Search results for: Decision support tool
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4350

Search results for: Decision support tool

3150 Gas Permeation Behavior of Single and Mixed Gas Components Using an Asymmetric Ceramic Membrane

Authors: Ngozi Nwogu, Edward Gobina

Abstract:

A dip-coating process has been used to form an asymmetric silica membrane with improved membrane performance and reproducibility. First, we deposited repeatedly silica on top of a commercial alumina membrane support to improve its structural make up. The membrane is further processed under clean room conditions to avoid dust impurity and subsequent drying in an oven for high thermal, chemical and physical stability. The resulting asymmetric membrane exhibits a gradual change in the membrane layer thickness. Compared to the support, the dual-layer process improves the gas flow rates. For the scientific applications for natural gas purification, CO2, CH4 and H2 gas flow rates were. In addition, the membrane selectively separated hydrogen.

Keywords: Gas permeation, Silica membrane, separation factor, membrane layer thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
3149 UTMGO: A Tool for Searching a Group of Semantically Related Gene Ontology Terms and Application to Annotation of Anonymous Protein Sequence

Authors: Razib M. Othman, Safaai Deris, Rosli M. Illias

Abstract:

Gene Ontology terms have been actively used to annotate various protein sets. SWISS-PROT, TrEMBL, and InterPro are protein databases that are annotated according to the Gene Ontology terms. However, direct implementation of the Gene Ontology terms for annotation of anonymous protein sequences is not easy, especially for species not commonly represented in biological databases. UTMGO is developed as a tool that allows the user to quickly and easily search for a group of semantically related Gene Ontology terms. The applicability of the UTMGO is demonstrated by applying it to annotation of anonymous protein sequence. The extended UTMGO uses the Gene Ontology terms together with protein sequences associated with the terms to perform the annotation task. GOPET, GOtcha, GoFigure, and JAFA are used to compare the performance of the extended UTMGO.

Keywords: Anonymous protein sequence, Gene Ontology, Protein sequence annotation, Protein sequence alignment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
3148 A Review: Comparative Analysis of Arduino Micro Controllers in Robotic Car

Authors: C. Rajan, B. Megala, A. Nandhini, C. Rasi Priya

Abstract:

Robotics brings together several very different engineering areas and skills. There are various types of robot such as humanoid robot, mobile robots, remotely operated vehicles, modern autonomous robots etc. This survey paper advocates the operation of a robotic car (remotely operated vehicle) that is controlled by a mobile phone (communicate on a large scale over a large distance even from different cities). The person makes a call to the mobile phone placed in the car. In the case of a call, if any one of the button is pressed, a tone equivalent to the button pressed is heard at the other end of the call. This tone is known as DTMF (Dual Tone Multiple Frequency). The car recognizes this DTMF tone with the help of the phone stacked in the car. The received tone is processed by the Arduino microcontroller. The microcontroller is programmed to acquire a decision for any given input and outputs its decision to motor drivers in order to drive the motors in the forward direction or backward direction or left or right direction. The mobile phone that makes a call to cell phone stacked in the car act as a remote.

Keywords: Arduino Micro-controller, Arduino UNO, DTMF, Mobile phone, Robotic car.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4238
3147 Value Index, a Novel Decision Making Approach for Waste Load Allocation

Authors: E. Feizi Ashtiani, S. Jamshidi, M.H Niksokhan, A. Feizi Ashtiani

Abstract:

Waste load allocation (WLA) policies may use multiobjective optimization methods to find the most appropriate and sustainable solutions. These usually intend to simultaneously minimize two criteria, total abatement costs (TC) and environmental violations (EV). If other criteria, such as inequity, need for minimization as well, it requires introducing more binary optimizations through different scenarios. In order to reduce the calculation steps, this study presents value index as an innovative decision making approach. Since the value index contains both the environmental violation and treatment costs, it can be maximized simultaneously with the equity index. It implies that the definition of different scenarios for environmental violations is no longer required. Furthermore, the solution is not necessarily the point with minimized total costs or environmental violations. This idea is testified for Haraz River, in north of Iran. Here, the dissolved oxygen (DO) level of river is simulated by Streeter-Phelps equation in MATLAB software. The WLA is determined for fish farms using multi-objective particle swarm optimization (MOPSO) in two scenarios. At first, the trade-off curves of TC-EV and TC-Inequity are plotted separately as the conventional approach. In the second, the Value-Equity curve is derived. The comparative results show that the solutions are in a similar range of inequity with lower total costs. This is due to the freedom of environmental violation attained in value index. As a result, the conventional approach can well be replaced by the value index particularly for problems optimizing these objectives. This reduces the process to achieve the best solutions and may find better classification for scenario definition. It is also concluded that decision makers are better to focus on value index and weighting its contents to find the most sustainable alternatives based on their requirements.

Keywords: Waste load allocation (WLA), Value index, Multi objective particle swarm optimization (MOPSO), Haraz River, Equity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
3146 The Adoption of Process Management for Accounting Information Systems in Thailand

Authors: Manirath Wongsim, Pawornprat Hongsakon

Abstract:

Information Quality (IQ) has become a critical, strategic issue in Accounting Information Systems (AIS) adoption. In order to implement AIS adoption successfully, it is important to consider the quality of information use throughout the adoption process, which seriously impacts the effectiveness of AIS adoption practice and the optimisation of AIS adoption decisions. There is a growing need for research to provide insights into issues and solutions related to IQ in AIS adoption. The need for an integrated approach to improve IQ in AIS adoption, as well as the unique characteristics of accounting data, demands an AIS adoption specific IQ framework. This research aims to explore ways of managing information quality and AIS adoption to investigate the relationship between the IQ issues and AIS adoption process. This study has led to the development of a framework for understanding IQ management in AIS adoption. This research was done on 44 respondents as ten organisations from manufacturing firms in Thailand. The findings of the research’s empirical evidence suggest that IQ dimensions in AIS adoption to provide assistance in all process of decision making. This research provides empirical evidence that information quality of AIS adoption affect decision making and suggests that these variables should be considered in adopting AIS in order to improve the effectiveness of AIS.

Keywords: Information quality, information quality dimensions, accounting information systems, accounting Information system adoption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3062
3145 An Ant Colony Optimization for Dynamic JobScheduling in Grid Environment

Authors: Siriluck Lorpunmanee, Mohd Noor Sap, Abdul Hanan Abdullah, Chai Chompoo-inwai

Abstract:

Grid computing is growing rapidly in the distributed heterogeneous systems for utilizing and sharing large-scale resources to solve complex scientific problems. Scheduling is the most recent topic used to achieve high performance in grid environments. It aims to find a suitable allocation of resources for each job. A typical problem which arises during this task is the decision of scheduling. It is about an effective utilization of processor to minimize tardiness time of a job, when it is being scheduled. This paper, therefore, addresses the problem by developing a general framework of grid scheduling using dynamic information and an ant colony optimization algorithm to improve the decision of scheduling. The performance of various dispatching rules such as First Come First Served (FCFS), Earliest Due Date (EDD), Earliest Release Date (ERD), and an Ant Colony Optimization (ACO) are compared. Moreover, the benefit of using an Ant Colony Optimization for performance improvement of the grid Scheduling is also discussed. It is found that the scheduling system using an Ant Colony Optimization algorithm can efficiently and effectively allocate jobs to proper resources.

Keywords: Grid computing, Distributed heterogeneous system, Ant colony optimization algorithm, Grid scheduling, Dispatchingrules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2706
3144 An Efficient Tool for Mitigating Voltage Unbalance with Reactive Power Control of Distributed Grid-Connected Photovoltaic Systems

Authors: Malinwo Estone Ayikpa

Abstract:

With the rapid increase of grid-connected PV systems over the last decades, genuine challenges have arisen for engineers and professionals of energy field in the planning and operation of existing distribution networks with the integration of new generation sources. However, the conventional distribution network, in its design was not expected to receive other generation outside the main power supply. The tools generally used to analyze the networks become inefficient and cannot take into account all the constraints related to the operation of grid-connected PV systems. Some of these constraints are voltage control difficulty, reverse power flow, and especially voltage unbalance which could be due to the poor distribution of single-phase PV systems in the network. In order to analyze the impact of the connection of small and large number of PV systems to the distribution networks, this paper presents an efficient optimization tool that minimizes voltage unbalance in three-phase distribution networks with active and reactive power injections from the allocation of single-phase and three-phase PV plants. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. Good reduction of voltage unbalance can be achieved by reactive power control of the PV systems. The presented tool is based on the three-phase current injection method and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems.

Keywords: Photovoltaic generation, primal-dual interior point method, three-phase optimal power flow, unbalanced system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1088
3143 The Effects of the Inference Process in Reading Texts in Arabic

Authors: May George

Abstract:

Inference plays an important role in the learning process and it can lead to a rapid acquisition of a second language. When learning a non-native language i.e., a critical language like Arabic, the students depend on the teacher’s support most of the time to learn new concepts. The students focus on memorizing the new vocabulary and stress on learning all the grammatical rules. Hence, the students became mechanical and cannot produce the language easily. As a result, they are unable to predicate the meaning of words in the context by relying heavily on the teacher, in that they cannot link their prior knowledge or even identify the meaning of the words without the support of the teacher. This study explores how the teacher guides students learning during the inference process and what are the processes of learning that can direct student’s inference.

Keywords: Inference, Reading, Arabic, and Language Acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
3142 The Characteristics of the Factors that Govern the Preferred Force in the Social Force Model of Pedestrian Movement

Authors: Zarita Zainuddin, Mohammed Mahmod Shuaib, Ibtesam M. Abu-Sulyman

Abstract:

The social force model which belongs to the microscopic pedestrian studies has been considered as the supremacy by many researchers and due to the main feature of reproducing the self-organized phenomena resulted from pedestrian dynamic. The Preferred Force which is a measurement of pedestrian-s motivation to adapt his actual velocity to his desired velocity is an essential term on which the model was set up. This Force has gone through stages of development: first of all, Helbing and Molnar (1995) have modeled the original force for the normal situation. Second, Helbing and his co-workers (2000) have incorporated the panic situation into this force by incorporating the panic parameter to account for the panic situations. Third, Lakoba and Kaup (2005) have provided the pedestrians some kind of intelligence by incorporating aspects of the decision-making capability. In this paper, the authors analyze the most important incorporations into the model regarding the preferred force. They make comparisons between the different factors of these incorporations. Furthermore, to enhance the decision-making ability of the pedestrians, they introduce additional features such as the familiarity factor to the preferred force to let it appear more representative of what actually happens in reality.

Keywords: Pedestrian movement, social force model, preferredforce, familiarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247
3141 A Promising Approach to Supporting Knowledge-Intensive Business Processes: Business Case Management

Authors: Zeljko Panian

Abstract:

Through the course of this paper we define Business Case Management and its characteristics, and highlight its link to knowledge workers. Business Case Management combines knowledge and process effectively, supporting the ad hoc and unpredictable nature of cases, and coordinate a range of other technologies to appropriately support knowledge-intensive processes. We emphasize the growing importance of knowledge workers and the current poor support for knowledge work automation. We also discuss the challenges in supporting this kind of knowledge work and propose a novel approach to overcome these challenges.

Keywords: Knowledge management, knowledge workers, business process management, business case management, automation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
3140 Analyzing the Technology Affecting on the Social Integration of Students at University

Authors: Sujit K. Basak, Simon Collin

Abstract:

The aim of this paper is to examine the technology access and use on the affecting social integration of local students at university. This aim is achieved by designing a structural equation modeling (SEM) in terms of integration with peers, integration with faculty, faculty support and on the other hand, examining the socio demographic impact on the technology access and use. The collected data were analyzed using the WarpPLS 5.0 software. This study was survey based and it was conducted at a public university in Canada. The results of the study indicated that technology has a strong impact on integration with faculty, faculty support, but technology does not have an impact on integration with peers. However, the social demographic has also an impact on the technology access and use.

Keywords: Faculty, integration, peer, technology access and use.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
3139 Prediction of Writer Using Tamil Handwritten Document Image Based on Pooled Features

Authors: T. Thendral, M. S. Vijaya, S. Karpagavalli

Abstract:

Tamil handwritten document is taken as a key source of data to identify the writer. Tamil is a classical language which has 247 characters include compound characters, consonants, vowels and special character. Most characters of Tamil are multifaceted in nature. Handwriting is a unique feature of an individual. Writer may change their handwritings according to their frame of mind and this place a risky challenge in identifying the writer. A new discriminative model with pooled features of handwriting is proposed and implemented using support vector machine. It has been reported on 100% of prediction accuracy by RBF and polynomial kernel based classification model.

Keywords: Classification, Feature extraction, Support vector machine, Training, Writer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2312
3138 Prediction of Writer Using Tamil Handwritten Document Image Based on Pooled Features

Authors: T. Thendral, M. S. Vijaya, S. Karpagavalli

Abstract:

Tamil handwritten document is taken as a key source of data to identify the writer. Tamil is a classical language which has 247 characters include compound characters, consonants, vowels and special character. Most characters of Tamil are multifaceted in nature. Handwriting is a unique feature of an individual. Writer may change their handwritings according to their frame of mind and this place a risky challenge in identifying the writer. A new discriminative model with pooled features of handwriting is proposed and implemented using support vector machine. It has been reported on 100% of prediction accuracy by RBF and polynomial kernel based classification model.

Keywords: Classification, Feature extraction, Support vector machine, Training, Writer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
3137 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method

Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas

Abstract:

To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.

Keywords: Building energy prediction, data mining, demand response, electricity market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
3136 Soft Cost Elements That Affect Developers’ Decision to Build Green

Authors: Nurul Zahirah M.A., N. Zainul Abidin, Azlan Raofuddin Nuruddin

Abstract:

Despite all the hype about green building, many developers are still resistant to the idea of building green due to the common perception that green building construction is expensive. This contradicts with scholarly findings that identify only a marginal cost premium or none at all given that green design is considered during the design process and planning stage. Nevertheless, cost implications continue to become an issue when deciding to build green. The planning stage is of strategic importance as decisions made at this early stage would influence the project cost thereafter. Using analysis of existing literature, the paper identifies six elements of soft cost that are considered in the planning stage. The elements include consultants, green building consultant, certification, commissioning, market, and tax. Out of the six elements, commissioning represents the bulk of soft cost for buildings seeking green certification. The study concluded that, although hard cost may have a bigger impact on the project cost, but soft cost is the hidden cost which people tend to ignore. Poor consideration of soft cost during planning stage may lead to over-realistic expectations and ultimately, overlooked cost additions.

Keywords: Green building, cost element, soft cost, developer decision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
3135 Numerical Modeling of Various Support Systems to Stabilize Deep Excavations

Authors: M. Abdallah

Abstract:

Urban development requires deep excavations near buildings and other structures. Deep excavation has become more a necessity for better utilization of space as the population of the world has dramatically increased. In Lebanon, some urban areas are very crowded and lack spaces for new buildings and underground projects, which makes the usage of underground space indispensable. In this paper, a numerical modeling is performed using the finite element method to study the deep excavation-diaphragm wall soil-structure interaction in the case of nonlinear soil behavior. The study is focused on a comparison of the results obtained using different support systems. Furthermore, a parametric study is performed according to the remoteness of the structure.

Keywords: Deep excavation, ground anchors, interaction, struts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1088
3134 Neuro-fuzzy Model and Regression Model a Comparison Study of MRR in Electrical Discharge Machining of D2 Tool Steel

Authors: M. K. Pradhan, C. K. Biswas,

Abstract:

In the current research, neuro-fuzzy model and regression model was developed to predict Material Removal Rate in Electrical Discharge Machining process for AISI D2 tool steel with copper electrode. Extensive experiments were conducted with various levels of discharge current, pulse duration and duty cycle. The experimental data are split into two sets, one for training and the other for validation of the model. The training data were used to develop the above models and the test data, which was not used earlier to develop these models were used for validation the models. Subsequently, the models are compared. It was found that the predicted and experimental results were in good agreement and the coefficients of correlation were found to be 0.999 and 0.974 for neuro fuzzy and regression model respectively

Keywords: Electrical discharge machining, material removal rate, neuro-fuzzy model, regression model, mountain clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
3133 Predication Model for Leukemia Diseases Based on Data Mining Classification Algorithms with Best Accuracy

Authors: Fahd Sabry Esmail, M. Badr Senousy, Mohamed Ragaie

Abstract:

In recent years, there has been an explosion in the rate of using technology that help discovering the diseases. For example, DNA microarrays allow us for the first time to obtain a "global" view of the cell. It has great potential to provide accurate medical diagnosis, to help in finding the right treatment and cure for many diseases. Various classification algorithms can be applied on such micro-array datasets to devise methods that can predict the occurrence of Leukemia disease. In this study, we compared the classification accuracy and response time among eleven decision tree methods and six rule classifier methods using five performance criteria. The experiment results show that the performance of Random Tree is producing better result. Also it takes lowest time to build model in tree classifier. The classification rules algorithms such as nearest- neighbor-like algorithm (NNge) is the best algorithm due to the high accuracy and it takes lowest time to build model in classification.

Keywords: Data mining, classification techniques, decision tree, classification rule, leukemia diseases, microarray data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2558
3132 An Anomaly Detection Approach to Detect Unexpected Faults in Recordings from Test Drives

Authors: Andreas Theissler, Ian Dear

Abstract:

In the automotive industry test drives are being conducted during the development of new vehicle models or as a part of quality assurance of series-production vehicles. The communication on the in-vehicle network, data from external sensors, or internal data from the electronic control units is recorded by automotive data loggers during the test drives. The recordings are used for fault analysis. Since the resulting data volume is tremendous, manually analysing each recording in great detail is not feasible. This paper proposes to use machine learning to support domainexperts by preventing them from contemplating irrelevant data and rather pointing them to the relevant parts in the recordings. The underlying idea is to learn the normal behaviour from available recordings, i.e. a training set, and then to autonomously detect unexpected deviations and report them as anomalies. The one-class support vector machine “support vector data description” is utilised to calculate distances of feature vectors. SVDDSUBSEQ is proposed as a novel approach, allowing to classify subsequences in multivariate time series data. The approach allows to detect unexpected faults without modelling effort as is shown with experimental results on recordings from test drives.

Keywords: Anomaly detection, fault detection, test drive analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
3131 Efficient Scheduling Algorithm for QoS Support in High Speed Downlink Packet Access Networks

Authors: MohammadReza HeidariNezhad, Zuriati Ahmad Zukarnain, Nur Izura Udzir, Mohamed Othman

Abstract:

In this paper, we propose APO, a new packet scheduling scheme with Quality of Service (QoS) support for hybrid of real and non-real time services in HSDPA networks. The APO scheduling algorithm is based on the effective channel anticipation model. In contrast to the traditional schemes, the proposed method is implemented based on a cyclic non-work-conserving discipline. Simulation results indicated that proposed scheme has good capability to maximize the channel usage efficiency in compared to another exist scheduling methods. Simulation results demonstrate the effectiveness of the proposed algorithm.

Keywords: Scheduling Algorithm, Quality of Service, HSDPA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
3130 Networked Implementation of Milling Stability Optimization with Bayesian Learning

Authors: C. Ramsauer, J. Karandikar, D. Leitner, T. Schmitz, F. Bleicher

Abstract:

Machining instability, or chatter, can impose an important limitation to discrete part machining. In this work, a networked implementation of milling stability optimization with Bayesian learning is presented. The milling process was monitored with a wireless sensory tool holder instrumented with an accelerometer at the TU Wien, Vienna, Austria. The recorded data from a milling test cut were used to classify the cut as stable or unstable based on a frequency analysis. The test cut result was used in a Bayesian stability learning algorithm at the University of Tennessee, Knoxville, Tennessee, USA. The algorithm calculated the probability of stability as a function of axial depth of cut and spindle speed based on the test result and recommended parameters for the next test cut. The iterative process between two transatlantic locations was repeated until convergence to a stable optimal process parameter set was achieved.

Keywords: Bayesian learning, instrumented tool holder, machining stability, optimization strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 539
3129 Marketing Mix for Tourism in the Chonburi Province

Authors: Pisit Potjanajaruwit

Abstract:

The objectives of the study were to determine the marketing mix factors that influencing tourist’s destination decision making for cultural tourism in the Chonburi province. Both quantitative and qualitative data were applied in this study. The samples of 400 cases for quantitative analysis were tourists (both Thai and foreign) who were interested in cultural tourism in the Chonburi province, and traveled to cultural sites in Chonburi and 14 representatives from provincial tourism committee of Chonburi and local tourism experts. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. The study found that Thai and foreign tourists are influenced by different important marketing mix factors. The important factors for Thai respondents were physical evidence, price, people, and place at high importance level. For foreign respondents, physical evidence, price, people, and process were high importance level, whereas, product, place and promotion were moderate importance level.

Keywords: Chonburi Province, Decision Making for cultural tourism, Marketing Mixed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3599
3128 Two Concurrent Convolution Neural Networks TC*CNN Model for Face Recognition Using Edge

Authors: T. Alghamdi, G. Alaghband

Abstract:

In this paper we develop a model that couples Two Concurrent Convolution Neural Network with different filters (TC*CNN) for face recognition and compare its performance to an existing sequential CNN (base model). We also test and compare the quality and performance of the models on three datasets with various levels of complexity (easy, moderate, and difficult) and show that for the most complex datasets, edges will produce the most accurate and efficient results. We further show that in such cases while Support Vector Machine (SVM) models are fast, they do not produce accurate results.

Keywords: Convolution neural network, edges, face recognition, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 729
3127 Storage Method for Parts from End of Life Vehicles' Dismantling Process According to Sustainable Development Requirements: Polish Case Study

Authors: M. Kosacka, I. Kudelska

Abstract:

Vehicle is one of the most influential and complex product worldwide, which affects people’s life, state of the environment and condition of the economy (all aspects of sustainable development concept) during each stage of lifecycle. With the increase of vehicles’ number, there is growing potential for management of End of Life Vehicle (ELV), which is hazardous waste. From one point of view, the ELV should be managed to ensure risk elimination, but from another point, it should be treated as a source of valuable materials and spare parts. In order to obtain materials and spare parts, there are established recycling networks, which are an example of sustainable policy realization at the national level. The basic object in the polish recycling network is dismantling facility. The output material streams in dismantling stations include waste, which very often generate costs and spare parts, that have the biggest potential for revenues creation. Both outputs are stored into warehouses, according to the law. In accordance to the revenue creation and sustainability potential, it has been placed a strong emphasis on storage process. We present the concept of storage method, which takes into account the specific of the dismantling facility in order to support decision-making process with regard to the principles of sustainable development. The method was developed on the basis of case study of one of the greatest dismantling facility in Poland.

Keywords: Dismantling, end of life vehicle, sustainability, storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
3126 Online Teaching and Learning Processes: Declarative and Procedural Knowledge

Authors: Eulalia Torras, Andreu Bellot

Abstract:

To know whether students’ achievements are the result of online interaction and not just a consequence of individual differences themselves, it seems essential to link the teaching presence and social presence to the types of knowledge built. The research aim is to analyze the social presence in relation to two types of knowledge, declarative and procedural. Qualitative methodology has been used. The analysis of the contents was based on an observation protocol that included community of enquiry indicators and procedural and declarative knowledge indicators. The research has been conducted in three phases that focused on an observational protocol and indicators, results and conclusions. Results show that the teaching-learning processes have been characterized by the patterns of presence and types of knowledge. Results also show the importance of social presence support provided by the teacher and the students, not only in regard to the nature of the instructional support but also concerning how it is presented to the student and the importance that is attributed to it in the teaching-learning process, that is, what it is that assistance is offered on. In this study, we find that the presence based on procedural guidelines and declarative reflection, the management of shared meaning on the basis of the skills and the evidence of these skills entail patterns of learning. Nevertheless, the importance that the teacher attributes to each support aspect has a bearing on the extent to which the students reflect more on the given task.

Keywords: Education, online, teaching and learning processes, knowledge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
3125 Gamification of eHealth Business Cases to Enhance Rich Learning Experience

Authors: Kari Björn

Abstract:

Introduction of games has expanded the application area of computer-aided learning tools to wide variety of age groups of learners. Serious games engage the learners into a real-world -type of simulation and potentially enrich the learning experience. Institutional background of a Bachelor’s level engineering program in Information and Communication Technology is introduced, with detailed focus on one of its majors, Health Technology. As part of a Customer Oriented Software Application thematic semester, one particular course of “eHealth Business and Solutions” is described and reflected in a gamified framework. Learning a consistent view into vast literature of business management, strategies, marketing and finance in a very limited time enforces selection of topics relevant to the industry. Health Technology is a novel and growing industry with a growing sector in consumer wearable devices and homecare applications. The business sector is attracting new entrepreneurs and impatient investor funds. From engineering education point of view the sector is driven by miniaturizing electronics, sensors and wireless applications. However, the market is highly consumer-driven and usability, safety and data integrity requirements are extremely high. When the same technology is used in analysis or treatment of patients, very strict regulatory measures are enforced. The paper introduces a course structure using gamification as a tool to learn the most essential in a new market: customer value proposition design, followed by a market entry game. Students analyze the existing market size and pricing structure of eHealth web-service market and enter the market as a steering group of their company, competing against the legacy players and with each other. The market is growing but has its rules of demand and supply balance. New products can be developed with an R&D-investment, and targeted to market with unique quality- and price-combinations. Product cost structure can be improved by investing to enhanced production capacity. Investments can be funded optionally by foreign capital. Students make management decisions and face the dynamics of the market competition in form of income statement and balance sheet after each decision cycle. The focus of the learning outcome is to understand customer value creation to be the source of cash flow. The benefit of gamification is to enrich the learning experience on structure and meaning of financial statements. The paper describes the gamification approach and discusses outcomes after two course implementations. Along the case description of learning challenges, some unexpected misconceptions are noted. Improvements of the game or the semi-gamified teaching pedagogy are discussed. The case description serves as an additional support to new game coordinator, as well as helps to improve the method. Overall, the gamified approach has helped to engage engineering student to business studies in an energizing way.

Keywords: Engineering education, integrated curriculum, learning experience, learning outcomes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958
3124 Polymer Aerostatic Thrust Bearing under Circular Support for High Static Stiffness

Authors: S. W. Lo, C.-H. Yu

Abstract:

A new design of aerostatic thrust bearing is proposed for high static stiffness. The bearing body, which is mead of polymer covered with metallic membrane, is held by a circular ring. Such a support helps form a concave air gap to grasp the air pressure. The polymer body, which can be made rapidly by either injection or molding is able to provide extra damping under dynamic loading. The smooth membrane not only serves as the bearing surface but also protects the polymer body. The restrictor is a capillary inside a silicone tube. It can passively compensate the variation of load by expanding the capillary diameter for more air flux. In the present example, the stiffness soars from 15.85 N/μm of typical bearing to 349.85 N/μm at bearing elevation 9.5 μm; meanwhile the load capacity also enhances from 346.86 N to 704.18 N.

Keywords: Aerostatic, bearing, polymer, static stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085
3123 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: Breast cancer, health diagnosis, Machine Learning, biomarker classification, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 322
3122 A Short Glimpse to Environmental Management at Alborz Integrated Land and Water Management Project-Iran

Authors: Zahra Morshedi

Abstract:

Environmental considerations have become an integral part of developmental thinking and decision making in many countries. It is growing rapidly in importance as a discipline of its own. Preventive approaches have been used at the evolutional process of environmental management as a broad and dynamic system for dealing with pollution and environmental degradation. In this regard, Environmental Assessment as an activity for identification and prediction of project’s impacts carried out in the world and its legal significance dates back to late 1960. In Iran, according to the Article 2 of Environmental Protection Act, Environmental Impact Assessment (EIA) should be prepared for seven categories of project. This article has been actively implementing by Department of Environment at 1997. World Bank in 1989 attempted to introducing application of Environmental Assessment for making decision about projects which are required financial assistance in developing countries. So, preparing EIA for obtaining World Bank loan was obligated. Alborz Project is one of the World Bank Projects in Iran which is environmentally significant. Seven out of ten W.B safeguard policies were considered at this project. In this paper, Alborz project, objectives, safeguard policies and role of environmental management will be elaborated

Keywords: AILWMP, EIA, Environmental Management, Safeguard Policies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
3121 The Taiwanese Institutional Arrangement for Coastal Management Due to Climate Change

Authors: Wen-Hong Liu, Hao-Tang Jhan, Kun-Lung Lin, Meng-Tsung Lee

Abstract:

Weather disaster events were frequent and caused loss of lives and property in Taiwan recently. Excessive concentration of population and lacking of integrated planning led to Taiwanese coastal zone face the impacts of climate change directly. Comparing to many countries which have already set up legislation, competent authorities and national adaptation strategies, the ability of coastal management adapting to climate change is still insufficient in Taiwan. Therefore, it is necessary to establish a complete institutional arrangement for coastal management due to climate change in order to protect environment and sustain socio-economic development. This paper firstly reviews the impact of climate change on Taiwanese coastal zone. Secondly, development of Taiwanese institutional arrangement of coastal management is introduced. Followed is the analysis of four dimensions of legal basis, competent authority, scientific and financial support and international cooperations of institutional arrangement. The results show that Taiwanese government shall: 1) integrate climate change issue into Coastal Act, Wetland Act and territorial planning Act and pass them; 2) establish the high level competent authority for coastal management; 3) set up the climate change disaster coordinate platform; 4) link scientific information and decision markers; 5) establish the climate change adjustment fund; 6) participate in international climate change organizations and meetings actively; 7) cooperate with near countries to exchange experiences.

Keywords: Climate Change, Coastal Zone Management, Institution Arrangement, Adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967