’. Two histories
are conflict equivalent if the order of any two ‘conflicting’
operations is the same in both histories. Two operations
conflict if they belong to different transactions, access the same
data item, and at least one of them is a write.

Definition 2. Histories h1 and h2 of T = {Ti : i ∈ N1} are
equivalent, written as h1 ∼ h2, iff for all i, i′ ≥ 1, i 	= i′, and
for all x ∈ Di ∩ Di′ ,

1) if ri(x) <h1 wi′(x), then ri(x) <h2 wi′(x) and
2) if wi(x) <h1 wi′(x), then wi(x) <h2 wi′(x)

Definition 3. A history h of T = {Ti : i ∈ N1} is serializable
iff there is a serial history hS of T of the form, for each
i ∈ N1,

hS = ri(x) . . . wi(y) . . .
︸ ︷︷ ︸

only (all) steps of Ti

. . .

such that h ∼ hS .

C. Conflict graphs

‘Conflict graphs’ are widely used for testing conflict serial-
izability of finite histories of transactions in polynomial time
[4], [6], [7]. Definition 4, below, explains how we build the
conflict graph for a history. Theorem 5 states that acyclicity
of conflict graphs corresponds to serializability in the case of
infinite histories.

Definition 4. A directed graph is a pair G = (V,A), where
V is a set of elements called nodes, denoted nodes(G), and
A ⊆ V × V is a set of elements called arcs, denoted arcs(G).
A walk in a directed graph G = (V,A) is a sequence of nodes
(v1, v2, . . . , vn) such that (vi, vi+1) ∈ A for i = 1, . . . , n− 1.
A walk with no nodes repeated is called a path; it is a cycle
when only the first and last node coincide. For each history h,
there is a directed graph G(h) called the conflict graph of h.
This graph has the transactions of h as its nodes, and contains
an arc (Ti, Ti′), where Ti and Ti′ are distinct transactions
of h, whenever there is a step of Ti which conflicts with a
subsequent (in h) step of Ti′ .

Theorem 5. A history h of an infinite number of multi-step
transactions T = {Ti : i ∈ N1}, accessing data items in some
finite set D, is serializable iff its conflict graph G(h) is acyclic.

Proof: This theorem is proved as Theorem 3.2 in [8].

III. CYCLE REDUCTION IN CONFLICT GRAPHS

In this section, we prove a succession of properties of infi-
nite histories culminating in Theorem 11. Theorem 11 is the
main result and is used to give a condition for serializability
in Section IV that can be encoded efficiently into common

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1065International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

4,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

67
8.

pd
f

temporal logics such as CTL (Computational Tree Logic) or
LTL (Linear-time Temporal Logic).

The first two lemmas, Lemma 6 and Lemma 7, give basic
properties of the order <

xp,...,xs

h from Definition 1.

Lemma 6. Let h be a history with no cycle of length 2 in its
conflict graph, and suppose that x ∈ D and transactions Ti

and Tj are such that x ∈ Di ∩ Dj . Then,

either Ti <x
h Tj or Tj <x

h Ti (1)

Proof: By the definition of <x
h in Definition 1, the only

way (1) can fail is if two reads ri(x) and rj(x) occur before
the two writes wi(x) and wj(x). But, then the conflict graph
would have the cycle (Ti, Tj), (Tj , Ti) of length 2.

Lemma 7. Let h be a history with no cycle of length two
in its conflict graph G(h), Ti <

xa1 ,xa2
h Tj , and suppose that

xa lies between xa1 and xa2 , i.e. xa1 <D xa <D xa2 . Then,
Ti <xa

h Tj , (see Figure 1).

Proof: As xa1 , xa2 ∈ Di ∩ Dj , and as, by Definition 1,
Di and Dj contain contiguous elements, we have that xa ∈
Di ∩ Dj . If Ti <xa

h Tj does not hold then, by Lemma 6, we
must have that Tj <xa

h Ti. This implies that there is an arc in
G(h) such that (Tj , Ti). As Ti <

xa1
h Tj , there is another arc

(Ti, Tj) in G(h) thereby completing a cycle of length 2 and
contradicting the assumption that G(h) has no cycle of length
2.

•Tn

��•Tk

��

•Ti

xa1��

xa
������

��������

xa2

��•Tj

��

Fig. 1. The conflict graph G(h) for Lemma 7.

For the next property Lemma 8 below, consider the case
of three transactions Ti, Tj and Tk accessing data items such
that the data items accessed by Tj straddle those accessed by
Ti and Tk as follows:

Tj

︷ ︸︸ ︷

D = {. . . , xb′1 , xb′2 , . . . , xb′u
︸ ︷︷ ︸

Tk

, . . . , xa′
1
, xa′

2
, . . . , xa′

l
, . . .

︸ ︷︷ ︸

Ti

}

We claim that Ti, Tj , and Tk cannot be part of a cycle
in G(h) of length n where n > 2 if there is no cycle of
length 2. For example, assume that there are 4 ordered sets
of data items Di ⊇ {xa, xc}, Dj ⊇ {xb, xa}, Dk ⊇ {xz, xb}
and Dl ⊇ {xz, xc} accessed by corresponding transactions
Ti, Tj , Tk and Tl respectively, which form a cycle as in Figure
2 below. Since Dl contains xz and xc it follows, by Definition
1, that xb and xa are also in Dl, i.e.,

Dl ⊇ {xz, xb, xa, xc}.

•Tl
xc

��•Tk

xz

��

•Ti

xa��•Tj

xb

��

Fig. 2. The conflict graph G(h) which contains Ti, Tj , Tk and Tl.

Thus, xa ∈ Di ∩Dl and so, by Lemma 6, either Ti <xa

h Tl or
Tl <xa

h Ti. If Tl <xa

h Ti then, by transitivity of <xa

h , we can
reduce the cycle, as in Figure 3(a). But, if Ti <xa

h Tl then,
we have a cycle of length two; see Figure 3(b). Now, for the
case of Figure 3(a), from above we have that xb ∈ Dj ∩ Dl.
Therefore, by Lemma 6, either Tj <xb

h Tl or Tl <xb

h Tj . If
Tl <xb

h Tj then, by transitivity, we have a cycle of length two;
see Figure 4(b). But, if Tj <xb

h Tl, then we also have a cycle
of length two, see Figure 4(a). Below, Lemma 8 shows that
in fact our claim is true for n ≥ 3 number of transactions.
Lemma 8 will be used to prove Lemma 9.

•Tl
xc

��
xa

��

•Tk

xz

��

•Ti

xa��•Tj

xb

��

(a) Cycle reduction

•Tl
xc

��•Tk

xz

��

•Ti

xa��

xa

��

•Tj

xb

��

(b) Cycle of length two

Fig. 3. We can either reduce the cycle or make a cycle of length two.

•Tl

xa

		•Tk

xz

•Tj

xb

��
xb

��

(a) If Tj <
xb
h

Tl

•Tl

xa

		xb��•Tk

xz

•Tj

xb

��

(b) If Tl <
xb
h

Tj

Fig. 4. We have a cycle of length two if either Tj <
xb
h

Tl or Tl <
xb
h

Tj

Lemma 8. Suppose that Di, Dj and Dk are the sets of data
items accessed by Ti, Tj and Tk, respectively, and are of the
form

Di = {xa′
1
, xa′

2
, . . . , xa′

l
, . . . , xc, . . . }

Dj = {. . . , xb′1 , xb′2 , . . . , xb′u , . . . , xa′
1
, xa′

2
, . . . , xa′

l
, . . .}

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1066International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

4,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

67
8.

pd
f

Dk = {. . . , xb′1 , xb′2 , . . . , xb′u}
where, for all xa′ ∈ {xa′

i
: 1 ≤ i ≤ l} and xb′ ∈ {xb′g : 1 ≤

g ≤ u}, xb′ <D xa′ , xc /∈ Dj , Ti <
xa′
h Tj and Tj <

xb′
h Tk.

Then, there is no cycle in G(h) of minimum length n, where
n > 2 is of the form:

(Ti, Tj), (Tj , Tk), . . . , (Tl, Tl+1), . . . , (Ts, Ti)

and Ts <xc

h Ti.

Proof: Assume, on the contrary, that we have a cycle of
minimum length n > 2,

(Ti, Tj), (Tj , Tk), (T1, T2), . . . , (Ts, Ti) (s ≥ 0) (2)

(where s = 0 is the case Ts = Tk). Let x0 = xb′ , x1, . . . ,
xs = xc, xs+1 = xa′ be such that, putting Ti = Ts+1, Tj =
Ts+2, and Tk = T0:

Ts+1(= Ti) <
xa′
h Ts+2(= Tj), Ts+2(= Tj) <

xb′
h T0(= Tk), . . .

. . . , Tl <xl

h Tl+1, . . . , Ts <xs

h Ts+1(= Ti)

We have that xc >D xa′ >D xb′ , but, clearly, we cannot have

xa′ >D xb′ >D x1 >D . . . >D xl >D . . . >D xc >D xa′

Therefore, there is some l, with 0 ≤ l ≤ s − 1, such that

xl <D xl+1 >D xl+2 (3)

There are two cases to consider corresponding to (3):

Case (i) xl+2 <D xl <D xl+1. In this case, as

xl+2 <D xl <D xl+1,

and
Tl <xl

h Tl+1 <
xl+1
h Tl+2 <

xl+2
h Tl+3

we have that xl+1, xl+2 and therefore xl belong to Tl+2. As no
cycle of length 2 exists between Tl+1 and Tl+2, we must have
that Tl+1 <xl

h Tl+2. Therefore, as Tl <xl

h Tl+1, by transitivity
we have that Tl <xl

h Tl+2. This produces a cycle reduction of
(2), which is a contradiction.

Case (ii) xl <D xl+2 <D xl+1. In this case, as

xl <D xl+2 <D xl+1,

and
Tl <xl

h Tl+1 <
xl+1
h Tl+2 <

xl+2
h Tl+3

we have that xl, xl+1 and therefore xl+2 belong to Tl+1. As
no cycle of length 2 exists between Tl+1 and Tl+2, we must
have that Tl+1 <

xl+2
h Tl+2. By transitivity, from Tl+1 <

xl+2
h

Tl+2 and Tl+2 <
xl+2
h Tl+3, we get Tl+1 <

xl+2
h Tl+3 giving a

cycle reduction. This contradiction completes the proof of the
lemma.

Now, consider the case where z <D y <D x and T1, T2

and T3 access the following sets of data items

D1 = {x}, D2 = {y, x} and D3 = {z, y}.

Also, consider a history h, which contains T1, T2 and T3, of
the form:

h = . . . r2(y) . . . w2(y) . . . r3(y) . . . w3(y) . . . r1(x) . . . w1(x)
. . . r2(x) . . . w2(x) . . .

The corresponding conflict graph G(h), for the history h, is
shown in Figure 5. This shows a situation that Lemma 9 can
remove, i.e. Lemma 9 asserts that if we have cycle in G(h) of
length n, where n > 2, then, any three consecutive transactions
Ti, Tj and Tk, participating in G(h), should contain xa′ and
xb′ such that xa′ <D xb′ , Ti <

xa′
h Tj and Tj <

xb′
h Tk. We

need such xa′ and xb′ of Lemma 9 along with Lemma 10 to
prove the main result Theorem 11 that reduces to cycles of
length 2.

• •

•T3

•T1

x��•T2

y

��

Fig. 5. No cycle in G(h)

Lemma 9. Let h be a history with a cycle in G(h) of minimum
length n, where n > 2, containing arcs (Ti, Tj) and (Tj , Tk),
and xa, xb such that Ti <xa

h Tj and Tj <xb

h Tk, Then, there
exist xa′ , xb′ such that xa′ <D xb′ and Ti <

xa′
h Tj and

Tj <
xb′
h Tk.

Proof: Assume, on the contrary, that we have a cy-
cle in G(h) of length n, where n > 2, containing arcs
(Ti, Tj), (Tj , Tk) such that Ti <xa

h Tj and Tj <xb

h Tk for some
xa, xb, but that there are no xa′ , xb′ such that xa′ <D xb′

and Ti <
xa′
h Tj and Tj <

xb′
h Tk. This means that, for all

xa′ ∈ Di∩Dj such that Ti <
xa′
h Tj , and, for all xb′ ∈ Dj∩Dk

such that Tj <
xb′
h Tk, we have that xb′ <D xa′ . Therefore, Di

contains data items xa′ ∈ Di ∩Dj = {xa′
1
, xa′

2
, . . . , xa′

l
}, Dk

contains data items xb′ ∈ Dj ∩Dk = {xb′1 , xb′2 , . . . , xb′u} and
Dj contains all data items xa′ ∈ Di ∩Dj and xb′ ∈ Dj ∩Dk

so that Dj ⊇ {xb′1 , xb′2 , . . . , xb′u , . . . , xa′
1
, xa′

2
, . . . , xa′

l
}, i.e.

Dj is of the form:

Dj = {. . . , xb′1 , . . . , xb′u , . . . , xa′
1
, . . . , xa′

l
, . . . } (4)

We show, from (4), that, in fact, Di and Dk should be as
follows

Di = {xa′
1
, xa′

2
, . . . , xa′

l
, . . . } and (5)

Dk = {. . . , xb′1 , xb′2 , . . . , xb′u} (6)

Firstly, assume that (5) does not hold, i.e we can find xc ∈ Di

such that xc <D xa′
1

and

Di = {.
︸ ︷︷ ︸

xc

, xa′
1
, . . . , xa′

l
, . . . }.

From (4), we can choose xc to be such that xc ∈ Dj and
therefore xc ∈ Di ∩ Dj . If xc is such that Ti <xc

h Tj then,

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1067International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

4,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

67
8.

pd
f

xc ∈ {xa′
i

: 1 ≤ i ≤ l} and this contradicts our assumption
that xc <D xa′

1
. On the other hand, if Tj <xc

h Ti, we
have (Tj , Ti) in G(h) which with (Ti, Tj), from Ti <xa

h Tj ,
completes a cycle of length 2 which contradicts the hypothesis
of this lemma. Thus, we have now shown that (5) must hold.

Secondly, assume that (6) does not hold, i.e we can find
xc such that xb′u <D xc and xc ∈ Dk ∩ Dj . If xc is such
that Tj <xc

h Tk then, xc ∈ {xb′
i

: 1 ≤ i ≤ u} and this
contradicts our assumption that xb′u <D xc. On the other hand,
if Tk <xc

h Tj , we have an arc (Tk, Tj) in G(h) which, along
with the arc (Tj , Tk), forms a cycle of length 2 contradicting
the hypothesis of this lemma. Thus (6) must hold.

We shall now show that our main assumption that no
xa′ <D xb′ exists such that Ti <

xa′
h Tj and Tj <

xb′
h Tk,

leads to a contradiction. Since, we have a cycle, there is xc

and a transaction Ti−1 such that Ti−1 <xc

h Ti. We cannot
choose such xc in {xa′

i
: 1 ≤ i ≤ l} because then we could

reduce the cycle as we would have xc ∈ Tj and therefore
Ti−1 <xc

h Tj and an arc (Ti−1, Tj). Also, we cannot choose
xc such that xa′

l
<D xc and xc ∈ Dj as we could reduce the

cycle because then Ti−1 <xc

h Tj . However, if xa′
l
<D xc and

xc /∈ Dj , we have that

Di = {xa′
1
, xa′

2
, . . . , xa′

l
, . . . , xc, . . .}

and xc /∈ Dj giving the conditions of Lemma 8. Application
of Lemma 8 shows that (Ti, Tj) and (Tj , Tk) could not form
part of a cycle. This contradiction completes the proof.

Lemma 10. If h is a history with a cycle in G(h) of minimum
length n, where n > 2, and there are Ti, Tj and Tk such
that Ti <

xa′
h Tj , Tj <

xb′ ,xb′
1

h Tk, and xa′ <D xb′ . Then,
xa′ <D xb′1 , as in Figure 6.

Proof: Assume, on the contrary, that xb′1 <D xa′ . As
xa′ <D xb′ , then xa′ , xb′ and xb′1 will be ordered such that

xb′1 <D xa′ <D xb′ (7)

As xb′ ∈ Dj ∩ Dk and xb′1 ∈ Dj ∩ Dk then, by Lemma 7
and (7), xa′ ∈ Dj ∩ Dk. Therefore, we should have either
Tj <

xa′
h Tk or Tk <

xa′
h Tj . Now, if Tj <

xa′
h Tk, then we can

reduce the cycle via Ti <
xa′
h Tk giving a contradiction. But,

if Tk <
xa′
h Tj , then this gives an arc (Tk, Tj) which with the

arc (Tj , Tk) from Tj <
xb′
h Tk, completes a cycle of length 2

which is also a contradiction.

•Tn

��•Tk

��

•Ti

xa′��•Tj

xb′

�� xb′
1

��

Fig. 6. Represents Lemma 10

From the previous lemma, we conclude that if we have the data
item xa ∈ D such that Ti <xa

h Tj , {xbi
: 1 ≤ i ≤ u} ⊆ D

such that Tj <
xb1 ,...,xbu

h Tk, and there exists xb such that
xa <D xb, where xb ∈ {xbi : 1 ≤ i ≤ u}, then each data item
xb′ in {xbi : 1 ≤ i ≤ u} will be such that xa <D xb′ . This
will be used in the following Theorem 11.

Theorem 11. Let h be a history over transactions T = {Ti :
i ∈ N1}, where each Ti ∈ T accesses the data items Di ⊆
D. Then, if G(h) has a cycle of length n and n ≥ 3, there
are two transactions Ti1 , Ti2 such that G(h) has the cycle
(Ti1 ,Ti2),(Ti2 ,Ti1).

Proof: Assume that G(h) has a cycle

(T1, T2), (T2, T3), . . . , (Tn, T1) (8)

but no such cycle between two transactions. Choose
xa, xb, xc, . . . , xd such that:

T1 <xa

h T2, T2 <xb

h T3, T3 <xc

h T4, . . . , Tn <xd

h T1

(see Figure 7). Put:

xa′′ = min{xa′
i
∈ D : T1 <

xa′
i

D T2}

xb′′ = min{xb′
i
∈ D : T2 <

xb′
i

D T3}

xc′′ = min{xc′
i
∈ D : T3 <

xc′
i

D T4}

. . .

xd′′ = min{xd′
i
∈ D : Tn <

xd′
i

D T1}

(see Figure 8), where min is with respect to <D. By Lemma
9, there exist xa′ and xb′ such that:

xa′ <D xb′ , T1 <
xa′
h T2, T2 <

xb′
h T3

By Lemma 10, as T1 <
xa′
h T2, T2 <

xb′ ,xb′′
h T3 and xa′ <D

xb′ , we have that xa′ <D xb′′ . As, by the definition of xa′′ ,
xa′′ ≤D xa′ , we have that xa′′ ≤D xa′ <D xb′′ and so

xa′′ <D xb′′ (9)

In a similar fashion, we can prove that:

xb′′ <D xc′′ , . . . , xd′′ <D xa′′ (10)

From (9) and (10) we have that

xa′′ <D xb′′ , . . . , xd′′ <D xa′′

The contradiction xa′′ <D xa′′ completes the proof.
Theorem 11 shows that if we have a cycle in the conflict

graph G(h) of length n, where n > 2, then there is a cycle of
length two in G(h). This result is the basis of the serializability
condition for these kinds of transactions, given in Theorem 12,
below.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1068International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

4,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

67
8.

pd
f

•Tn−1
�� •Tn

xd

		•T4

��

•T1

xa��•T3

xc

��

•T2

xb

��

Fig. 7. Cycle in G(h) of length n

•Tn−1
������ •Tn xd′

1

		
xd

���
�

�����
�

xd′
2 ��•T4

��

•T1

xa′
1��

xa
���

�

�����
�

xa′
2

��•T3

xc′
1

��
xc����

������
xc′

2
��

•T2

xb′
1

�� xb��

xb′
2

��

Fig. 8. G(h), as in Figure 7, after applying Lemma 9

IV. THE SERIALIZABILITY CONDITION

Theorem 12 gives a condition for testing for cycles between
two transactions in a history and hence, by Theorem 5 and
Theorem 11, a test for serializability. The condition can easily
be expressed in either of the temporal logics CTL or LTL.

Theorem 12. A history h of transactions T = {Ti : i ∈ N1}
is serializable iff for any two transactions Ti, Ti′ ∈ T (i, i′ ≥
1, i 	= i′) one of them, Ti say, is such that, for all x ∈ Di∩Di′ ,
wi(x) <h ri′(x).

Proof: Only if part
Assume that h is a history where the condition is not satisfied.
One possibility is that there exists a data item x1 such that
ri′(x1) <h wi(x1), giving an arc (Ti′ , Ti) in G(h), and another
different data item x2 such that wi(x2) <h ri′(x2), giving an
arc (Ti, Ti′) in G(h) thereby completing a cycle. Hence, in this
case, by Theorem 5, h is not serializable. The other possibility
is that the condition is breached on a single data item, i.e. one
of the following cases:

. . . ri(x) . . . ri′(x) . . . wi(x) . . . wi′(x) . . . (11)

. . . ri′(x) . . . ri(x) . . . wi(x) . . . wi′(x) . . . (12)

. . . ri(x) . . . ri′(x) . . . wi′(x) . . . wi(x) . . . (13)
. . . ri′(x) . . . ri(x) . . . wi′(x) . . . wi(x) . . . (14)

In cases (11)-(14), it is clear that the conflict graphs of the
histories are cyclic and, by Theorem 5, not serializable.
If part
Assume that the history h is not serializable. We show that
the condition does not hold. To say that h is not serializable
means, by Theorem 5, that there exists a cycle in G(h). From
Theorem 11, G(h) has a cycle (Ti,Ti′),(Ti′ ,Ti), where i, i′ ≥ 1

and i 	= i′. Then, h is one of the following forms:

. . . ri(x) . . . ri′(x) . . . wi(x) . . . wi′(x) . . . (15)

. . . ri(x) . . . ri′(x) . . . wi′(x) . . . wi(x) . . . (16)

. . . ri′(x) . . . ri(x) . . . wi′(x) . . . wi(x) . . . (17)

. . . ri′(x) . . . ri(x) . . . wi(x) . . . wi′(x) . . . (18)
. . . ri(x) . . . wi′(x) . . . ri′(y) . . . wi(y) . . . (19)
. . . ri′(x) . . . wi(x) . . . ri(y) . . . wi′(y) . . . (20)

In (15)-(20) steps are underlined if they cause the condition to
be breached. Cases (15)-(18) are when one date item x causes
a cycle, and cases (19) and (20) are when 2 data items x and
y cause a cycle.

Definition 13. If T ′ ⊆ T , then the projection of h to T ′,
denoted hT ′ , is the history of T ′, obtained from h, by deleting
all steps of transactions not in T ′.

To explain how the serializability condition of Theorem 12 is
used to verify whether a history h is serializable or not, we
shall give the following example:
Let T1, T2, T3 and T4 be multi-step transactions as follows

T1 = r1(x2)w1(x2)r1(x3)w1(x3)r1(x4)w1(x4)
T2 = r2(x1)w2(x1)r2(x2)w2(x2)
T3 = r3(x2)w3(x2)r3(x3)w3(x3)r3(x4)w3(x4)r3(x5)w3(x5)
T4 = r4(x2)w4(x2)r4(x3)w4(x3).

Let D be the set of all data items as follows

D = {x1, x2, x3, x4, x5}

Also, let hT ′ be the history of T ′ = {Ti : 1 ≤ i ≤ 4}, where
T ′ ⊆ T ,

hT ′ = r1(x2)r2(x1)w2(x1)w1(x2)r2(x2)r3(x2)w3(x2)
w2(x2)r4(x2)w4(x2)r1(x3)w1(x3)r3(x3)w3(x3)
r4(x3)w4(x3)r1(x4)w1(x4)r3(x4)w3(x4)r3(x5)
w3(x5)

Firstly, we shall chop the history hT ′ up into sets of
histories each containing two different transactions. Then, we
shall check whether the serializability condition is satisfied
for each set, to see if the history hT ′ is serializable. If hT ′ is
not serializable, the main history h will not be serializable.
Consider:

h{T1,T2} = r1(x2)r2(x1)w2(x1)w1(x2)r2(x2)w2(x2)r1(x3)
w1(x3)r1(x4)w1(x4).

We notice, from h{T1,T2}, that D1∩D2 = {x2}. According to
the serializability condition in Theorem 12, if h is serializable
then, we should have either, for all x ∈ D1 ∩ D2, w1(x) <h

r2(x) or, for all x ∈ D1∩D2, w2(x) <h r1(x). From h{T1,T2},
we have w1(x2) <h r2(x2). This means that T1 and T2 satisfy
the condition. Next, consider:

h{T1,T3} = r1(x2)w1(x2)r3(x2)w3(x2)r1(x3)w1(x3)r3(x3)
w3(x3)r1(x4)w1(x4)r3(x4)w3(x4)r3(x5)w3(x5)

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1069International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

4,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

67
8.

pd
f

From h{T1,T3}, we notice that D1 ∩D3 = {x2, x3, x4}. Also,
we have for all x ∈ D1 ∩ D3, w1(x) <h r3(x). This means
that T1 and T3 satisfy the condition. Next, consider:

h{T1,T4} = r1(x2)w1(x2)r4(x2)w4(x2)r1(x3)w1(x3)r4(x3)
w4(x3)r1(x4)w1(x4).

In h{T1,T4}, we have, for all x ∈ D1 ∩ D4 = {x2, x3},
w1(x) <h r4(x). This means that T1 and T4 satisfy the
condition. Next, consider:

h{T2,T3} = r2(x1)w2(x1)r2(x2)r3(x2)w3(x2)w2(x2)r3(x3)
w3(x3)r3(x4)w3(x4)r3(x5)w3(x5).

In h{T2,T3}, we have r2(x2) <h w3(x2) and r3(x2) <h

w2(x2). This breaches the condition and therefore history h
is not serializable; see Figure 9. As h is not serializable, there
is no point in checking the serializability condition for the
remaining h{T2,T4} and h{T3,T4}.

h{T2,T4} = r2(x1)w2(x1)r2(x2)w2(x2)r4(x2)w4(x2)
r4(x3)w4(x3).

h{T3,T4} = r3(x2)w3(x2)r4(x2)w4(x2)r3(x3)w3(x3)r4(x3)
w4(x3)r3(x4)w3(x4)r3(x5)w3(x5).

•T1
x2

��

x2,x3

��
x2,x3,x4

��

•T4 •T2

x2��

x2
��

•T3

x2,x3

�� x2

��

Fig. 9. G(hT ′) is a subgraph of G(h).

V. APPLICATIONS

Dividing transactions into sets of steps to produce multi-
step transactions improves system throughput allowing the
interleaved transactions to gain more parallelism [1]. Examples
of multi-step transactions are when users enter data using a
sequence of forms. At the end of the sequence, the appli-
cation performs updates corresponding to input data. Desktop
applications using wizards are a simplification, for the user, of
the same process. In e-commerce sites, checkout flow can be
seen as a multi-step transaction. Booking e-tickets from travel
agencies also involves executing multi-step transactions. Ticket
booking from the web (or e-ticketing for events, amusements,
bus or flight tickets) is one of the widely available services in
E-commerce. Customers can access the database and book a
ticket at any time in any location.

The scenario of booking tickets is interesting in that the
list of destinations are naturally ordered. It involves browsing
the list of destinations, then checking the availability of seats,
and booking one or more of them consecutively. For example,
assume a passenger intends to book a ticket from location
A to E. Firstly, he/she has to browse the list of available

destinations from A. Secondly, choose the itinerary (the set
of destinations may transit during the journey). Finally, book
the itinerary. This scenario can be implemented as a multi-
step transaction accessing ordered data, where a read step
corresponds to browsing journey times from a destination, and
the write step represents the booking phase of a chosen time
to the next destination in the order. Assume that D represents
the set of available destinations in the travel agency starting
from A and ending at E, and xi ∈ D represents the next leg of
the journey from i, such that xi ∈ D. The ordered set of data
items is depicted in Figure 10. The widespread use of e-tickets
makes the number of incoming and outgoing transactions of
unknown even though, at any point in time, the number of
active transactions in the web server is finite.

•A �� •B �� •C �� •i xi

�� • �� •E

Fig. 10. Ordered set

VI. CONCLUSION

The emergence of mobile computing and the World Wide
Web (WWW) has resulted in an indeterminate numbers of
users expecting to execute their database transactions con-
currently. In this paper, we have provided a serializability
condition that can be used to verify the correctness of infinite
histories that can model such large numbers of transactions
in the case where the data accessed is ordered. The main ad-
vantage of the serializability condition which has been given,
is that the testing for serializability only requires considering
pairs of transactions. This makes testing for serializability
efficient and easy to encode into the widely used temporal
logics CTL and LTL. The modelling and verification process
is one of specifying a scheduler by a transition system,
encoding the serializability condition given here in temporal
logic (either CTL and LTL) and then running a model checker
to (automatically) perform the verification that the scheduler
satisfies the serializability condition in all executions. This can
all be done using common model checkers such as NuSMV
and SPIN.

Further work will look to define a serializability condition
for infinite histories of concurrent multi-step transactions ac-
cessing sets of data items with different graph properties which
have other applications in the real-world.

ACKNOWLEDGMENT

We would like to thank ZPU (Zarqa Private University) and
Loughborough University for their grant in making this work
possible.

REFERENCES

[1] R. Alshorman and W. Hussak, Multi-step transactions specification and
verification in a mobile database community. In 3rd IEEE International
Conference on Information Technologies: from Theory to Applications,
IEEE, ICTTA 08, Damacus, Syria, IEEE Computer Society Press, 2008,
pp. 1407-12.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1070International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

4,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

67
8.

pd
f

[2] W. Hussak, Specifying strict serializability of iterated transactions in
Propositional Temporal Logic, International Journal of Computer Science,
vol. 2, issue 2 (2007), pp. 150-156.

[3] W. Hussak, The serializability problem for a temporal logic of transaction
queries, Journal of Applied Non-Classical Logics, vol. 18, issue 1 (2008),
pp. 67-78.

[4] C.H. Papadimitriou, The Theory of Database Concurrency Control,
Computer Science Press, Pockville, Maryland, 1986.

[5] W. Hussak, Serializable histories in Quantified Propositional Temporal
Logic, International Journal of Computer Mathematics, vol. 81, issue 10
(2004), pp. 1203-1211.

[6] R. Elmasri and S. Navathe, Fundamental of Database Systems. Addison-
Wesley, Fourth Edition, 2004.

[7] A. Philip Bernstein, Vassos Hadzilacos and Nathan Goodman: Con-
currency Control and Recovery in Database Systems. Addison Wesley
Publishing Company, 1987.

[8] R. Alshorman and W. Hussak, Computational Tree Logics for specifying
multi-step transactions, April 2009, Internal Report, No. 1102.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1071International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

4,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

67
8.

pd
f

