Search results for: Ascending Sort Index Vector
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1842

Search results for: Ascending Sort Index Vector

642 An Improved Adaptive Dot-Shape Beamforming Algorithm Research on Frequency Diverse Array

Authors: Yanping Liao, Zenan Wu, Ruigang Zhao

Abstract:

Frequency diverse array (FDA) beamforming is a technology developed in recent years, and its antenna pattern has a unique angle-distance-dependent characteristic. However, the beam is always required to have strong concentration, high resolution and low sidelobe level to form the point-to-point interference in the concentrated set. In order to eliminate the angle-distance coupling of the traditional FDA and to make the beam energy more concentrated, this paper adopts a multi-carrier FDA structure based on proposed power exponential frequency offset to improve the array structure and frequency offset of the traditional FDA. The simulation results show that the beam pattern of the array can form a dot-shape beam with more concentrated energy, and its resolution and sidelobe level performance are improved. However, the covariance matrix of the signal in the traditional adaptive beamforming algorithm is estimated by the finite-time snapshot data. When the number of snapshots is limited, the algorithm has an underestimation problem, which leads to the estimation error of the covariance matrix to cause beam distortion, so that the output pattern cannot form a dot-shape beam. And it also has main lobe deviation and high sidelobe level problems in the case of limited snapshot. Aiming at these problems, an adaptive beamforming technique based on exponential correction for multi-carrier FDA is proposed to improve beamforming robustness. The steps are as follows: first, the beamforming of the multi-carrier FDA is formed under linear constrained minimum variance (LCMV) criteria. Then the eigenvalue decomposition of the covariance matrix is ​​performed to obtain the diagonal matrix composed of the interference subspace, the noise subspace and the corresponding eigenvalues. Finally, the correction index is introduced to exponentially correct the small eigenvalues ​​of the noise subspace, improve the divergence of small eigenvalues ​​in the noise subspace, and improve the performance of beamforming. The theoretical analysis and simulation results show that the proposed algorithm can make the multi-carrier FDA form a dot-shape beam at limited snapshots, reduce the sidelobe level, improve the robustness of beamforming, and have better performance.

Keywords: Multi-carrier frequency diverse array, adaptive beamforming, correction index, limited snapshot, robust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 676
641 Analysis of Translational Ship Oscillations in a Realistic Environment

Authors: Chen Zhang, Bernhard Schwarz-Röhr, Alexander Härting

Abstract:

To acquire accurate ship motions at the center of gravity, a single low-cost inertial sensor is utilized and applied on board to measure ship oscillating motions. As observations, the three axes accelerations and three axes rotational rates provided by the sensor are used. The mathematical model of processing the observation data includes determination of the distance vector between the sensor and the center of gravity in x, y, and z directions. After setting up the transfer matrix from sensor’s own coordinate system to the ship’s body frame, an extended Kalman filter is applied to deal with nonlinearities between the ship motion in the body frame and the observation information in the sensor’s frame. As a side effect, the method eliminates sensor noise and other unwanted errors. Results are not only roll and pitch, but also linear motions, in particular heave and surge at the center of gravity. For testing, we resort to measurements recorded on a small vessel in a well-defined sea state. With response amplitude operators computed numerically by a commercial software (Seaway), motion characteristics are estimated. These agree well with the measurements after processing with the suggested method.

Keywords: Extended Kalman filter, nonlinear estimation, sea trial, ship motion estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1052
640 Displaying of GnRH Peptides on Bacteriophage T7 and Its Immunogenicity in Mice Model

Authors: Hai Xu, Yiwei Wang, Xi Bao, Bihua Deng, Pengcheng Li, Yu Lu

Abstract:

T7 phage could be used as a perfect vector for peptides expression and haptens presentation. T7-3GnRH recombinant phage was constructed by inserting three copies of Gonadotrophin Releasing Hormone (GnRH) gene into the multiple cloning site of T7 Select 415-1b phage genome. The positive T7-3GnRH phage was selected by using polymerase chain reaction amplification, and the p10B-3GnRH fusion protein was verified by SDS-PAGE and Western-blotting assay. T7-3GnRH vaccine was made and immunized with 1010 pfu in 0.2 ml per dose in mice. Blood samples were collected at an interval in weeks, and anti-GnRH antibody and testosterone concentrations were detected by ELISA and radioimmunoassay, respectively. The results show that T7-3GnRH phage particles confer a high immunogenicity to the GnRH-derived epitope. Moreover, the T7-3GnRH vaccine induced higher level of anti-GnRH antibody than ImproVac®. However, the testosterone concentrations in both immunized groups were at a similar level, and the testis developments were significantly inhibited compared to controls. These findings demonstrated that the anti-GnRH antibody could neutralize the endogenous GnRH to down regulate testosterone level and limit testis development, highlighting the potential value of T7-3GnRH in the immunocastration vaccine research.

Keywords: Gonadotrophin releasing hormone, GnRH, immunocastration, T7 phage, phage vaccine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1107
639 Application of Neural Network for Contingency Ranking Based on Combination of Severity Indices

Authors: S. Jadid, S. Jalilzadeh

Abstract:

In this paper, an improved technique for contingency ranking using artificial neural network (ANN) is presented. The proposed approach is based on multi-layer perceptrons trained by backpropagation to contingency analysis. Severity indices in dynamic stability assessment are presented. These indices are based on the concept of coherency and three dot products of the system variables. It is well known that some indices work better than others for a particular power system. This paper along with test results using several different systems, demonstrates that combination of indices with ANN provides better ranking than a single index. The presented results are obtained through the use of power system simulation (PSS/E) and MATLAB 6.5 software.

Keywords: composite indices, transient stability, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223
638 Controlled Vocabularies and Information Retrieval: 1918 Pandemic’s Scientific Literature as an Example

Authors: M. Garcia-Alsina, J. Cobarsí

Abstract:

The role of controlled vocabularies in information retrieval is broadly recognized as a relevant feature. Besides, there is a standing demand that editors and databases should consider the effective introduction of controlled vocabularies in their procedures to index scientific literature. That is especially important because information retrieval is pointed out as a significant point to drive systematic literature review. Hence, a first question emerges: Are the controlled vocabularies at this moment considered? On the other hand, subject searching in the catalogs is complex mainly due to the dichotomy between keywords from authors versus keywords based on controlled vocabularies. Finally, there is some demand to unify the terminology related to health to make easier the medical history exploitation and research. Considering these features, this paper focuses on controlled vocabularies related to the health field and their role for storing, classifying, and retrieving relevant literature. The objective is knowing which role plays the controlled vocabularies related to the health field to index and retrieve research literature in data bases such as Web of Science (WoS) and Scopus. So, this exploratory research is grounded over two research questions: 1) Which are the terms considered in specific controlled vocabularies of the health field; and 2) How papers are indexed in relevant databases to be easily retrieved, considering keywords vs specific health’ controlled vocabularies? This research takes as fieldwork the controlled vocabularies related to health and the scientific interest for 1918 flu pandemic, also known equivocally as ‘Spanish flu’. This interest has been fostered by the emergence in the early 21st of epidemics of pneumonic diseases caused by virus. Searches about and with controlled vocabularies on WoS and Scopus databases are conducted. First results of this work in progress are surprising. There are different controlled vocabularies for the health field, into which the terms collected and preferred related to ‘1918 pandemic’ are identified. To summarize, ‘Spanish influenza epidemic’ or ‘Spanish flu’ are collected as not preferred terms. The preferred terms are: ‘influenza’ or ‘influenza pandemic, 1918-1919’. Although the controlled vocabularies are clear in their election, most of the literature about ‘1918 pandemic’ is retrievable either by ‘Spanish’ or by ‘1918’ disjunct, and the dominant word to retrieve literature is ‘Spanish’ rather than ‘1918’. This is surprising considering the existence of suitable controlled vocabularies related to health topics, and the modern guidelines of World Health Organization concerning naming of diseases that point out to other preferred terms. A first conclusion is the failure of using controlled vocabularies for a field such as health, and in consequence for WoS and Scopus. This research opens further research questions about which is the role that controlled vocabularies play in the instructions to authors that journals deliver to documents’ authors.

Keywords: Controlled vocabularies, indexing, 1918 influenza, information retrieval, keywords, 1918 pandemic, scientific databases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 426
637 Modeling Prices of Electricity Futures at EEX

Authors: Robest Flasza, Milan Rippel, Jan Solc

Abstract:

The main aim of this paper is to develop and calibrate an econometric model for modeling prices of long term electricity futures contracts. The calibration of our model is performed on data from EEX AG allowing us to capture the specific features of German electricity market. The data sample contains several structural breaks which have to be taken into account for modeling. We model the data with an ARIMAX model which reveals high correlation between the price of electricity futures contracts and prices of LT futures contracts of fuels (namely coal, natural gas and crude oil). Besides this, also a share price index of representative electricity companies traded on Xetra, spread between 10Y and 1Y German bonds and exchange rate between EUR and USD appeared to have significant explanatory power over these futures contracts on EEX.

Keywords: electricity futures, EEX, ARIMAX, emissionallowances

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
636 A Servo Control System Using the Loop Shaping Design Procedure

Authors: Naohiro Ban, Hiromitsu Ogawa, Manato Ono, Yoshihisa Ishida

Abstract:

This paper describes an expanded system for a servo system design by using the Loop Shaping Design Procedure (LSDP). LSDP is one of the H∞ design procedure. By conducting Loop Shaping with a compensator and robust stabilization to satisfy the index function, we get the feedback controller that makes the control system stable. In this paper, we propose an expanded system for a servo system design and apply to the DC motor. The proposed method performs well in the DC motor positioning control. It has no steady-state error in the disturbance response and it has robust stability.

Keywords: Loop Shaping Design Procedure (LSDP), servosystem, DC motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2409
635 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method

Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas

Abstract:

To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.

Keywords: Building energy prediction, data mining, demand response, electricity market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
634 RAPD Analysis of Genetic Diversity of Castor Bean

Authors: M. Vivodík, Ž. Balážová, Z. Gálová

Abstract:

The aim of this work was to detect genetic variability among the set of 40 castor genotypes using 8 RAPD markers. Amplification of genomic DNA of 40 genotypes, using RAPD analysis, yielded in 66 fragments, with an average of 8.25 polymorphic fragments per primer. Number of amplified fragments ranged from 3 to 13, with the size of amplicons ranging from 100 to 1200 bp. Values of the polymorphic information content (PIC) value ranged from 0.556 to 0.895 with an average of 0.784 and diversity index (DI) value ranged from 0.621 to 0.896 with an average of 0.798. The dendrogram based on hierarchical cluster analysis using UPGMA algorithm was prepared and analyzed genotypes were grouped into two main clusters and only two genotypes could not be distinguished. Knowledge on the genetic diversity of castor can be used for future breeding programs for increased oil production for industrial uses.

Keywords: Dendrogram, polymorphism, RAPD technique, Ricinus communis L.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2630
633 Algorithms for Computing of Optimization Problems with a Common Minimum-Norm Fixed Point with Applications

Authors: Apirak Sombat, Teerapol Saleewong, Poom Kumam, Parin Chaipunya, Wiyada Kumam, Anantachai Padcharoen, Yeol Je Cho, Thana Sutthibutpong

Abstract:

This research is aimed to study a two-step iteration process defined over a finite family of σ-asymptotically quasi-nonexpansive nonself-mappings. The strong convergence is guaranteed under the framework of Banach spaces with some additional structural properties including strict and uniform convexity, reflexivity, and smoothness assumptions. With similar projection technique for nonself-mapping in Hilbert spaces, we hereby use the generalized projection to construct a point within the corresponding domain. Moreover, we have to introduce the use of duality mapping and its inverse to overcome the unavailability of duality representation that is exploit by Hilbert space theorists. We then apply our results for σ-asymptotically quasi-nonexpansive nonself-mappings to solve for ideal efficiency of vector optimization problems composed of finitely many objective functions. We also showed that the obtained solution from our process is the closest to the origin. Moreover, we also give an illustrative numerical example to support our results.

Keywords: σ-asymptotically quasi-nonexpansive nonselfmapping, strong convergence, fixed point, uniformly convex and uniformly smooth Banach space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1094
632 Geotechnical Characteristics of Miocenemarl in the Region of Medea North-South Highway, Algeria

Authors: Y. Yongli, M. H. Aissa

Abstract:

The purpose of this paper aims for a geotechnical analysis based on experimental physical and mechanical characteristics of Miocene marl situated at Medea region in Algeria. More than 150 soil samples were taken in the investigation part of the North-South Highway which extends over than 53 km from Chiffa in the North to Berrouaghia in the South of Algeria. The analysis of data in terms of Atterberg limits, plasticity index, and clay content reflects an acceptable correlation justified by a high coefficient of regression which was compared with the previous works in the region. Finally, approximated equations that serve as a guideline for geotechnical design locally have been suggested.

Keywords: Correlation, geotechnical properties, Miocene marl, north-south highway.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
631 Emotion Classification for Students with Autism in Mathematics E-learning using Physiological and Facial Expression Measures

Authors: Hui-Chuan Chu, Min-Ju Liao, Wei-Kai Cheng, William Wei-Jen Tsai, Yuh-Min Chen

Abstract:

Avoiding learning failures in mathematics e-learning environments caused by emotional problems in students with autism has become an important topic for combining of special education with information and communications technology. This study presents an adaptive emotional adjustment model in mathematics e-learning for students with autism, emphasizing the lack of emotional perception in mathematics e-learning systems. In addition, an emotion classification for students with autism was developed by inducing emotions in mathematical learning environments to record changes in the physiological signals and facial expressions of students. Using these methods, 58 emotional features were obtained. These features were then processed using one-way ANOVA and information gain (IG). After reducing the feature dimension, methods of support vector machines (SVM), k-nearest neighbors (KNN), and classification and regression trees (CART) were used to classify four emotional categories: baseline, happy, angry, and anxious. After testing and comparisons, in a situation without feature selection, the accuracy rate of the SVM classification can reach as high as 79.3-%. After using IG to reduce the feature dimension, with only 28 features remaining, SVM still has a classification accuracy of 78.2-%. The results of this research could enhance the effectiveness of eLearning in special education.

Keywords: Emotion classification, Physiological and facial Expression measures, Students with autism, Mathematics e-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
630 Determination of an Efficient Differentiation Pathway of Stem Cells Employing Predictory Neural Network Model

Authors: Mughal Yar M, Israr Ul Haq, Bushra Noman

Abstract:

The stem cells have ability to differentiated themselves through mitotic cell division and various range of specialized cell types. Cellular differentiation is a way by which few specialized cell develops into more specialized.This paper studies the fundamental problem of computational schema for an artificial neural network based on chemical, physical and biological variables of state. By doing this type of study system could be model for a viable propagation of various economically important stem cells differentiation. This paper proposes various differentiation outcomes of artificial neural network into variety of potential specialized cells on implementing MATLAB version 2009. A feed-forward back propagation kind of network was created to input vector (five input elements) with single hidden layer and one output unit in output layer. The efficiency of neural network was done by the assessment of results achieved from this study with that of experimental data input and chosen target data. The propose solution for the efficiency of artificial neural network assessed by the comparatative analysis of “Mean Square Error" at zero epochs. There are different variables of data in order to test the targeted results.

Keywords: Computational shcmin, meiosis, mitosis, neuralnetwork, Stem cell SOM;

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
629 Diagnosing the Cause and its Timing of Changes in Multivariate Process Mean Vector from Quality Control Charts using Artificial Neural Network

Authors: Farzaneh Ahmadzadeh

Abstract:

Quality control charts are very effective in detecting out of control signals but when a control chart signals an out of control condition of the process mean, searching for a special cause in the vicinity of the signal time would not always lead to prompt identification of the source(s) of the out of control condition as the change point in the process parameter(s) is usually different from the signal time. It is very important to manufacturer to determine at what point and which parameters in the past caused the signal. Early warning of process change would expedite the search for the special causes and enhance quality at lower cost. In this paper the quality variables under investigation are assumed to follow a multivariate normal distribution with known means and variance-covariance matrix and the process means after one step change remain at the new level until the special cause is being identified and removed, also it is supposed that only one variable could be changed at the same time. This research applies artificial neural network (ANN) to identify the time the change occurred and the parameter which caused the change or shift. The performance of the approach was assessed through a computer simulation experiment. The results show that neural network performs effectively and equally well for the whole shift magnitude which has been considered.

Keywords: Artificial neural network, change point estimation, monte carlo simulation, multivariate exponentially weighted movingaverage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
628 Static Voltage Stability Margin Enhancement Using SVC and TCSC

Authors: Mohammed Amroune, Hadi Sebaa, Tarek Bouktir

Abstract:

Reactive power limit of power system is one of the major causes of voltage instability. The only way to save the system from voltage instability is to reduce the reactive power load or add additional reactive power to reaching the point of voltage collapse. In recent times, the application of FACTS devices is a very effective solution to prevent voltage instability due to their fast and very flexible control. In this paper, voltage stability assessment with SVC and TCSC devices is investigated and compared in the modified IEEE 30-bus test system. The fast voltage stability indicator (FVSI) is used to identify weakest bus and to assess the voltage stability of power system.

Keywords: SVC, TCSC, Voltage stability, Fast Voltage Stability Index (FVSI), Reactive power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4074
627 Automatic Generation Control Design Based on Full State Vector Feedback for a Multi-Area Energy System Connected via Parallel AC/DC Lines

Authors: Gulshan Sharma

Abstract:

This article presents the design of optimal automatic generation control (AGC) based on full state feedback control for a multi-area interconnected power system. An extra high voltage AC transmission line in parallel with a high voltage DC link is considered as an area interconnection between the areas. The optimal AGC are designed and implemented in the wake of 1% load perturbation in one of the areas and the system dynamic response plots for various system states are obtained to investigate the system dynamic performance. The pattern of closed-loop eigenvalues are also determined to analyze the system stability. From the investigations carried out in the work, it is revealed that the dynamic performance of the system under consideration has an appreciable improvement when a high voltage DC line is paralleled with an extra high voltage AC line as an interconnection between the areas. The investigation of closed-loop eigenvalues reveals that the system stability is ensured in all case studies carried out with the designed optimal AGC.

Keywords: Automatic generation control, area control error, DC link, optimal AGC regulator, closed-loop eigenvalues.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 825
626 Sol-gel Synthesis and Optical Characterisation of TiO2 Thin Films for Photovoltaic Application

Authors: N. H. Arabi, Aicha Iratni, Talaighil Razika, Bruno Capoen, Mohamed Bouazaoui

Abstract:

TiO2 thin films have been prepared by the sol-gel dipcoating technique in order to elaborate antireflective thin films for monocrystalline silicon (mono-Si). The titanium isopropoxyde was chosen as a precursor with hydrochloric acid as a catalyser for preparing a stable solution. The optical properties have been tailored with varying the solution concentration, the withdrawn speed, and the heat-treatment. We showed that using a TiO2 single layer with 64.5 nm in thickness, heat-treated at 450°C or 300°C reduces the mono-Si reflection at a level lower than 3% over the broadband spectral domains [669-834] nm and [786-1006] nm respectively. Those latter performances are similar to the ones obtained with double layers of low and high refractive index glasses respectively.

Keywords: Dip coating, mono-Si, titanium oxide, thin film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2323
625 High-Power Amplifier Pre-distorter Based on Neural Networks for 5G Satellite Communications

Authors: Abdelhamid Louliej, Younes Jabrane

Abstract:

Satellites are becoming indispensable assets to fifth-generation (5G) new radio architecture, complementing wireless and terrestrial communication links. The combination of satellites and 5G architecture allows consumers to access all next-generation services anytime, anywhere, including scenarios, like traveling to remote areas (without coverage). Nevertheless, this solution faces several challenges, such as a significant propagation delay, Doppler frequency shift, and high Peak-to-Average Power Ratio (PAPR), causing signal distortion due to the non-linear saturation of the High-Power Amplifier (HPA). To compensate for HPA non-linearity in 5G satellite transmission, an efficient pre-distorter scheme using Neural Networks (NN) is proposed. To assess the proposed NN pre-distorter, two types of HPA were investigated: Travelling Wave Tube Amplifier (TWTA) and Solid-State Power Amplifier (SSPA). The results show that the NN pre-distorter design presents an Error Vector Magnitude (EVM) improvement by 95.26%. Normalized Mean Square Error (NMSE) and Adjacent Channel Power Ratio (ACPR) were reduced by -43,66 dB and 24.56 dBm, respectively. Moreover, the system suffers no degradation of the Bit Error Rate (BER) for TWTA and SSPA amplifiers.

Keywords: Satellites, 5G, Neural Networks, High-Power Amplifier, Travelling Wave Tube Amplifier, Solid-State Power Amplifier, EVM, NMSE, ACPR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 106
624 GMDH Modeling Based on Polynomial Spline Estimation and Its Applications

Authors: LI qiu-min, TIAN yi-xiang, ZHANG gao-xun

Abstract:

GMDH algorithm can well describe the internal structure of objects. In the process of modeling, automatic screening of model structure and variables ensure the convergence rate.This paper studied a new GMDH model based on polynomial spline  stimation. The polynomial spline function was used to instead of the transfer function of GMDH to characterize the relationship between the input variables and output variables. It has proved that the algorithm has the optimal convergence rate under some conditions. The empirical results show that the algorithm can well forecast Consumer Price Index (CPI).

Keywords: spline, GMDH, nonparametric, bias, forecast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
623 View-Point Insensitive Human Pose Recognition using Neural Network

Authors: Sanghyeok Oh, Yunli Lee, Kwangjin Hong, Kirak Kim, Keechul Jung

Abstract:

This paper proposes view-point insensitive human pose recognition system using neural network. Recognition system consists of silhouette image capturing module, data driven database, and neural network. The advantages of our system are first, it is possible to capture multiple view-point silhouette images of 3D human model automatically. This automatic capture module is helpful to reduce time consuming task of database construction. Second, we develop huge feature database to offer view-point insensitivity at pose recognition. Third, we use neural network to recognize human pose from multiple-view because every pose from each model have similar feature patterns, even though each model has different appearance and view-point. To construct database, we need to create 3D human model using 3D manipulate tools. Contour shape is used to convert silhouette image to feature vector of 12 degree. This extraction task is processed semi-automatically, which benefits in that capturing images and converting to silhouette images from the real capturing environment is needless. We demonstrate the effectiveness of our approach with experiments on virtual environment.

Keywords: Computer vision, neural network, pose recognition, view-point insensitive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327
622 Web Application to Profiling Scientific Institutions through Citation Mining

Authors: Hector D. Cortes, Jesus A. del Rio, Esther O. Garcia, Miguel Robles

Abstract:

Recently the use of data mining to scientific bibliographic data bases has been implemented to analyze the pathways of the knowledge or the core scientific relevances of a laureated novel or a country. This specific case of data mining has been named citation mining, and it is the integration of citation bibliometrics and text mining. In this paper we present an improved WEB implementation of statistical physics algorithms to perform the text mining component of citation mining. In particular we use an entropic like distance between the compression of text as an indicator of the similarity between them. Finally, we have included the recently proposed index h to characterize the scientific production. We have used this web implementation to identify users, applications and impact of the Mexican scientific institutions located in the State of Morelos.

Keywords: Citation Mining, Text Mining, Science Impact

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
621 A Codebook-based Redundancy Suppression Mechanism with Lifetime Prediction in Cluster-based WSN

Authors: Huan Chen, Bo-Chao Cheng, Chih-Chuan Cheng, Yi-Geng Chen, Yu Ling Chou

Abstract:

Wireless Sensor Network (WSN) comprises of sensor nodes which are designed to sense the environment, transmit sensed data back to the base station via multi-hop routing to reconstruct physical phenomena. Since physical phenomena exists significant overlaps between temporal redundancy and spatial redundancy, it is necessary to use Redundancy Suppression Algorithms (RSA) for sensor node to lower energy consumption by reducing the transmission of redundancy. A conventional algorithm of RSAs is threshold-based RSA, which sets threshold to suppress redundant data. Although many temporal and spatial RSAs are proposed, temporal-spatial RSA are seldom to be proposed because it is difficult to determine when to utilize temporal or spatial RSAs. In this paper, we proposed a novel temporal-spatial redundancy suppression algorithm, Codebookbase Redundancy Suppression Mechanism (CRSM). CRSM adopts vector quantization to generate a codebook, which is easily used to implement temporal-spatial RSA. CRSM not only achieves power saving and reliability for WSN, but also provides the predictability of network lifetime. Simulation result shows that the network lifetime of CRSM outperforms at least 23% of that of other RSAs.

Keywords: Redundancy Suppression Algorithm (RSA), Threshold-based RSA, Temporal RSA, Spatial RSA and Codebookbase Redundancy Suppression Mechanism (CRSM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
620 Sensitive Analysis of the ZF Model for ABC Multi Criteria Inventory Classification

Authors: Makram Ben Jeddou

Abstract:

ABC classification is widely used by managers for inventory control. The classical ABC classification is based on Pareto principle and according to the criterion of the annual use value only. Single criterion classification is often insufficient for a closely inventory control. Multi-criteria inventory classification models have been proposed by researchers in order to consider other important criteria. From these models, we will consider a specific model in order to make a sensitive analysis on the composite score calculated for each item. In fact, this score, based on a normalized average between a good and a bad optimized index, can affect the ABC-item classification. We will focus on items differently assigned to classes and then propose a classification compromise.

Keywords: ABC classification, Multi criteria inventory classification models, ZF-model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2516
619 Predictive Analytics of Student Performance Determinants in Education

Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi

Abstract:

Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine (SVM), Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis (LDA), and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.

Keywords: Student performance, supervised machine learning, prediction, classification, cross-validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 547
618 Experimental Verification of the Relationship between Physiological Indexes and the Presence or Absence of an Operation during E-learning

Authors: Masaki Omata, Shumma Hosokawa

Abstract:

An experiment to verify the relationships between physiological indexes of an e-learner and the presence or absence of an operation during e-learning is described. Electroencephalogram (EEG), hemoencephalography (HEG), skin conductance (SC), and blood volume pulse (BVP) values were measured while participants performed experimental learning tasks. The results show that there are significant differences between the SC values when reading with clicking on learning materials and the SC values when reading without clicking, and between the HEG ratio when reading (with and without clicking) and the HEG ratio when resting for four of five participants. We conclude that the SC signals can be used to estimate whether or not a learner is performing an active task and that the HEG ratios can be used to estimate whether a learner is learning.

Keywords: E-learning, physiological index, physiological signal, state of learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
617 Two-Stage Launch Vehicle Trajectory Modeling for Low Earth Orbit Applications

Authors: Assem M. F. Sallam, Ah. El-S. Makled

Abstract:

This paper presents a study on the trajectory of a two stage launch vehicle. The study includes dynamic responses of motion parameters as well as the variation of angles affecting the orientation of the launch vehicle (LV). LV dynamic characteristics including state vector variation with corresponding altitude and velocity for the different LV stages separation, as well as the angle of attack and flight path angles are also discussed. A flight trajectory study for the drop zone of first stage and the jettisoning of fairing are introduced in the mathematical modeling to study their effect. To increase the accuracy of the LV model, atmospheric model is used taking into consideration geographical location and the values of solar flux related to the date and time of launch, accurate atmospheric model leads to enhancement of the calculation of Mach number, which affects the drag force over the LV. The mathematical model is implemented on MATLAB based software (Simulink). The real available experimental data are compared with results obtained from the theoretical computation model. The comparison shows good agreement, which proves the validity of the developed simulation model; the maximum error noticed was generally less than 10%, which is a result that can lead to future works and enhancement to decrease this level of error.

Keywords: Launch vehicle modeling, launch vehicle trajectory, mathematical modeling, MATLAB-Simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3299
616 Spexin and Fetuin A in Morbid Obese Children

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Spexin, expressed in the central nervous system, has attracted much interest in feeding behavior, obesity, diabetes, energy metabolism and cardiovascular functions. Fetuin A is known as the negative acute phase reactant synthesized in the liver. Eosinophils are early indicators of cardiometabolic complications. Patients with elevated platelet count, associated with hypercoagulable state in the body, are also more liable to cardiovascular diseases (CVDs). In this study, the aim is to examine the profiles of spexin and fetuin A concomitant with the course of variations detected in eosinophil as well as platelet counts in morbid obese children. 34 children with normal-body mass index (N-BMI) and 51 morbid obese (MO) children participated in the study. Written-informed consent forms were obtained prior to the study. Institutional ethics committee approved the study protocol. Age- and sex-adjusted BMI percentile tables prepared by World Health Organization were used to classify healthy and obese children. Mean age ± SEM of the children were 9.3 ± 0.6 years and 10.7 ± 0.5 years in N-BMI and MO groups, respectively. Anthropometric measurements of the children were taken. BMI values were calculated from weight and height values. Blood samples were obtained after an overnight fasting. Routine hematologic and biochemical tests were performed. Within this context, fasting blood glucose (FBG), insulin (INS), triglycerides (TRG), high density lipoprotein-cholesterol (HDL-C) concentrations were measured. Homeostatic model assessment for insulin resistance (HOMA-IR) values were calculated. Spexin and fetuin A levels were determined by enzyme-linked immunosorbent assay. Data were evaluated from the statistical point of view. Statistically significant differences were found between groups in terms of BMI, fat mass index, INS, HOMA-IR and HDL-C. In MO group, all parameters increased as HDL-C decreased. Elevated concentrations in MO group were detected in eosinophils (p < 0.05) and platelets (p > 0.05). Fetuin A levels decreased in MO group (p > 0.05). However, decrease was statistically significant in spexin levels for this group (p < 0.05). In conclusion, these results have suggested that increases in eosinophils and platelets exhibit behavior as cardiovascular risk factors. Decreased fetuin A behaved as a risk factor suitable to increased risk for cardiovascular problems associated with the severity of obesity. Along with increased eosinophils, increased platelets and decreased fetuin A, decreased spexin was the parameter, which reflects best its possible participation in the early development of CVD risk in MO children.

Keywords: Cardiovascular diseases, eosinophils, fetuin A, pediatric morbid obesity, platelets, spexin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 681
615 Recognizing an Individual, Their Topic of Conversation, and Cultural Background from 3D Body Movement

Authors: Gheida J. Shahrour, Martin J. Russell

Abstract:

The 3D body movement signals captured during human-human conversation include clues not only to the content of people’s communication but also to their culture and personality. This paper is concerned with automatic extraction of this information from body movement signals. For the purpose of this research, we collected a novel corpus from 27 subjects, arranged them into groups according to their culture. We arranged each group into pairs and each pair communicated with each other about different topics. A state-of-art recognition system is applied to the problems of person, culture, and topic recognition. We borrowed modeling, classification, and normalization techniques from speech recognition. We used Gaussian Mixture Modeling (GMM) as the main technique for building our three systems, obtaining 77.78%, 55.47%, and 39.06% from the person, culture, and topic recognition systems respectively. In addition, we combined the above GMM systems with Support Vector Machines (SVM) to obtain 85.42%, 62.50%, and 40.63% accuracy for person, culture, and topic recognition respectively. Although direct comparison among these three recognition systems is difficult, it seems that our person recognition system performs best for both GMM and GMM-SVM, suggesting that intersubject differences (i.e. subject’s personality traits) are a major source of variation. When removing these traits from culture and topic recognition systems using the Nuisance Attribute Projection (NAP) and the Intersession Variability Compensation (ISVC) techniques, we obtained 73.44% and 46.09% accuracy from culture and topic recognition systems respectively.

Keywords: Person Recognition, Topic Recognition, Culture Recognition, 3D Body Movement Signals, Variability Compensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
614 Production of Glucose from the Hydrolysis of Cassava Residue using Bacteria Isolates from Thai Higher Termites

Authors: Pitcha Wongskeo, Pramoch Rangsunvigit, Sumaeth Chavadej

Abstract:

The possibility of using cassava residue containing 49.66% starch, 21.47% cellulose, 12.97% hemicellulose, and 21.86% lignin as a raw material to produce glucose using enzymatic hydrolysis was investigated. In the experiment, each reactor contained the cassava residue, bacteria cells, and production medium. The effects of particles size (40 mesh and 60 mesh) and strains of bacteria (A002 and M015) isolated from Thai higher termites, Microcerotermes sp., on the glucose concentration at 37°C were focused. High performance liquid chromatography (HPLC) with a refractive index detector was used to determine the quantity of glucose. The maximum glucose concentration obtained at 37°C using strain A002 and 60 mesh of the cassava residue was 1.51 g/L at 10 h.

Keywords: Hydrolysis, termites, glucose, cassava

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2453
613 Effects of Asphalt Modification with Nanomaterials on Fresh and Stored Bitumen

Authors: Ahmed W. Oda, Ahmed El-Desouky, Hassan Mahdy, Osama M. Moussa

Abstract:

Nanomaterials have many applications in the field of asphalt paving. Two locally produced nanomaterials were used in the asphalt binder modification. The nanomaterials used are Nanosilica (NS), and Nanoclay (NC). The virgin asphalt binder was characterized by the conventional tests. The bitumen was modified by 3%, 5% and 7% of NS and NC. The penetration index (PI), and the retaining penetration (RP) was calculated based on the results of the penetration and the softening point tests. The results show that the RP becomes 95.35% at 5% NS modified bitumen and reaches 97.56% when bitumen is modified with 3% NC. The results show significant improvement in the bitumen stiffness when modified by the two types of nanomaterials, either fresh or aged (stored).

Keywords: Bitumen, modified bitumen, aged, stored, nanomaterials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817