Search results for: torsional shear test.
2064 Analyzing the Performance Properties of Stress Absorbing Membrane Interlayer Modified with Recycled Crumb Rubber
Authors: Seyed Mohammad Asgharzadeh, Moein Biglari
Abstract:
Asphalt overlay is the most commonly used technique of pavement rehabilitation. However, the reflective cracks which occur on the overlay surface after a short period of time are the most important distresses threatening the durability of new overlays. Stress Absorbing Membrane Interlayers (SAMIs) are used to postpone the reflective cracking in the overlays. Sand asphalt mixtures, in unmodified or crumb rubber modified (CRM) conditions, can be used as an SAMI material. In this research, the performance properties of different SAMI applications were evaluated in the laboratory using an Indirect Tensile (IDT) fracture energy. The IDT fracture energy of sand asphalt samples was also evaluated and then compared to that of the regular dense graded asphalt used as an overlay. Texas boiling water and modified Lottman tests were also conducted to evaluate the moisture susceptibility of sand asphalt mixtures. The test results showed that sand asphalt mixtures can stand higher levels of energy before cracking, and this is even more pronounced for the CRM sand mix. Sand asphalt mixture using CRM binder was also shown to be more resistance to moisture induced distresses.Keywords: SAMI, sand asphalt, crumb rubber, Lottman Modified Test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12762063 Deformation Mechanisms at Elevated Temperatures: Influence of Momenta and Energy in the Single Impact Test
Authors: Harald Rojacz, Markus Varga, Horst Winkelmann
Abstract:
Within this work High Temperature Single Impact Studies were performed to evaluate deformation mechanisms at different energy and momentum levels. To show the influence of different microstructures and hardness levels and their response to single impacts four different materials were tested at various temperatures up to 700°C. One carbide reinforced NiCrBSi based Metal Matrix Composite and three different steels were tested. The aim of this work is to determine critical energies for fracture appearance and the materials response at different energy and momenta levels. Critical impact loadings were examined at elevated temperatures to limit operating conditions in impact dominated regimes at elevated temperatures. The investigations on the mechanisms were performed using different means of microscopy at the surface and in metallographic cross sections. Results indicate temperature dependence of the occurrence of cracks in hardphase rich materials, such as Metal Matrix Composites High Speed Steels and the influence of different impact momenta at constant energies on the deformation of different steels.Keywords: Deformation, High Temperature, Metal Matrix Composite, Single Impact Test, Steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20022062 Seismic Performance of Reinforced Concrete Frames Infilled by Masonry Walls with Different Heights
Authors: Ji–Wook Mauk, Yu–Suk Kim, Hyung–Joon Kim
Abstract:
This study carried out comparative seismic performance of reinforced concrete frames infilled by masonry walls with different heights. Partial and fully infilled reinforced concrete frames were modeled for the research objectives and the analysis model for a bare reinforced concrete frame was also established for comparison. Non–linear static analyses for the studied frames were performed to investigate their structural behavior under extreme seismic loads and to find out their collapse mechanism. It was observed from analysis results that the strengths of the partial infilled reinforced concrete frames are increased and their ductilities are reduced, as infilled masonry walls are higher. Especially, reinforced concrete frames with higher partial infilled masonry walls would experience shear failures. Non–linear dynamic analyses using 10 earthquake records show that the bare and fully infilled reinforced concrete frame present stable collapse mechanism while the reinforced concrete frames with partially infilled masonry walls collapse in more brittle manner due to short-column effects.
Keywords: Fully infilled RC frame, partially infilled RC frame, masonry wall, short–column effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25892061 Effect of Coupling Media on Ultrasonic Pulse Velocity in Concrete: A Preliminary Investigation
Authors: Sura Al-Khafaji, Phil Purnell
Abstract:
Measurement of the ultrasonic pulse velocity (UPV) is an important tool in diagnostic examination of concrete. In this method piezoelectric transducers are normally held in direct contact with the concrete surface. The current study aims to test the hypothesis that a preferential coupling effect might exist i.e. that the speed of sound measured depends on the couplant used. In this study, different coupling media of varying acoustic impedance were placed between the transducers and concrete samples made with constant aggregate content but with different compressive strengths. The preliminary results show that using coupling materials (both solid and a range of liquid substances) has an effect on the pulse velocity measured in a given concrete. The effect varies depending on the material used. The UPV measurements with solid coupling were higher than these from the liquid coupling at all strength levels. The tests using couplants generally recorded lower UPV values than the conventional test, except when carbon fiber composite was used, which retuned higher values. Analysis of variances (ANOVA) was performed to confirm that there are statistically significant differences between the measurements recorded using a conventional system and a coupled system.
Keywords: Compressive strength, coupling effect, statistical analysis, ultrasonic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17822060 Development of Combined Cure Type for Rigid Pavement with Reactive Powder Concrete
Authors: Fatih Hattatoglu, Abdulrezzak Bakiş
Abstract:
In this study, fiberless reactive powder concrete (RPC) was produced with high pressure and flexural strength. C30/37 concrete was chosen as the control sample. In this study, 9 different cure types were applied to fiberless RPC. the most suitable combined cure type was selected according to the pressure and flexure strength. Pressure and flexural strength tests were applied to these samples after curing. As a result of the study, the combined cure type with the highest pressure resistance was obtained. The highest pressure resistance was achieved with consecutive standard water cure at 20 °C for 7 days – hot water cure at 90 °C for 2 days - drying oven cure at 180 °C for 2 days. As a result of the study, the highest pressure resistance of fiberless RPC was found as 123 MPa with water cure at 20 °C for 7 days - hot water cure at 90 °C for 2 days - drying oven cure at 180 °C for 2 days; and the highest flexural resistance was found as 8.37 MPa for the same combined cure type.
Keywords: Rigid pavement, reactive powder concrete, combined cure, pressure test, flexural test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13982059 The Development and Testing of a Small Scale Dry Electrostatic Precipitator for the Removal of Particulate Matter
Authors: Derek Wardle, Tarik Al-Shemmeri, Neil Packer
Abstract:
This paper presents a small tube/wire type electrostatic precipitator (ESP). In the ESPs present form, particle charging and collecting voltages and airflow rates were individually varied throughout 200 ambient temperature test runs ranging from 10 to 30 kV in increments on 5 kV and 0.5 m/s to 1.5 m/s, respectively. It was repeatedly observed that, at input air velocities of between 0.5 and 0.9 m/s and voltage settings of 20 kV to 30 kV, the collection efficiency remained above 95%. The outcomes of preliminary tests at combustion flue temperatures are, at present, inconclusive although indications are that there is little or no drop in comparable performance during ideal test conditions. A limited set of similar tests was carried out during which the collecting electrode was grounded, having been disconnected from the static generator. The collecting efficiency fell significantly, and for that reason, this approach was not pursued further. The collecting efficiencies during ambient temperature tests were determined by mass balance between incoming and outgoing dry PM. The efficiencies of combustion temperature runs are determined by analysing the difference in opacity of the flue gas at inlet and outlet compared to a reference light source. In addition, an array of Leit tabs (carbon coated, electrically conductive adhesive discs) was placed at inlet and outlet for a number of four-day continuous ambient temperature runs. Analysis of the discs’ contamination was carried out using scanning electron microscopy and ImageJ computer software that confirmed collection efficiencies of over 99% which gave unequivocal support to all the previous tests. The average efficiency for these runs was 99.409%. Emissions collected from a woody biomass combustion unit, classified to a diameter of 100 µm, were used in all ambient temperature trials test runs apart from two which collected airborne dust from within the laboratory. Sawdust and wood pellets were chosen for laboratory and field combustion trials. Video recordings were made of three ambient temperature test runs in which the smoke from a wood smoke generator was drawn through the precipitator. Although these runs were visual indicators only, with no objective other than to display, they provided a strong argument for the device’s claimed efficiency, as no emissions were visible at exit when energised. The theoretical performance of ESPs, when applied to the geometry and configuration of the tested model, was compared to the actual performance and was shown to be in good agreement with it.
Keywords: Electrostatic precipitators, air quality, particulates emissions, electron microscopy, ImageJ.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11552058 Numerical Analysis and Influence of the Parameters on Slope Stability
Authors: Fahim Kahlouche, Alaoua Bouaicha, Sihem Chaîbeddra, Sid-Ali Rafa, Abdelhamid Benouali
Abstract:
A designing of a structure requires its realization on rough or sloping ground. Besides the problem of the stability of the landslide, the behavior of the foundations that are bearing the structure is influenced by the destabilizing effect of the ground’s slope. This article focuses on the analysis of the slope stability exposed to loading by introducing the different factors influencing the slope’s behavior on the one hand, and on the influence of this slope on the foundation’s behavior on the other hand. This study is about the elastoplastic modelization using FLAC 2D. This software is based on the finite difference method, which is one of the older methods of numeric resolution of differential equations system with initial and boundary conditions. It was developed for the geotechnical simulation calculation. The aim of this simulation is to demonstrate the notable effect of shear modulus « G », cohesion « C », inclination angle (edge) « β », and distance between the foundation and the head of the slope on the stability of the slope as well as the stability of the foundation. In our simulation, the slope is constituted by homogenous ground. The foundation is considered as rigid/hard; therefore, the loading is made by the application of the vertical strengths on the nodes which represent the contact between the foundation and the ground.Keywords: Slope, shallow foundation, numeric method, FLAC 2D.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11962057 Curriculum Development of Successful Intelligence Promoting for Nursing Students
Authors: Saranya Chularee, Tawa Chularee
Abstract:
Successful intelligence (SI) is the integrated set of the ability needed to attain success in life, within individual-s sociocultural context. People are successfully intelligent by recognizing their strengths and weaknesses. They will find ways to strengthen their weakness and maintain their strength or even improve it. SI people can shape, select, and adapt to the environments by using balance of higher-ordered thinking abilities including; critical, creative, and applicative. Aims: The purposes of this study were to; 1) develop curriculum that promotes SI for nursing students, and 2) study the effectiveness of the curriculum development. Method: Research and Development was a method used for this study. The design was divided into two phases; 1) the curriculum development which composed of three steps (needs assessment, curriculum development and curriculum field trail), and 2) the curriculum implementation. In this phase, a pre-experimental research design (one group pretest-posttest design) was conducted. The sample composed of 49 sophomore nursing students of Boromarajonani College of Nursing, Surin, Thailand who enrolled in Nursing care of Health problem course I in 2011 academic year. Data were carefully collected using 4 instruments; 1) Modified essay questions test (MEQ) 2) Nursing Care Plan evaluation form 3) Group processing observation form (α = 0.74) and 4) Satisfied evaluation form of learning (α = 0.82). Data were analyzed using descriptive statistics and content analysis. Results: The results revealed that the sample had post-test average score of SI higher than pre-test average score (mean difference was 5.03, S.D. = 2.84). Fifty seven percentages of the sample passed the MEQ posttest at the criteria of 60 percentages. Students demonstrated the strategies of how to develop nursing care plan. Overall, students- satisfaction on teaching performance was at high level (mean = 4.35, S.D. = 0.46). Conclusion: This curriculum can promote the attribute of characteristic of SI person and was highly required to be continued.Keywords: Curriculum Development, Nursing Education, Successful Intelligence, Thinking ability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22102056 Fracture Characterization of Plain Woven Fabric Glass-Epoxy Composites
Authors: Sabita Rani Sahoo, A.Mishra
Abstract:
Delamination between layers in composite materials is a major structural failure. The delamination resistance is quantified by the critical strain energy release rate (SERR). The present investigation deals with the strain energy release rate of two woven fabric composites. Materials used are made of two types of glass fiber (360 gsm and 600 gsm) of plain weave and epoxy as matrix. The fracture behavior is studied using the mode I, double cantilever beam test and the mode II, end notched flexure test, in order to determine the energy required for the initiation and growth of an artificial crack. The delamination energy of these two materials is compared in order to study the effect of weave and reinforcement on mechanical properties. The fracture mechanism is also analyzed by means of scanning electron microscopy (SEM). It is observed that the plain weave fabric composite with lesser strand width has higher inter laminar fracture properties compared to the plain weave fabric composite with more strand width.
Keywords: Glass- epoxy composites, Fracture Tests: mode I (DCB) and mode II (ENF), Delamination, Calculation of strain energy release rate, SEM Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32532055 The Influence of the Geogrid Layers on the Bearing Capacity of Layered Soils
Authors: S. A. Naeini, H. R. Rahmani, M. Hossein Zade
Abstract:
Many classical bearing capacity theories assume that the natural soil's layers are homogenous for determining the bearing capacity of the soil. But, in many practical projects, we encounter multi-layer soils. Geosynthetic as reinforcement materials have been extensively used in the construction of various structures. In this paper, numerical analysis of the Plate Load Test (PLT) using of ABAQUS software in double-layered soils with different thicknesses of sandy and gravelly layers reinforced with geogrid was considered. The PLT is one of the common filed methods to calculate parameters such as soil bearing capacity, the evaluation of the compressibility and the determination of the Subgrade Reaction module. In fact, the influence of the geogrid layers on the bearing capacity of the layered soils is investigated. Finally, the most appropriate mode for the distance and number of reinforcement layers is determined. Results show that using three layers of geogrid with a distance of 0.3 times the width of the loading plate has the highest efficiency in bearing capacity of double-layer (sand and gravel) soils. Also, the significant increase in bearing capacity between unreinforced and reinforced soil with three layers of geogrid is caused by the condition that the upper layer (gravel) thickness is equal to the loading plate width.
Keywords: Bearing capacity, reinforcement, geogrid, plate load test, layered soils.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8442054 Analysis of the Structural Fluctuation of the Permitted Building Areas and Housing Distribution Ratios - Focused on 5 Cities Including Bucheon
Authors: Cheon Sik Min, Hyeong Wook Song, Sook Yeon Shim, Hoon Chang
Abstract:
The purpose of this study was to analyze the correlation between permitted building areas and housing distribution ratios and their fluctuation, and test a distribution model during 3 successive governments in 5 cities including Bucheon in reference to the time series administrative data, and thereby, interpret the results of the analysis in association with the policies pursued by the successive governments to examine the structural fluctuation of permitted building areas and housing distribution ratios. In order to analyze the fluctuation of permitted building areas and housing distribution ratios during 3 successive governments and examine the cycles of the time series data, the spectral analysis was performed, and in order to analyze the correlation between permitted building areas and housing distribution ratios, the tabulation was performed to describe the correlations statistically, and in order to explain about differences of fluctuation distribution of permitted building areas and housing distribution ratios among 3 governments, the goodness of fit test was conducted.Keywords: The Permitted Building Areas, Housing Distribution Ratios, the Structural Fluctuation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11952053 Influence of Microstructural Features on Wear Resistance of Biomedical Titanium Materials
Authors: Mohsin T. Mohammed, Zahid A. Khan, Arshad N. Siddiquee
Abstract:
The field of biomedical materials plays an imperative requisite and a critical role in manufacturing a variety of biological artificial replacements in a modern world. Recently, titanium (Ti) materials are being used as biomaterials because of their superior corrosion resistance and tremendous specific strength, free- allergic problems and the greatest biocompatibility compared to other competing biomaterials such as stainless steel, Co-Cr alloys, ceramics, polymers, and composite materials. However, regardless of these excellent performance properties, Implantable Ti materials have poor shear strength and wear resistance which limited their applications as biomaterials. Even though the wear properties of Ti alloys has revealed some improvements, the crucial effectiveness of biomedical Ti alloys as wear components requires a comprehensive deep understanding of the wear reasons, mechanisms, and techniques that can be used to improve wear behavior. This review examines current information on the effect of thermal and thermomechanical processing of implantable Ti materials on the long-term prosthetic requirement which related with wear behavior. This paper focuses mainly on the evolution, evaluation and development of effective microstructural features that can improve wear properties of bio grade Ti materials using thermal and thermomechanical treatments.Keywords: Wear Resistance, Heat Treatment, Thermomechanical Processing, Biomedical Titanium Materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36632052 Working Motivation Factors Affecting Job Performance Effectiveness
Authors: Supattra Kanchanopast
Abstract:
The purpose of this paper was to study motivation factors affecting job performance effectiveness. This paper drew upon data collected from an Internal Audit Staffs of Internal Audit Line of Head Office of Krung Thai Public Company Limited. Statistics used included frequency, percentage, mean and standard deviation, t-test, and one-way ANOVA test. The finding revealed that the majority of the respondents were female of 46 years of age and over, married and live together, hold a bachelor degree, with an average monthly income over 70,001 Baht. The majority of respondents had over 15 years of work experience. They generally had high working motivation as well as high job performance effectiveness. The hypotheses testing disclosed that employees with different working status had different level of job performance effectiveness at a 0.01 level of significance. Working motivation factors had an effect on job performance in the same direction with high level. Individual working motivation included working completion, reorganization, working progression, working characteristic, opportunity, responsibility, management policy, supervision, relationship with their superior, relationship with co-worker, working position, working stability, safety, privacy, working conditions, and payment. All of these factors related to job performance effectiveness in the same direction with medium level.
Keywords: Internal Audit Staffs, Job Performance Effectiveness, Working Motivation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63852051 Numerical Analysis of Thermal Conductivity of Non-Charring Material Ablation Carbon-Carbon and Graphite with Considering Chemical Reaction Effects, Mass Transfer and Surface Heat Transfer
Authors: H. Mohammadiun, A. Kianifar, A. Kargar
Abstract:
Nowadays, there is little information, concerning the heat shield systems, and this information is not completely reliable to use in so many cases. for example, the precise calculation cannot be done for various materials. In addition, the real scale test has two disadvantages: high cost and low flexibility, and for each case we must perform a new test. Hence, using numerical modeling program that calculates the surface recession rate and interior temperature distribution is necessary. Also, numerical solution of governing equation for non-charring material ablation is presented in order to anticipate the recession rate and the heat response of non-charring heat shields. the governing equation is nonlinear and the Newton- Rafson method along with TDMA algorithm is used to solve this nonlinear equation system. Using Newton- Rafson method for solving the governing equation is one of the advantages of the solving method because this method is simple and it can be easily generalized to more difficult problems. The obtained results compared with reliable sources in order to examine the accuracy of compiling code.Keywords: Ablation rate, surface recession, interior temperaturedistribution, non charring material ablation, Newton Rafson method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18972050 Assessment of Material Type, Diameter, Orientation and Closeness of Fibers in Vulcanized Reinforced Rubbers
Authors: Ali Osman Güney, Bahattin Kanber
Abstract:
In this work, the effect of material type, diameter, orientation and closeness of fibers on the general performance of reinforced vulcanized rubbers are investigated using finite element method with experimental verification. Various fiber materials such as hemp, nylon, polyester are used for different fiber diameters, orientations and closeness. 3D finite element models are developed by considering bonded contact elements between fiber and rubber sheet interfaces. The fibers are assumed as linear elastic, while vulcanized rubber is considered as hyper-elastic. After an experimental verification of finite element results, the developed models are analyzed under prescribed displacement that causes tension. The normal stresses in fibers and shear stresses between fibers and rubber sheet are investigated in all models. Large deformation of reinforced rubber sheet also represented with various fiber conditions under incremental loading. A general assessment is achieved about best fiber properties of reinforced rubber sheets for tension-load conditions.
Keywords: Fiber properties, finite element method, tension-load condition, reinforced vulcanized rubbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9212049 Field Trial of Resin-Based Composite Materials for the Treatment of Surface Collapses Associated with Former Shallow Coal Mining
Authors: Philip T. Broughton, Mark P. Bettney, Isla L. Smail
Abstract:
Effective treatment of ground instability is essential when managing the impacts associated with historic mining. A field trial was undertaken by the Coal Authority to investigate the geotechnical performance and potential use of composite materials comprising resin and fill or stone to safely treat surface collapses, such as crown-holes, associated with shallow mining. Test pits were loosely filled with various granular fill materials. The fill material was injected with commercially available silicate and polyurethane resin foam products. In situ and laboratory testing was undertaken to assess the geotechnical properties of the resultant composite materials. The test pits were subsequently excavated to assess resin permeation. Drilling and resin injection was easiest through clean limestone fill materials. Recycled building waste fill material proved difficult to inject with resin; this material is thus considered unsuitable for use in resin composites. Incomplete resin permeation in several of the test pits created irregular ‘blocks’ of composite. Injected resin foams significantly improve the stiffness and resistance (strength) of the un-compacted fill material. The stiffness of the treated fill material appears to be a function of the stone particle size, its associated compaction characteristics (under loose tipping) and the proportion of resin foam matrix. The type of fill material is more critical than the type of resin to the geotechnical properties of the composite materials. Resin composites can effectively support typical design imposed loads. Compared to other traditional treatment options, such as cement grouting, the use of resin composites is potentially less disruptive, particularly for sites with limited access, and thus likely to achieve significant reinstatement cost savings. The use of resin composites is considered a suitable option for the future treatment of shallow mining collapses.
Keywords: Composite material, ground improvement, mining legacy, resin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15412048 Deformation Characteristics of Fire Damaged and Rehabilitated Normal Strength Concrete Beams
Authors: Yeo Kyeong Lee, Hae Won Min, Ji Yeon Kang, Hee Sun Kim, Yeong Soo Shin
Abstract:
In recent years, fire accidents have been steadily increased and the amount of property damage caused by the accidents has gradually raised. Damaging building structure, fire incidents bring about not only such property damage but also strength degradation and member deformation. As a result, the building structure undermines its structural ability. Examining the degradation and the deformation is very important because reusing the building is more economical than reconstruction. Therefore, engineers need to investigate the strength degradation and member deformation well, and make sure that they apply right rehabilitation methods. This study aims at evaluating deformation characteristics of fire damaged and rehabilitated normal strength concrete beams through both experiments and finite element analyses. For the experiments, control beams, fire damaged beams and rehabilitated beams are tested to examine deformation characteristics. Ten test beam specimens with compressive strength of 21MPa are fabricated and main test variables are selected as cover thickness of 40mm and 50mm and fire exposure time of 1 hour or 2 hours. After heating, fire damaged beams are air-recurred for 2 months and rehabilitated beams are repaired with polymeric cement mortar after being removed the fire damaged concrete cover. All beam specimens are tested under four points loading. FE analyses are executed to investigate the effects of main parameters applied to experimental study. Test results show that both maximum load and stiffness of the rehabilitated beams are higher than those of the fire damaged beams. In addition, predicted structural behaviors from the analyses also show good rehabilitation effect and the predicted load-deflection curves are similar to the experimental results. For the further, the proposed analytical method can be used to predict deformation characteristics of fire damaged and rehabilitated concrete beams without suffering from time and cost consuming of experimental process.Keywords: Fire, Normal strength concrete, Rehabilitation, Reinforced concrete beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23872047 Online Battery Equivalent Circuit Model Estimation on Continuous-Time Domain Using Linear Integral Filter Method
Authors: Cheng Zhang, James Marco, Walid Allafi, Truong Q. Dinh, W. D. Widanage
Abstract:
Equivalent circuit models (ECMs) are widely used in battery management systems in electric vehicles and other battery energy storage systems. The battery dynamics and the model parameters vary under different working conditions, such as different temperature and state of charge (SOC) levels, and therefore online parameter identification can improve the modelling accuracy. This paper presents a way of online ECM parameter identification using a continuous time (CT) estimation method. The CT estimation method has several advantages over discrete time (DT) estimation methods for ECM parameter identification due to the widely separated battery dynamic modes and fast sampling. The presented method can be used for online SOC estimation. Test data are collected using a lithium ion cell, and the experimental results show that the presented CT method achieves better modelling accuracy compared with the conventional DT recursive least square method. The effectiveness of the presented method for online SOC estimation is also verified on test data.Keywords: Equivalent circuit model, continuous time domain estimation, linear integral filter method, parameter and SOC estimation, recursive least square.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13442046 Resilient Modulus and Deformation Responses of Waste Glass in Flexible Pavement System
Authors: M. Al-Saedi, A. Chegenizadeh, H. Nikraz
Abstract:
Experimental investigations are conducted to assess a layered structure of glass (G) - rock (R) blends under the impact of repeated loading. Laboratory tests included sieve analyses, modified compaction test and repeated load triaxial test (RLTT) is conducted on different structures of stratified GR samples to reach the objectives of this study. Waste materials are such essential components in the climate system, and also commonly used in minimising the need for natural materials in many countries. Glass is one of the most widely used groups of waste materials which have been extensively using in road applications. Full range particle size and colours of glass are collected and mixed at different ratios with natural rock material trying to use the blends in pavement layers. Whole subsurface specimen sequentially consists of a single layer of R and a layer of G-R blend. 12G/88R and 45G/55R mix ratios are employed in this research, the thickness of G-R layer was changed, and the results were compared between the pure rock and the layered specimens. The relations between resilient module (Mr) and permanent deformation with sequence number are presented. During the earlier stages of RLTT, the results indicated that the 45G/55R specimen shows higher moduli than R specimen.
Keywords: Rock base course, layered structure, glass, resilient modulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6252045 Generating State-Based Testing Models for Object-Oriented Framework Interface Classes
Authors: Jehad Al Dallal, Paul Sorenson
Abstract:
An application framework provides a reusable design and implementation for a family of software systems. Application developers extend the framework to build their particular applications using hooks. Hooks are the places identified to show how to use and customize the framework. Hooks define the Framework Interface Classes (FICs) and the specifications of their methods. As part of the development life cycle, it is required to test the implementations of the FICs. Building a testing model to express the behavior of a class is an essential step for the generation of the class-based test cases. The testing model has to be consistent with the specifications provided for the hooks. State-based models consisting of states and transitions are testing models well suited to objectoriented software. Typically, hand-construction of a state-based model of a class behavior is expensive, error-prone, and may result in constructing an inconsistent model with the specifications of the class methods, which misleads verification results. In this paper, a technique is introduced to automatically synthesize a state-based testing model for FICs using the specifications provided for the hooks. A tool that supports the proposed technique is introduced.Keywords: Framework interface classes, hooks, state-basedtesting, testing model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12272044 Vibration Control of Building Using Multiple Tuned Mass Dampers Considering Real Earthquake Time History
Authors: Rama Debbarma, Debanjan Das
Abstract:
The performance of multiple tuned mass dampers to mitigate the seismic vibration of structures considering real time history data is investigated in this paper. Three different real earthquake time history data like Kobe, Imperial Valley and Mammoth Lake are taken in the present study. The multiple tuned mass dampers (MTMD) are distributed at each storey. For comparative study, single tuned mass damper (STMD) is installed at top of the similar structure. This study is conducted for a fixed mass ratio (5%) and fixed damping ratio (5%) of structures. Numerical study is performed to evaluate the effectiveness of MTMDs and overall system performance. The displacement, acceleration, base shear and storey drift are obtained for both combined system (structure with MTMD and structure with STMD) for all earthquakes. The same responses are also obtained for structure without damper system. From obtained results, it is investigated that the MTMD configuration is more effective for controlling the seismic response of the primary system with compare to STMD configuration.Keywords: Earthquake, multiple tuned mass dampers, single tuned mass damper, time history.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19952043 Study on Optimization Design of Pressure Hull for Underwater Vehicle
Authors: Qasim Idrees, Gao Liangtian, Liu Bo, Miao Yiran
Abstract:
In order to improve the efficiency and accuracy of the pressure hull structure, optimization of underwater vehicle based on response surface methodology, a method for optimizing the design of pressure hull structure was studied. To determine the pressure shell of five dimensions as a design variable, the application of thin shell theory and the Chinese Classification Society (CCS) specification was carried on the preliminary design. In order to optimize variables of the feasible region, different methods were studied and implemented such as Opt LHD method (to determine the design test sample points in the feasible domain space), parametric ABAQUS solution for each sample point response, and the two-order polynomial response for the surface model of the limit load of structures. Based on the ultimate load of the structure and the quality of the shell, the two-generation genetic algorithm was used to solve the response surface, and the Pareto optimal solution set was obtained. The final optimization result was 41.68% higher than that of the initial design, and the shell quality was reduced by about 27.26%. The parametric method can ensure the accuracy of the test and improve the efficiency of optimization.
Keywords: Parameterization, response surface, structure optimization, pressure hull.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11622042 Association of Sensory Processing and Cognitive Deficits in Children with Autism Spectrum Disorders – Pioneer Study in Saudi Arabia
Authors: Rana M. Zeina, Laila AL-Ayadhi, Shahid Bashir
Abstract:
The association between sensory problems and cognitive abilities has been studied in individuals with Autism Spectrum Disorders (ASDs). In this study, we used a Neuropsychological Test to evaluate memory and attention in ASDs children with sensory problems compared to the ASDs children without sensory problems. Four visual memory tests of Cambridge Neuropsychological Test Automated Battery (CANTAB) including Big/little circle (BLC), Simple Reaction Time (SRT) Intra /Extra dimensional set shift (IED), Spatial recognition memory (SRM), were administered to 14 ASDs children with sensory problems compared to 13 ASDs without sensory problems aged 3 to 12 with IQ of above 70. ASDs individuals with sensory problems performed worse than the ASDs group without sensory problems on comprehension, learning, reversal and simple reaction time tasks, and no significant difference between the two groups was recorded in terms of the visual memory and visual comprehension tasks. The findings of this study suggest that ASDs children with sensory problems are facing deficits in learning, comprehension, reversal, and speed of response to a stimulus.
Keywords: Visual memory, Attention, Autism Spectrum Disorders (ASDs).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25352041 Behavior of Confined Columns under Different Techniques
Authors: Mostafa Osman, Ata El-Kareim Shoeib Soliman
Abstract:
Since columns are the most important elements of the structures, failure of one column in a critical location can cause a progressive collapse. In this respect, the repair and strengthening of columns is a very important subject to reduce the building failure and to keep the columns capacity. Twenty columns with different parameters is tested and analysis. Eleven typical confined reinforced concrete (RC) columns with different types of techniques are assessment. And also, four confined concrete columns with plastic tube (PVC) are tested with and with four paralleling tested of unconfined plain concrete. The techniques of confined RC columns are mortar strengthening, Steel rings strengthening, FRP strengthening. Moreover, the technique of confined plain concrete (PC) column is used PVC tubes. The columns are tested under uniaxial compressive loads studied the effect of confinement on the structural behavior of circular RC columns. Test results for each column are presented in the form of crack patterns, stress-strain curves. Test results show that confining of the RC columns using different techniques of strengthening results significant improvement of the general behavior of the columns and can used in construction. And also, tested confined PC columns with PVC tubes results shown that the confined PC with PVC tubes can be used in economical building. The theoretical model for predicted column capacity is founded with experimental factor depends on the confined techniques used and the strain reduction.
Keywords: Confined reinforced concrete column, CFRP, GFRP, Mortar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26402040 Effect of Size of the Step in the Response Surface Methodology using Nonlinear Test Functions
Authors: Jesús Everardo Olguín Tiznado, Rafael García Martínez, Claudia Camargo Wilson, Juan Andrés López Barreras, Everardo Inzunza González, Javier Ordorica Villalvazo
Abstract:
The response surface methodology (RSM) is a collection of mathematical and statistical techniques useful in the modeling and analysis of problems in which the dependent variable receives the influence of several independent variables, in order to determine which are the conditions under which should operate these variables to optimize a production process. The RSM estimated a regression model of first order, and sets the search direction using the method of maximum / minimum slope up / down MMS U/D. However, this method selects the step size intuitively, which can affect the efficiency of the RSM. This paper assesses how the step size affects the efficiency of this methodology. The numerical examples are carried out through Monte Carlo experiments, evaluating three response variables: efficiency gain function, the optimum distance and the number of iterations. The results in the simulation experiments showed that in response variables efficiency and gain function at the optimum distance were not affected by the step size, while the number of iterations is found that the efficiency if it is affected by the size of the step and function type of test used.Keywords: RSM, dependent variable, independent variables, efficiency, simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19892039 Evaluation of the Rheological Properties of Bituminous Binders Modified with Biochars Obtained from Various Biomasses by Pyrolysis Method
Authors: Muhammed Ertuğrul Çeloğlu, Mehmet Yılmaz
Abstract:
In this study, apricot seed shell, walnut shell, and sawdust were chosen as biomass sources. The materials were sorted by using a sieve No. 50 and the sieved materials were subjected to pyrolysis process at 400 °C, resulting in three different biochar products. The resulting biochar products were added to the bitumen at three different rates (5%, 10% and 15%), producing modified bitumen. Penetration, softening point, rotation viscometer and dynamic shear rheometer (DSR) tests were conducted on modified binders. Thus the modified bitumen, which was obtained by using additives at 3 different rates obtained from biochar produced at 400 °C temperatures of 3 different biomass sources were compared and the effects of pyrolysis temperature and additive rates were evaluated. As a result of the conducted tests, it was determined that the rheology of the pure bitumen improved significantly as a result of the modification of the bitumen with the biochar. Additionally, with biochar additive, it was determined that the rutting parameter values obtained from softening point, viscometer and DSR tests were increased while the values in terms of penetration and phase angle decreased. It was also observed that the most effective biomass is sawdust while the least effective was ground apricot seed shell.
Keywords: Rheology, biomass, pyrolysis, biochar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8452038 Foundation Retrofitting of Storage Tank under Seismic Load
Authors: Seyed Abolhasan Naeini, Mohammad Hossein Zade, E. Izadi, M. Hossein Zade
Abstract:
The different seismic behavior of liquid storage tanks rather than conventional structures makes their responses more complicated. Uplifting and excessive settlement due to liquid sloshing are the most frequent damages in cylindrical liquid tanks after shell bucking failure modes. As a matter of fact, uses of liquid storage tanks because of the simple construction on compact layer of soil as a foundation are very conventional, but in some cases need to retrofit are essential. The tank seismic behavior can be improved by modifying dynamic characteristic of tank with verifying seismic loads as well as retrofitting and improving base ground. This paper focuses on a typical steel tank on loose, medium and stiff sandy soil and describes an evaluation of displacement of the tank before and after retrofitting. The Abaqus program was selected for its ability to include shell and structural steel elements, soil-structure interaction, and geometrical nonlinearities and contact type elements. The result shows considerable decreasing in settlement and uplifting in the case of retrofitted tank. Also, by increasing shear strength parameter of soil, the performance of the liquid storage tank under the case of seismic load increased.Keywords: Steel tank, soil-structure, sandy soil, seismic load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16182037 Effect of Curing Conditions on Strength of Fly ash-based Self-Compacting Geopolymer Concrete
Authors: Fareed Ahmed Memon, Muhd Fadhil Nuruddin, Samuel Demie, Nasir Shafiq
Abstract:
This paper reports the results of an experimental work conducted to investigate the effect of curing conditions on the compressive strength of self-compacting geopolymer concrete prepared by using fly ash as base material and combination of sodium hydroxide and sodium silicate as alkaline activator. The experiments were conducted by varying the curing time and curing temperature in the range of 24-96 hours and 60-90°C respectively. The essential workability properties of freshly prepared Self-compacting Geopolymer concrete such as filling ability, passing ability and segregation resistance were evaluated by using Slump flow, V-funnel, L-box and J-ring test methods. The fundamental requirements of high flowability and resistance to segregation as specified by guidelines on Self-compacting Concrete by EFNARC were satisfied. Test results indicate that longer curing time and curing the concrete specimens at higher temperatures result in higher compressive strength. There was increase in compressive strength with the increase in curing time; however increase in compressive strength after 48 hours was not significant. Concrete specimens cured at 70°C produced the highest compressive strength as compared to specimens cured at 60°C, 80°C and 90°C.Keywords: Geopolymer Concrete, Self-compacting Geopolymerconcrete, Compressive strength, Curing time, Curing temperature
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57532036 Maternal Health Outcome and Economic Growth in Sub-Saharan Africa: A Dynamic Panel Analysis
Authors: Okwan Frank
Abstract:
Maternal health outcome is one of the major population development challenges in Sub-Saharan Africa. The region has the highest maternal mortality ratio, despite the progressive economic growth in the region during the global economic crisis. It has been hypothesized that increase in economic growth will reduce the level of maternal mortality. The purpose of this study is to investigate the existence of the negative relationship between health outcome proxy by maternal mortality ratio and economic growth in Sub-Saharan Africa. The study used the Pooled Mean Group estimator of ARDL Autoregressive Distributed Lag (ARDL) and the Kao test for cointegration to examine the short-run and long-run relationship between maternal mortality and economic growth. The results of the cointegration test showed the existence of a long-run relationship between the variables considered for the study. The long-run result of the Pooled Mean group estimates confirmed the hypothesis of an inverse relationship between maternal health outcome proxy by maternal mortality ratio and economic growth proxy by Gross Domestic Product (GDP) per capita. Thus increasing economic growth by investing in the health care systems to reduce pregnancy and childbirth complications will help reduce maternal mortality in the sub-region.
Keywords: Economic growth, maternal mortality, pool mean group, Sub-Saharan Africa.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5872035 Vibration Suppression of Timoshenko Beams with Embedded Piezoelectrics Using POF
Authors: T. C. Manjunath, B. Bandyopadhyay
Abstract:
This paper deals with the design of a periodic output feedback controller for a flexible beam structure modeled with Timoshenko beam theory, Finite Element Method, State space methods and embedded piezoelectrics concept. The first 3 modes are considered in modeling the beam. The main objective of this work is to control the vibrations of the beam when subjected to an external force. Shear piezoelectric sensors and actuators are embedded into the top and bottom layers of a flexible aluminum beam structure, thus making it intelligent and self-adaptive. The composite beam is divided into 5 finite elements and the control actuator is placed at finite element position 1, whereas the sensor is varied from position 2 to 5, i.e., from the nearby fixed end to the free end. 4 state space SISO models are thus developed. Periodic Output Feedback (POF) Controllers are designed for the 4 SISO models of the same plant to control the flexural vibrations. The effect of placing the sensor at different locations on the beam is observed and the performance of the controller is evaluated for vibration control. Conclusions are finally drawn.Keywords: Smart structure, Timoshenko beam theory, Periodic output feedback control, Finite Element Method, State space model, SISO, Embedded sensors and actuators, Vibration control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134