Increased Signal to Noise Ratio in P300 Potentials by the Method of Coherent Self-Averaging in BCI Systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Increased Signal to Noise Ratio in P300 Potentials by the Method of Coherent Self-Averaging in BCI Systems

Authors: Ricardo Espinosa

Abstract:

The coherent Self-Averaging (CSA), is a new method proposed in this work; applied to simulated signals evoked potentials related to events (ERP) to find the wave P300, useful systems in the brain computer interface (BCI). The CSA method cleans signal in the time domain of white noise through of successive averaging of a single signal. The method is compared with the traditional method, coherent averaging or synchronized (CA), showing optimal results in the improvement of the signal to noise ratio (SNR). The method of CSA is easy to implement, robust and applicable to any physiological time series contaminated with white noise

Keywords: Evoked potentials, wave P300, Coherent Self-averaging, brain - computer interface (BCI).

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1088730

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153

References:


[1] Wolpaw J. R, Birbaumer N, McFarland D. J, Pfurtscheller G. and Vaughan T. M, Braincomputer interfaces for communication and control. Clin. Neurophysiol. 2002, 113, pp. 767-91.
[2] A. Bashashati, M. Fatourechi, R. K. Ward and G. E. Birch. A survey of signal processing algorithms in braincomputer interfaces based on electrical brain signals. J. Neural Eng. 4, 2007, pp. R32-R57.
[3] F. Lotte, M. Congedo, A. Lcuyer, F. Lamarche and B. Arnaldi, A review of classification algorithms for EEG-based braincomputer interfaces. J. Neural Eng. 2007, 4, pp. R1-R13.
[4] McFarland D. J, Anderson C. W, Muller K-R, Schlogl A. and Krusienski D. J, BCI meeting 2005-workshop on BCI signal processing: feature extraction and translation. IEEE Trans. Neural Syst. Rehabil. Eng. 2006, 14, pp. 135-8.
[5] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Recognition, Wiley, New York, 2 edition, 2001.
[6] I. E. Gareis, G. Gentiletti, R. C. Acevedo and H. L. Rufiner, Extracción de características en interfaces cerebro computadoras mediante transformada wavelet discreta: Resultados preliminares. Memorias del XVII Congreso Argentino de Bioingenieria (SABI 2009), No. 167, pp.58-62.
[7] Mason S. G. and Birch G. E, A brain-controlled switch for asynchronous control applications. IEEE Trans. Biomed. Eng. 2000, 47, pp. 1297-307.
[8] E. W. Sellers, D. J. Krusienski, D. J. McFarland, T. M. Vaughan, J. R. Wolpaw, A P300 event-related potential braincomputer interface (BCI): The effects of matrix size and inter stimulus interval on performance. Biological Psychology. Volume 73, Issue 3, October 2006,pp. 242-252.
[9] L. Farwell and E. Donchin, Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials, Electroencephalography and clinical Neurophysiology. 1988, vol. 70, no. 6, pp. 510-523.
[10] Alexander J.E, Bauer L.O, Kuperman S, et al. Hemispheric differences for P300 amplitude from an auditory oddball task. Int J Psychophysiol. 1996, 21, pp. 189-196.
[11] Polich J. Updating P300: An Integrative Theory of P3a and P3b. Clin. Neurophysiol. 2007 October, 118(10), pp. 2128-2148.
[12] Donchin E, Spencer K.M, and Wijesinghe R. The Mental Prosthesis: Assessing the Speed of a P300-Based BrainComputer Interface. IEEE Transactions on Rehabilitation Engineering, June 2000, Vol. 8, No. 2, pp. 174-179.
[13] M. Fatourechi, A. Bashashati, R. K. Ward, G. E. Birch. EMG and EOG artifacts in brain computer interface systems: A survey. Clinical Neurophysiology, 2007, 118, pp. 480-494.
[14] Horsch KW, Dhillon GS. NeuroprostheticsTheory and Practice. River Edge, NJ: World Scientific, 2004.
[15] Niedermeyer E, Lopes da Silva F, Electroencephalography: basic principles, clinical applications and related fields. Lippincott Williams & Wilkins, 2005.
[16] A. Herrera, J. Biurrun and R. Acevedo. Promediación coherente mejorada mediante transformada wavelet de potenciales evocados auditivos de tronco cerebral. Carmen Mueller-Karger, Sara Wong, Alexandra La Cruz (Eds.): CLAIB 2007, IFMBE Proceedings. 18, pp. 183-187.
[17] ChiappaK,Evoked Potentials in Clinical Medicine, Lippincot-Raven, 1997.