Search results for: optimal clustering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2018

Search results for: optimal clustering

848 Modeling of Coagulation Process for the Removal of Carbofuran in Aqueous Solution

Authors: Roli Saini, Pradeep Kumar

Abstract:

A coagulation/flocculation process was adopted for the reduction of carbamate insecticide (carbofuran) from aqueous solution. Ferric chloride (FeCl3) was used as a coagulant to treat the carbofuran. To exploit the reduction efficiency of pesticide concentration and COD, the jar-test experiments were carried out and process was optimized through response surface methodology (RSM). The effects of two independent factors; i.e., FeCl3 dosage and pH on the reduction efficiency were estimated by using central composite design (CCD). The initial COD of the 30 mg/L concentrated solution was found to be 510 mg/L. Results exposed that the maximum reduction occurred at an optimal condition of FeCl3 = 80 mg/L, and pH = 5.0, from which the reduction of concentration and COD 75.13% and 65.34%, respectively. The present study also predicted that the obtained regression equations could be helpful as the theoretical basis for the coagulation process of pesticide wastewater.

Keywords: Carbofuran, coagulation, optimization, response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105
847 A Multi-Level GA Search with Application to the Resource-Constrained Re-Entrant Flow Shop Scheduling Problem

Authors: Danping Lin, C.K.M. Lee

Abstract:

Re-entrant scheduling is an important search problem with many constraints in the flow shop. In the literature, a number of approaches have been investigated from exact methods to meta-heuristics. This paper presents a genetic algorithm that encodes the problem as multi-level chromosomes to reflect the dependent relationship of the re-entrant possibility and resource consumption. The novel encoding way conserves the intact information of the data and fastens the convergence to the near optimal solutions. To test the effectiveness of the method, it has been applied to the resource-constrained re-entrant flow shop scheduling problem. Computational results show that the proposed GA performs better than the simulated annealing algorithm in the measure of the makespan

Keywords: Resource-constrained, re-entrant, genetic algorithm (GA), multi-level encoding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
846 Hub Port Positioning and Route Planning of Feeder Lines for Regional Transportation Network

Authors: Huang Xiaoling, Liu Lufeng

Abstract:

In this paper, we seek to determine one reasonable local hub port and optimal routes for a containership fleet, performing pick-ups and deliveries, between the hub and spoke ports in a same region. The relationship between a hub port, and traffic in feeder lines is analyzed. A new network planning method is proposed, an integrated hub port location and route design, a capacitated vehicle routing problem with pick-ups, deliveries and time deadlines are formulated and solved using an improved genetic algorithm for positioning the hub port and establishing routes for a containership fleet. Results on the performance of the algorithm and the feasibility of the approach show that a relatively small fleet of containerships could provide efficient services within deadlines.

Keywords: Route planning, Hub port location, Container feeder service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
845 A Case Study of Bee Algorithm for Ready Mixed Concrete Problem

Authors: W. Wongthatsanekorn, N. Matheekrieangkrai

Abstract:

This research proposes Bee Algorithm (BA) to optimize Ready Mixed Concrete (RMC) truck scheduling problem from single batch plant to multiple construction sites. This problem is considered as an NP-hard constrained combinatorial optimization problem. This paper provides the details of the RMC dispatching process and its related constraints. BA was then developed to minimize total waiting time of RMC trucks while satisfying all constraints. The performance of BA is then evaluated on two benchmark problems (3 and 5construction sites) according to previous researchers. The simulation results of BA are compared in term of efficiency and accuracy with Genetic Algorithm (GA) and all problems show that BA approach outperforms GA in term of efficiency and accuracy to obtain optimal solution. Hence, BA approach could be practically implemented to obtain the best schedule.

Keywords: Bee Colony Optimization, Ready Mixed Concrete Problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2912
844 Optimal Planning of Voltage Controlled Distributed Generators for Power Loss Reduction in Unbalanced Distribution Systems

Authors: Mahmoud M. Othman, Yasser G. Hegazy

Abstract:

This paper proposes a novel heuristic algorithm that aims to determine the best size and location of distributed generators in unbalanced distribution networks. The proposed heuristic algorithm can deal with the planning cases where power loss is to be optimized without violating the system practical constraints. The distributed generation units in the proposed algorithm is modeled as voltage controlled node with the flexibility to be converted to constant power factor node in case of reactive power limit violation. The proposed algorithm is implemented in MATLAB and tested on the IEEE 37 -node feeder. The results obtained show the effectiveness of the proposed algorithm.

Keywords: Distributed generation, heuristic approach, Optimization, planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
843 Increased Signal to Noise Ratio in P300 Potentials by the Method of Coherent Self-Averaging in BCI Systems

Authors: Ricardo Espinosa

Abstract:

The coherent Self-Averaging (CSA), is a new method proposed in this work; applied to simulated signals evoked potentials related to events (ERP) to find the wave P300, useful systems in the brain computer interface (BCI). The CSA method cleans signal in the time domain of white noise through of successive averaging of a single signal. The method is compared with the traditional method, coherent averaging or synchronized (CA), showing optimal results in the improvement of the signal to noise ratio (SNR). The method of CSA is easy to implement, robust and applicable to any physiological time series contaminated with white noise

Keywords: Evoked potentials, wave P300, Coherent Self-averaging, brain - computer interface (BCI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2142
842 Design of Modular Robotic Joints for Achieving Various Robot Configurations

Authors: Majid Tolouei-Rad, Anurag Dhull

Abstract:

This paper describes various stages of design and prototyping of a modular robot for use in various industrial applications. The major goal of current research has been to design and make different robotic joints at low cost capable of being assembled together in any given order for achieving various robot configurations. Five different types of joins were designed and manufactured where extensive research has been carried out on the design of each joint in order to achieve optimal strength, size, modularity, and price. This paper presents various stages of research and development undertaken to engineer these joints that include material selection, manufacturing, and strength analysis. The outcome of this research addresses the birth of a new generation of modular industrial robots with a wider range of applications and greater efficiency.

Keywords: Actuator, control system, configuration, robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3222
841 Elastic Stress Analysis of Annular Bi-Material Discs with Variable Thickness under Mechanical and Thermomechanical Loads

Authors: E. Çetin, A. Kurşun, Ş. Aksoy, M. Tunay Çetin

Abstract:

The closed form study deals with elastic stress analysis of annular bi-material discs with variable thickness subjected to the mechanical and thermomechanical loads. Those discs have many applications in the aerospace industry, such as gas turbines and gears. Those discs normally work under thermal and mechanical loads. Their life cycle can increase when stress components are minimized. Each material property is assumed to be isotropic. The results show that material combinations and thickness of profiles play an important role in determining the responses of bi-material discs and an optimal design of those structures. Stress distribution is investigated and results are shown as graphs.

Keywords: Bi-material discs, elastic stress analysis, mechanical loads, rotating discs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2427
840 Lean Thinking Process in the Determination of Design Suggestions to Optimize Treatment of WEEE

Authors: Anastasia Katsamaki, Nikolaos Bilalis, Vassilis Dedoussis

Abstract:

This work proposes a set of actions to assist redesign procedure in existing products of Electric and Electronic Equipment (EEE). The aim is to improve their environmental behavior after their withdrawal in the End-of-Life (EOL) phase. In the beginning data collection takes place. Then follows selection and implementation of the optimal EOL Treatment Strategy (EOL_TS) and its results- evaluation concerning the environment. In parallel, product design characteristics that can be altered are selected based on their significance for the environment in the EOL stage. All results from the previous stages are combined and possible redesign actions are formulated for further examination and afterwards configuration in the design stage. The applied method to perform these tasks is Lean Thinking (LT). At the end, results concerning the application of the proposed method on a distribution transformer are presented.

Keywords: End-of-life treatment, Lean thinking, WEEE

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
839 A Fuzzy Mixed Integer Multi-Scenario Portfolio Optimization Model

Authors: M. S. Osman, A. A. Tharwat, I. A. El-Khodary, A. G. Chalabi

Abstract:

In this paper, we propose a multiple objective optimization model with respect to portfolio selection problem for investors looking forward to diversify their equity investments in a number of equity markets. Based on Markowitz-s M-V model we developed a Fuzzy Mixed Integer Multi-Objective Nonlinear Programming Problem (FMIMONLP) to maximize the investors- future gains on equity markets, reach the optimal proportion of the budget to be invested in different equities. A numerical example with a comprehensive analysis on artificial data from several equity markets is presented in order to illustrate the proposed model and its solution method. The model performed well compared with the deterministic version of the model.

Keywords: Equity Markets, Future Scenarios, PortfolioSelection, Multiple Criteria Fuzzy Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
838 Application of Particle Swarm Optimization for Economic Load Dispatch and Loss Reduction

Authors: N. Phanthuna, J. Jaturacherdchaiskul, S. Lerdvanittip, S. Auchariyamet

Abstract:

This paper proposes a particle swarm optimization (PSO) technique to solve the economic load dispatch (ELD) problems. For the ELD problem in this work, the objective function is to minimize the total fuel cost of all generator units for a given daily load pattern while the main constraints are power balance and generation output of each units. Case study in the test system of 40-generation units with 6 load patterns is presented to demonstrate the performance of PSO in solving the ELD problem. It can be seen that the optimal solution given by PSO provides the minimum total cost of generation while satisfying all the constraints and benefiting greatly from saving in power loss reduction.

Keywords: Particle Swarm Optimization, Economic Load Dispatch, Loss Reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
837 Evaluating the Tool Wear Rate in Ultrasonic Machining of Titanium using Design of Experiments Approach

Authors: Jatinder Kumar, Vinod Kumar

Abstract:

Ultrasonic machining (USM) is a non-traditional machining process being widely used for commercial machining of brittle and fragile materials such as glass, ceramics and semiconductor materials. However, USM could be a viable alternative for machining a tough material such as titanium; and this aspect needs to be explored through experimental research. This investigation is focused on exploring the use of ultrasonic machining for commercial machining of pure titanium (ASTM Grade-I) and evaluation of tool wear rate (TWR) under controlled experimental conditions. The optimal settings of parameters are determined through experiments planned, conducted and analyzed using Taguchi method. In all, the paper focuses on parametric optimization of ultrasonic machining of pure titanium metal with TWR as response, and validation of the optimized value of TWR by conducting confirmatory experiments.

Keywords: Ultrasonic machining, titanium, tool wear rate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2505
836 Evaluating the Understanding of the University Students (Basic Sciences and Engineering) about the Numerical Representation of the Average Rate of Change

Authors: Saeid Haghjoo, Ebrahim Reyhani, Fahimeh Kolahdouz

Abstract:

The present study aimed to evaluate the understanding of the students in Tehran universities (Iran) about the numerical representation of the average rate of change based on the Structure of Observed Learning Outcomes (SOLO). In the present descriptive-survey research, the statistical population included undergraduate students (basic sciences and engineering) in the universities of Tehran. The samples were 604 students selected by random multi-stage clustering. The measurement tool was a task whose face and content validity was confirmed by math and mathematics education professors. Using Cronbach's Alpha criterion, the reliability coefficient of the task was obtained 0.95, which verified its reliability. The collected data were analyzed by descriptive statistics and inferential statistics (chi-squared and independent t-tests) under SPSS-24 software. According to the SOLO model in the prestructural, unistructural, and multistructural levels, basic science students had a higher percentage of understanding than that of engineering students, although the outcome was inverse at the relational level. However, there was no significant difference in the average understanding of both groups. The results indicated that students failed to have a proper understanding of the numerical representation of the average rate of change, in addition to missconceptions when using physics formulas in solving the problem. In addition, multiple solutions were derived along with their dominant methods during the qualitative analysis. The current research proposed to focus on the context problems with approximate calculations and numerical representation, using software and connection common relations between math and physics in the teaching process of teachers and professors.

Keywords: Average rate of change, context problems, derivative, numerical representation, SOLO taxonomy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 759
835 Genetic Algorithm Based Deep Learning Parameters Tuning for Robot Object Recognition and Grasping

Authors: Delowar Hossain, Genci Capi

Abstract:

This paper concerns with the problem of deep learning parameters tuning using a genetic algorithm (GA) in order to improve the performance of deep learning (DL) method. We present a GA based DL method for robot object recognition and grasping. GA is used to optimize the DL parameters in learning procedure in term of the fitness function that is good enough. After finishing the evolution process, we receive the optimal number of DL parameters. To evaluate the performance of our method, we consider the object recognition and robot grasping tasks. Experimental results show that our method is efficient for robot object recognition and grasping.

Keywords: Deep learning, genetic algorithm, object recognition, robot grasping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132
834 Numerical Investigation of Natural Convection of Pine, Olive, and Orange Leaves

Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Behnam Amiri

Abstract:

Heat transfer of leaves is a crucial factor in optimal operation of metabolic functions in plants. In order to quantify this phenomenon in different leaves and investigate the influence of leaf shape on heat transfer, natural convection for pine, orange and olive leaves was simulated as representatives of different groups of leaf shapes. CFD techniques were used in this simulation with the purpose to calculate heat transfer of leaves in similar environmental conditions. The problem was simulated for steady state and threedimensional conditions. From obtained results, it was concluded that heat fluxes of all three different leaves are almost identical, however, total rate of heat transfer have highest and lowest values for orange leaves, and pine leaves, respectively.

Keywords: Computational fluid dynamic, heat flux, heat transfer, natural convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
833 Analysis of Fixed Beamforming Algorithms for Smart Antenna Systems

Authors: Muhammad Umair Shahid, Abdul Rehman, Mudassir Mukhtar, Muhammad Nauman

Abstract:

The smart antenna is the prominent technology that has become known in recent years to meet the growing demands of wireless communications. In an overcrowded atmosphere, its application is growing gradually. A methodical evaluation of the performance of Fixed Beamforming algorithms for smart antennas such as Multiple Sidelobe Canceller (MSC), Maximum Signal-to-interference ratio (MSIR) and minimum variance (MVDR) has been comprehensively presented in this paper. Simulation results show that beamforming is helpful in providing optimized response towards desired directions. MVDR beamformer provides the most optimal solution.

Keywords: Fixed weight beamforming, array pattern, signal to interference ratio, power efficiency, element spacing, array elements, optimum weight vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
832 A Graph-Based Approach for Placement of No-Replicated Databases in Grid

Authors: Cherif Haddad, Faouzi Ben Charrada

Abstract:

On a such wide-area environment as a Grid, data placement is an important aspect of distributed database systems. In this paper, we address the problem of initial placement of database no-replicated fragments in Grid architecture. We propose a graph based approach that considers resource restrictions. The goal is to optimize the use of computing, storage and communication resources. The proposed approach is developed in two phases: in the first phase, we perform fragment grouping using knowledge about fragments dependency and, in the second phase, we determine an efficient placement of the fragment groups on the Grid. We also show, via experimental analysis that our approach gives solutions that are close to being optimal for different databases and Grid configurations.

Keywords: Grid computing, Distributed systems, Data resourcesmanagement, Database systems, Database placement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
831 A Practical Distributed String Matching Algorithm Architecture and Implementation

Authors: Bi Kun, Gu Nai-jie, Tu Kun, Liu Xiao-hu, Liu Gang

Abstract:

Traditional parallel single string matching algorithms are always based on PRAM computation model. Those algorithms concentrate on the cost optimal design and the theoretical speed. Based on the distributed string matching algorithm proposed by CHEN, a practical distributed string matching algorithm architecture is proposed in this paper. And also an improved single string matching algorithm based on a variant Boyer-Moore algorithm is presented. We implement our algorithm on the above architecture and the experiments prove that it is really practical and efficient on distributed memory machine. Its computation complexity is O(n/p + m), where n is the length of the text, and m is the length of the pattern, and p is the number of the processors.

Keywords: Boyer-Moore algorithm, distributed algorithm, parallel string matching, string matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188
830 Metabolic Predictive Model for PMV Control Based on Deep Learning

Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon

Abstract:

In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.

Keywords: Deep learning, indoor quality, metabolism, predictive model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
829 Optimal Generation Expansion Planning Strategy with Carbon Trading

Authors: Tung-Sheng Zhan, Chih-Cheng Kao, Chin-Der Yang, Jong-Ian Tsai

Abstract:

Fossil fuel-firing power plants dominate electric power generation in Taiwan, which are also the major contributor to Green House gases (GHG). CO2 is the most important greenhouse gas that cause global warming. This paper penetrates the relationship between carbon trading for GHG reduction and power generation expansion planning (GEP) problem for the electrical utility. The Particle Swarm Optimization (PSO) Algorithm is presented to deal with the generation expansion planning strategy of the utility with independent power providers (IPPs). The utility has to take both the IPPs- participation and environment impact into account when a new generation unit is considering expanded from view of supply side.

Keywords: Carbon Trading, CO2 Emission, GenerationExpansion Planning (GEP), Green House gases (GHG), ParticleSwarm Optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
828 Application of Liquid Emulsion Membrane Technique for the Removal of Cadmium(II) from Aqueous Solutions Using Aliquat 336 as a Carrier

Authors: B. Medjahed, M. A. Didi, B. Guezzen

Abstract:

In the present work, emulsion liquid membrane (ELM) technique was applied for the extraction of cadmium(II) present in aqueous samples. Aliquat 336 (Chloride tri-N-octylmethylammonium) was used as carrier to extract cadmium(II). The main objective of this work is to investigate the influence of various parameters affected the ELM formation and its stability and testing the performance of the prepared ELM on removal of cadmium by using synthetic solution with different concentrations. Experiments were conducted to optimize pH of the feed solution and it was found that cadmium(II) can be extracted at pH 6.5. The influence of the carrier concentration and treat ratio on the extraction process was investigated. The obtained results showed that the optimal values are respectively 3% (Aliquat 336) and a ratio (feed: emulsion) equal to 1:1.

Keywords: Cadmium, carrier, emulsion liquid membrane, surfactant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275
827 Expert System for Sintering Process Control based on the Information about solid-fuel Flow Composition

Authors: Yendiyarov Sergei, Zobnin Boris, Petrushenko Sergei

Abstract:

Usually, the solid-fuel flow of an iron ore sinter plant consists of different types of the solid-fuels, which differ from each other. Information about the composition of the solid-fuel flow usually comes every 8-24 hours. It can be clearly seen that this information cannot be used to control the sintering process in real time. Due to this, we propose an expert system which uses indirect measurements from the process in order to obtain the composition of the solid-fuel flow by solving an optimization task. Then this information can be used to control the sintering process. The proposed technique can be successfully used to improve sinter quality and reduce the amount of solid-fuel used by the process.

Keywords: sintering process, particle swarm optimization, optimal control, expert system, solid-fuel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
826 Hexagonal Honeycomb Sandwich Plate Optimization Using Gravitational Search Algorithm

Authors: A. Boudjemai, A. Zafrane, R. Hocine

Abstract:

Honeycomb sandwich panels are increasingly used in the construction of space vehicles because of their outstanding strength, stiffness and light weight properties. However, the use of honeycomb sandwich plates comes with difficulties in the design process as a result of the large number of design variables involved, including composite material design, shape and geometry. Hence, this work deals with the presentation of an optimal design of hexagonal honeycomb sandwich structures subjected to space environment. The optimization process is performed using a set of algorithms including the gravitational search algorithm (GSA). Numerical results are obtained and presented for a set of algorithms. The results obtained by the GSA algorithm are much better compared to other algorithms used in this study.

Keywords: Optimization, Gravitational search algorithm, Genetic algorithm, Honeycomb plate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3290
825 Genetic Algorithm for Solving Non-Convex Economic Dispatch Problem

Authors: Navid Javidtash, Abdolmohamad Davodi, Mojtaba Hakimzadeh, Abdolreza Roozbeh

Abstract:

Economic dispatch (ED) is considered to be one of the key functions in electric power system operation. This paper presents a new hybrid approach based genetic algorithm (GA) to economic dispatch problems. GA is most commonly used optimizing algorithm predicated on principal of natural evolution. Utilization of chaotic queue with GA generates several neighborhoods of near optimal solutions to keep solution variation. It could avoid the search process from becoming pre-mature. For the objective of chaotic queue generation, utilization of tent equation as opposed to logistic equation results in improvement of iterative speed. The results of the proposed approach were compared in terms of fuel cost, with existing differential evolution and other methods in literature.

Keywords: Economic Dispatch(ED), Optimization, Fuel Cost, Genetic Algorithm (GA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2394
824 Wind Tunnel Investigation of the Turbulent Flow around the Panorama Giustinelli Building for VAWT Application

Authors: M. Raciti Castelli, S. Mogno, S. Giacometti, E. Benini

Abstract:

A boundary layer wind tunnel facility has been adopted in order to conduct experimental measurements of the flow field around a model of the Panorama Giustinelli Building, Trieste (Italy). Information on the main flow structures has been obtained by means of flow visualization techniques and has been compared to the numerical predictions of the vortical structures spread on top of the roof, in order to investigate the optimal positioning for a vertical-axis wind energy conversion system, registering a good agreement between experimental measurements and numerical predictions.

Keywords: Boundary layer wind tunnel, flow around buildings, atmospheric flow field, vertical-axis wind turbine (VAWT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
823 Stochastic Learning Algorithms for Modeling Human Category Learning

Authors: Toshihiko Matsuka, James E. Corter

Abstract:

Most neural network (NN) models of human category learning use a gradient-based learning method, which assumes that locally-optimal changes are made to model parameters on each learning trial. This method tends to under predict variability in individual-level cognitive processes. In addition many recent models of human category learning have been criticized for not being able to replicate rapid changes in categorization accuracy and attention processes observed in empirical studies. In this paper we introduce stochastic learning algorithms for NN models of human category learning and show that use of the algorithms can result in (a) rapid changes in accuracy and attention allocation, and (b) different learning trajectories and more realistic variability at the individual-level.

Keywords: category learning, cognitive modeling, radial basis function, stochastic optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
822 Particle Swarm Optimization for Design of Water Distribution Systems

Authors: A. Vasan

Abstract:

Particle swarm optimization (PSO) technique is applied to design the water distribution pipeline network. A simulation-optimization model is formulated with the objective of minimizing cost and is applied to a benchmark water distribution system optimization problem. The benchmark problem taken for the application of PSO technique to optimize the pipe size of the water distribution network is New York City water supply system problem. The results from the analysis infer that PSO is a potential alternative optimization technique when compared to other heuristic techniques for optimal sizing of water distribution systems.

Keywords: Water distribution systems, Optimization, Particle swarm optimization, Swarm intelligence, New York water supply system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
821 Dynamic Model of a Buck Converter with a Sliding Mode Control

Authors: S. Chonsatidjamroen , K-N. Areerak, K-L. Areerak

Abstract:

This paper presents the averaging model of a buck converter derived from the generalized state-space averaging method. The sliding mode control is used to regulate the output voltage of the converter and taken into account in the model. The proposed model requires the fast computational time compared with those of the full topology model. The intensive time-domain simulations via the exact topology model are used as the comparable model. The results show that a good agreement between the proposed model and the switching model is achieved in both transient and steady-state responses. The reported model is suitable for the optimal controller design by using the artificial intelligence techniques.

Keywords: Generalized state-space averaging method, buck converter, sliding mode control, modeling, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2989
820 Remediation of Petroleum Hydrocarbon-contaminated Soil Slurry by Fenton Oxidation

Authors: C. Pongcharoen, K. Kaiyavongand T. Satapanajaru

Abstract:

Theobjective of this study was to evaluate the optimal treatment condition of Fenton oxidation process to removal contaminant in soil slurry contaminated by petroleum hydrocarbons. This research studied somefactors that affect the removal efficiency of petroleum hydrocarbons in soil slurry including molar ratio of hydrogen peroxide (H2O2) to ferrous ion(Fe2+), pH condition and reaction time.The resultsdemonstrated that the optimum condition was that the molar ratio of H2O2:Fe3+ was 200:1,the pHwas 4.0and the rate of reaction was increasing rapidly from starting point to 7th hour and destruction kinetic rate (k) was 0.24 h-1. Approximately 96% of petroleum hydrocarbon was observed(initialtotal petroleum hydrocarbon (TPH) concentration = 70±7gkg-1)

Keywords: Contaminated soil, Fenton oxidation, Petroleumhydrocarbon, Remediation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2728
819 Analyzing the Effects of Adding Bitcoin to Portfolio

Authors: Shashwat Gangwal

Abstract:

This paper analyses the effect of adding Bitcoin, to the portfolio (stocks, bonds, Baltic index, MXEF, gold, real estate and crude oil) of an international investor by using daily data available from 2nd of July, 2010 to 2nd of August, 2016. We conclude that adding Bitcoin to portfolio, over the course of the considered period, always yielded a higher Sharpe ratio. This means that Bitcoin’s returns offset its high volatility. This paper, recognizing the fact that Bitcoin is a relatively new asset class, gives the readers a basic idea about the working of the virtual currency, the increasing number developments in the financial industry revolving around it, its unique features and the detailed look into its continuously growing acceptance across different fronts (Banks, Merchants and Countries) globally. We also construct optimal portfolios to reflect the highly lucrative and largely unexplored opportunities associated with investment in Bitcoin.

Keywords: Portfolio management, Bitcoin, optimization, Sharpe ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6127