Search results for: Least error squares
220 Quad Tree Decomposition Based Analysis of Compressed Image Data Communication for Lossy and Lossless Using WSN
Authors: N. Muthukumaran, R. Ravi
Abstract:
The Quad Tree Decomposition based performance analysis of compressed image data communication for lossy and lossless through wireless sensor network is presented. Images have considerably higher storage requirement than text. While transmitting a multimedia content there is chance of the packets being dropped due to noise and interference. At the receiver end the packets that carry valuable information might be damaged or lost due to noise, interference and congestion. In order to avoid the valuable information from being dropped various retransmission schemes have been proposed. In this proposed scheme QTD is used. QTD is an image segmentation method that divides the image into homogeneous areas. In this proposed scheme involves analysis of parameters such as compression ratio, peak signal to noise ratio, mean square error, bits per pixel in compressed image and analysis of difficulties during data packet communication in Wireless Sensor Networks. By considering the above, this paper is to use the QTD to improve the compression ratio as well as visual quality and the algorithm in MATLAB 7.1 and NS2 Simulator software tool.
Keywords: Image compression, Compression Ratio, Quad tree decomposition, Wireless sensor networks, NS2 simulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2391219 Particle Swarm Optimization Based Interconnected Hydro-Thermal AGC System Considering GRC and TCPS
Authors: Banaja Mohanty, Prakash Kumar Hota
Abstract:
This paper represents performance of particle swarm optimisation (PSO) algorithm based integral (I) controller and proportional-integral controller (PI) for interconnected hydro-thermal automatic generation control (AGC) with generation rate constraint (GRC) and Thyristor controlled phase shifter (TCPS) in series with tie line. The control strategy of TCPS provides active control of system frequency. Conventional objective function integral square error (ISE) and another objective function considering square of derivative of change in frequencies of both areas and change in tie line power are considered. The aim of designing the objective function is to suppress oscillation in frequency deviations and change in tie line power oscillation. The controller parameters are searched by PSO algorithm by minimising the objective functions. The dynamic performance of the controllers I and PI, for both the objective functions, are compared with conventionally optimized I controller.
Keywords: Automatic generation control (AGC), Generation rate constraint (GRC), Thyristor control phase shifter (TCPS), Particle swarm optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175218 Modeling Oxygen-transfer by Multiple Plunging Jets using Support Vector Machines and Gaussian Process Regression Techniques
Authors: Surinder Deswal
Abstract:
The paper investigates the potential of support vector machines and Gaussian process based regression approaches to model the oxygen–transfer capacity from experimental data of multiple plunging jets oxygenation systems. The results suggest the utility of both the modeling techniques in the prediction of the overall volumetric oxygen transfer coefficient (KLa) from operational parameters of multiple plunging jets oxygenation system. The correlation coefficient root mean square error and coefficient of determination values of 0.971, 0.002 and 0.945 respectively were achieved by support vector machine in comparison to values of 0.960, 0.002 and 0.920 respectively achieved by Gaussian process regression. Further, the performances of both these regression approaches in predicting the overall volumetric oxygen transfer coefficient was compared with the empirical relationship for multiple plunging jets. A comparison of results suggests that support vector machines approach works well in comparison to both empirical relationship and Gaussian process approaches, and could successfully be employed in modeling oxygen-transfer.Keywords: Oxygen-transfer, multiple plunging jets, support vector machines, Gaussian process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637217 Triangular Geometric Feature for Offline Signature Verification
Authors: Zuraidasahana Zulkarnain, Mohd Shafry Mohd Rahim, Nor Anita Fairos Ismail, Mohd Azhar M. Arsad
Abstract:
Handwritten signature is accepted widely as a biometric characteristic for personal authentication. The use of appropriate features plays an important role in determining accuracy of signature verification; therefore, this paper presents a feature based on the geometrical concept. To achieve the aim, triangle attributes are exploited to design a new feature since the triangle possesses orientation, angle and transformation that would improve accuracy. The proposed feature uses triangulation geometric set comprising of sides, angles and perimeter of a triangle which is derived from the center of gravity of a signature image. For classification purpose, Euclidean classifier along with Voting-based classifier is used to verify the tendency of forgery signature. This classification process is experimented using triangular geometric feature and selected global features. Based on an experiment that was validated using Grupo de Senales 960 (GPDS-960) signature database, the proposed triangular geometric feature achieves a lower Average Error Rates (AER) value with a percentage of 34% as compared to 43% of the selected global feature. As a conclusion, the proposed triangular geometric feature proves to be a more reliable feature for accurate signature verification.
Keywords: biometrics, euclidean classifier, feature extraction, offline signature verification, VOTING-based classifier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978216 Adaptive Fuzzy Control of Stewart Platform under Actuator Saturation
Authors: Dongsu Wu, Hongbin Gu, Peng Li
Abstract:
A novel adaptive fuzzy trajectory tracking algorithm of Stewart platform based motion platform is proposed to compensate path deviation and degradation of controller-s performance due to actuator torque limit. The algorithm can be divided into two parts: the real-time trajectory shaping part and the joint space adaptive fuzzy controller part. For a reference trajectory in task space whenever any of the actuators is saturated, the desired acceleration of the reference trajectory is modified on-line by using dynamic model of motion platform. Meanwhile an additional action with respect to the difference between the nominal and modified trajectories is utilized in the non-saturated region of actuators to reduce the path error. Using modified trajectory as input, the joint space controller incorporates compute torque controller, leg velocity observer and fuzzy disturbance observer with saturation compensation. It can ensure stability and tracking performance of controller in present of external disturbance and position only measurement. Simulation results verify the effectiveness of proposed control scheme.
Keywords: Actuator saturation, adaptive fuzzy control, Stewartplatform, trajectory shaping, flight simulator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031215 Random Subspace Neural Classifier for Meteor Recognition in the Night Sky
Authors: Carlos Vera, Tetyana Baydyk, Ernst Kussul, Graciela Velasco, Miguel Aparicio
Abstract:
This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed.
Keywords: Contour orientation histogram, meteors, night sky, RSC neural classifier, stars.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 406214 Performance Evaluation of Hybrid Intelligent Controllers in Load Frequency Control of Multi Area Interconnected Power Systems
Authors: Surya Prakash, Sunil Kumar Sinha
Abstract:
This paper deals with the application of artificial neural network (ANN) and fuzzy based Adaptive Neuro Fuzzy Inference System(ANFIS) approach to Load Frequency Control (LFC) of multi unequal area hydro-thermal interconnected power system. The proposed ANFIS controller combines the advantages of fuzzy controller as well as quick response and adaptability nature of ANN. Area-1 and area-2 consists of thermal reheat power plant whereas area-3 and area-4 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent controller like ANFIS, ANN and Fuzzy controllers and conventional PI and PID control approaches. To enhance the performance of intelligent and conventional controller sliding surface is included. The performances of the controllers are simulated using MATLAB/SIMULINK package. A comparison of ANFIS, ANN, Fuzzy, PI and PID based approaches shows the superiority of proposed ANFIS over ANN & fuzzy, PI and PID controller for 1% step load variation.Keywords: Load Frequency Control (LFC), ANFIS, ANN & Fuzzy, PI, PID Controllers, Area Control Error (ACE), Tie-line, MATLAB / SIMULINK.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3660213 Generating State-Based Testing Models for Object-Oriented Framework Interface Classes
Authors: Jehad Al Dallal, Paul Sorenson
Abstract:
An application framework provides a reusable design and implementation for a family of software systems. Application developers extend the framework to build their particular applications using hooks. Hooks are the places identified to show how to use and customize the framework. Hooks define the Framework Interface Classes (FICs) and the specifications of their methods. As part of the development life cycle, it is required to test the implementations of the FICs. Building a testing model to express the behavior of a class is an essential step for the generation of the class-based test cases. The testing model has to be consistent with the specifications provided for the hooks. State-based models consisting of states and transitions are testing models well suited to objectoriented software. Typically, hand-construction of a state-based model of a class behavior is expensive, error-prone, and may result in constructing an inconsistent model with the specifications of the class methods, which misleads verification results. In this paper, a technique is introduced to automatically synthesize a state-based testing model for FICs using the specifications provided for the hooks. A tool that supports the proposed technique is introduced.Keywords: Framework interface classes, hooks, state-basedtesting, testing model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1226212 Reducing Variation of Dyeing Process in Textile Manufacturing Industry
Abstract:
This study deals with a multi-criteria optimization problem which has been transformed into a single objective optimization problem using Response Surface Methodology (RSM), Artificial Neural Network (ANN) and Grey Relational Analyses (GRA) approach. Grey-RSM and Grey-ANN are hybrid techniques which can be used for solving multi-criteria optimization problem. There have been two main purposes of this research as follows. 1. To determine optimum and robust fiber dyeing process conditions by using RSM and ANN based on GRA, 2. To obtain the best suitable model by comparing models developed by different methodologies. The design variables for fiber dyeing process in textile are temperature, time, softener, anti-static, material quantity, pH, retarder, and dispergator. The quality characteristics to be evaluated are nominal color consistency of fiber, maximum strength of fiber, minimum color of dyeing solution. GRA-RSM with exact level value, GRA-RSM with interval level value and GRA-ANN models were compared based on GRA output value and MSE (Mean Square Error) performance measurement of outputs with each other. As a result, GRA-ANN with interval value model seems to be suitable reducing the variation of dyeing process for GRA output value of the model.Keywords: Artificial Neural Network, Grey Relational Analysis, Optimization, Response Surface Methodology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3554211 The Frame Analysis and Testing for Student Formula
Authors: Tanawat Limwathanagura, Chartree Sithananun, Teekayu Limchamroon, Thanyarat Singhanart
Abstract:
The objective of this paper is to study the analysis and testing for determining the torsional stiffness of the student formula-s space frame. From past study, the space frame for Chulalongkorn University Student Formula team used in 2011 TSAE Auto Challenge Student Formula in Thailand was designed by considering required mass and torsional stiffness based on the numerical method and experimental method. The numerical result was compared with the experimental results to verify the torsional stiffness of the space frame. It can be seen from the large error of torsional stiffness of 2011 frame that the experimental result can not verify by the numerical analysis due to the different between the numerical model and experimental setting. In this paper, the numerical analysis and experiment of the same 2011 frame model is performed by improving the model setting. The improvement of both numerical analysis and experiment are discussed to confirm that the models from both methods are same. After the frame was analyzed and tested, the results are compared to verify the torsional stiffness of the frame. It can be concluded that the improved analysis and experiments can used to verify the torsional stiffness of the space frame.
Keywords: Space Frame, Student Formula, Torsional Stiffness, TSAE Auto Challenge
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7993210 A Review: Comparative Analysis of Different Categorical Data Clustering Ensemble Methods
Authors: S. Sarumathi, N. Shanthi, M. Sharmila
Abstract:
Over the past epoch a rampant amount of work has been done in the data clustering research under the unsupervised learning technique in Data mining. Furthermore several algorithms and methods have been proposed focusing on clustering different data types, representation of cluster models, and accuracy rates of the clusters. However no single clustering algorithm proves to be the most efficient in providing best results. Accordingly in order to find the solution to this issue a new technique, called Cluster ensemble method was bloomed. This cluster ensemble is a good alternative approach for facing the cluster analysis problem. The main hope of the cluster ensemble is to merge different clustering solutions in such a way to achieve accuracy and to improve the quality of individual data clustering. Due to the substantial and unremitting development of new methods in the sphere of data mining and also the incessant interest in inventing new algorithms, makes obligatory to scrutinize a critical analysis of the existing techniques and the future novelty. This paper exposes the comparative study of different cluster ensemble methods along with their features, systematic working process and the average accuracy and error rates of each ensemble methods. Consequently this speculative and comprehensive analysis will be very useful for the community of clustering practitioners and also helps in deciding the most suitable one to rectify the problem in hand.
Keywords: Clustering, Cluster Ensemble methods, Co-association matrix, Consensus function, Median partition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2603209 Formal Analysis of a Public-Key Algorithm
Authors: Markus Kaiser, Johannes Buchmann
Abstract:
In this article, a formal specification and verification of the Rabin public-key scheme in a formal proof system is presented. The idea is to use the two views of cryptographic verification: the computational approach relying on the vocabulary of probability theory and complexity theory and the formal approach based on ideas and techniques from logic and programming languages. A major objective of this article is the presentation of the first computer-proved implementation of the Rabin public-key scheme in Isabelle/HOL. Moreover, we explicate a (computer-proven) formalization of correctness as well as a computer verification of security properties using a straight-forward computation model in Isabelle/HOL. The analysis uses a given database to prove formal properties of our implemented functions with computer support. The main task in designing a practical formalization of correctness as well as efficient computer proofs of security properties is to cope with the complexity of cryptographic proving. We reduce this complexity by exploring a light-weight formalization that enables both appropriate formal definitions as well as efficient formal proofs. Consequently, we get reliable proofs with a minimal error rate augmenting the used database, what provides a formal basis for more computer proof constructions in this area.
Keywords: public-key encryption, Rabin public-key scheme, formalproof system, higher-order logic, formal verification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535208 Using Artificial Neural Network to Predict Collisions on Horizontal Tangents of 3D Two-Lane Highways
Authors: Omer F. Cansiz, Said M. Easa
Abstract:
The purpose of this study is mainly to predict collision frequency on the horizontal tangents combined with vertical curves using artificial neural network methods. The proposed ANN models are compared with existing regression models. First, the variables that affect collision frequency were investigated. It was found that only the annual average daily traffic, section length, access density, the rate of vertical curvature, smaller curve radius before and after the tangent were statistically significant according to related combinations. Second, three statistical models (negative binomial, zero inflated Poisson and zero inflated negative binomial) were developed using the significant variables for three alignment combinations. Third, ANN models are developed by applying the same variables for each combination. The results clearly show that the ANN models have the lowest mean square error value than those of the statistical models. Similarly, the AIC values of the ANN models are smaller to those of the regression models for all the combinations. Consequently, the ANN models have better statistical performances than statistical models for estimating collision frequency. The ANN models presented in this paper are recommended for evaluating the safety impacts 3D alignment elements on horizontal tangents.Keywords: Collision frequency, horizontal tangent, 3D two-lane highway, negative binomial, zero inflated Poisson, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633207 Application of Extreme Learning Machine Method for Time Series Analysis
Authors: Rampal Singh, S. Balasundaram
Abstract:
In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM formulation leads to solving a system of linear equations in terms of the unknown weights connecting the hidden layer to the output layer. The solution of this general system of linear equations will be obtained using Moore-Penrose generalized pseudo inverse. For the study of the application of the method we consider the time series generated by the Mackey Glass delay differential equation with different time delays, Santa Fe A and UCR heart beat rate ECG time series. For the choice of sigmoid, sin and hardlim activation functions the optimal values for the memory order and the number of hidden neurons which give the best prediction performance in terms of root mean square error are determined. It is observed that the results obtained are in close agreement with the exact solution of the problems considered which clearly shows that ELM is a very promising alternative method for time series prediction.Keywords: Chaotic time series, Extreme learning machine, Generalization performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3518206 Diagnostic Investigation of Liftoff Time of Solid Propellant Rockets
Authors: Vignesh Rangaraj, Jerin John, N. Naveen, M. Karuppasamy Pandian, P. Sathyan, V. R. Sanal Kumar
Abstract:
In this paper parametric analytical studies have been carried out to examine the intrinsic flow physics pertaining to the liftoff time of solid propellant rockets. Idealized inert simulators of solid rockets are selected for numerical studies to examining the preignition chamber dynamics. Detailed diagnostic investigations have been carried out using an unsteady two-dimensional k-omega turbulence model. We conjectured from the numerical results that the altered variations of the igniter jet impingement angle, turbulence level, time and location of the first ignition, flame spread characteristics, the overall chamber dynamics including the boundary layer growth history are having bearing on the time for nozzle flow chocking for establishing the required thrust for the rocket liftoff. We concluded that the altered flow choking time of strap-on motors with the pre-determined identical ignition time at the lift off phase will lead to the malfunctioning of the rocket. We also concluded that, in the light of the space debris, an error in predicting the liftoff time can lead to an unfavorable launch window amounts the satellite injection errors and/or the mission failures.
Keywords: Liftoff, Nozzle Choking, Solid Rocket, Takeoff.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917205 Strength and Permeability Characteristics of Steel Fibre Reinforced Concrete
Authors: A. P. Singh
Abstract:
The results reported in this paper are the part of an extensive laboratory investigation undertaken to study the effects of fibre parameters on the permeability and strength characteristics of steel fibre reinforced concrete (SFRC). The effect of varying fibre content and curing age on the water permeability, compressive and split tensile strengths of SFRC was investigated using straight steel fibres having an aspect ratio of 65. Samples containing three different weight fractions of 1.0%, 2.0% and 4.0% were cast and tested for permeability and strength after 7, 14, 28 and 60 days of curing. Plain concrete samples were also cast and tested for reference purposes.
Permeability was observed to decrease significantly with the addition of steel fibres and continued to decrease with increasing fibre content and increasing curing age. An exponential relationship was observed between permeability and compressive and split tensile strengths for SFRC as well as PCC. To evaluate the effect of fibre content on the permeability and strength characteristics, the Analysis of Variance (ANOVA) statistical method was used. An a level (probability of error) of 0.05 was used for ANOVA test. Regression analysis was carried out to develop relationship between permeability, compressive strength and curing age.
Keywords: Permeability, grade of concrete, fibre shape, fibre content, curing age, steady state, Darcy’s law, method of penetration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3081204 Discrete-time Phase and Delay Locked Loops Analyses in Tracking Mode
Authors: Jiri Sebesta
Abstract:
Phase locked loops (PLL) and delay locked loops (DLL) play an important role in establishing coherent references (phase of carrier and symbol timing) in digital communication systems. Fully digital receiver including digital carrier synchronizer and symbol timing synchronizer fulfils the conditions for universal multi-mode communication receiver with option of symbol rate setting over several digit places and long-term stability of requirement parameters. Afterwards it is necessary to realize PLL and DLL in synchronizer in digital form and to approach to these subsystems as a discrete representation of analog template. Analysis of discrete phase locked loop (DPLL) or discrete delay locked loop (DDLL) and technique to determine their characteristics based on analog (continuous-time) template is performed in this posed paper. There are derived transmission response and error function for 1st order discrete locked loop and resulting equations and graphical representations for 2nd order one. It is shown that the spectrum translation due to sampling takes effect at frequency characteristics computing for specific values of loop parameters.
Keywords: Carrier synchronization, coherent demodulation, software defined receiver, symbol timing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2626203 Evaluation of Medication Administration Process in a Paediatric Ward
Authors: Zayed N. Alsulami, Asma F. Aldosseri, Ahmed S. Ezziden, Abdulrahman K. Alonazi
Abstract:
Children are more susceptible to medication errors than adults. Medication administration process is the last stage in the medication treatment process and most of the errors detected in this stage. Little research has been undertaken about medication errors in children in the Middle East countries. This study was aimed to evaluate how the paediatric nurses adhere to the medication administration policy and also to identify any medication preparation and administration errors or any risk factors. An observational, prospective study of medication administration process from when the nurses preparing patient medication until administration stage (May to August 2014) was conducted in Saudi Arabia. Twelve paediatric nurses serving 90 paediatric patients were observed. 456 drug administered doses were evaluated. Adherence rate was variable in 7 steps out of 16 steps. Patient allergy information, dose calculation, drug expiry date were the steps in medication administration with lowest adherence rates. 63 medication preparation and administration errors were identified with error rate 13.8% of medication administrations. No potentially life-threating errors were witnessed. Few logistic and administrative factors were reported. The results showed that the medication administration policy and procedure need an urgent revision to be more sensible for nurses in practice. Nurses’ knowledge and skills regarding to the medication administration process should be improved.
Keywords: Double checking, Medication administration errors, Medication safety, Nurses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2820202 Exploiting Two Intelligent Models to Predict Water Level: A Field Study of Urmia Lake, Iran
Authors: Shahab Kavehkar, Mohammad Ali Ghorbani, Valeriy Khokhlov, Afshin Ashrafzadeh, Sabereh Darbandi
Abstract:
Water level forecasting using records of past time series is of importance in water resources engineering and management. For example, water level affects groundwater tables in low-lying coastal areas, as well as hydrological regimes of some coastal rivers. Then, a reliable prediction of sea-level variations is required in coastal engineering and hydrologic studies. During the past two decades, the approaches based on the Genetic Programming (GP) and Artificial Neural Networks (ANN) were developed. In the present study, the GP is used to forecast daily water level variations for a set of time intervals using observed water levels. The measurements from a single tide gauge at Urmia Lake, Northwest Iran, were used to train and validate the GP approach for the period from January 1997 to July 2008. Statistics, the root mean square error and correlation coefficient, are used to verify model by comparing with a corresponding outputs from Artificial Neural Network model. The results show that both these artificial intelligence methodologies are satisfactory and can be considered as alternatives to the conventional harmonic analysis.
Keywords: Water-Level variation, forecasting, artificial neural networks, genetic programming, comparative analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2331201 MPSO based Model Order Formulation Technique for SISO Continuous Systems
Authors: S. N. Deepa, G. Sugumaran
Abstract:
This paper proposes a new version of the Particle Swarm Optimization (PSO) namely, Modified PSO (MPSO) for model order formulation of Single Input Single Output (SISO) linear time invariant continuous systems. In the General PSO, the movement of a particle is governed by three behaviors namely inertia, cognitive and social. The cognitive behavior helps the particle to remember its previous visited best position. In Modified PSO technique split the cognitive behavior into two sections like previous visited best position and also previous visited worst position. This modification helps the particle to search the target very effectively. MPSO approach is proposed to formulate the higher order model. The method based on the minimization of error between the transient responses of original higher order model and the reduced order model pertaining to the unit step input. The results obtained are compared with the earlier techniques utilized, to validate its ease of computation. The proposed method is illustrated through numerical example from literature.Keywords: Continuous System, Model Order Formulation, Modified Particle Swarm Optimization, Single Input Single Output, Transfer Function Approach
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781200 Testing Loaded Programs Using Fault Injection Technique
Authors: S. Manaseer, F. A. Masooud, A. A. Sharieh
Abstract:
Fault tolerance is critical in many of today's large computer systems. This paper focuses on improving fault tolerance through testing. Moreover, it concentrates on the memory faults: how to access the editable part of a process memory space and how this part is affected. A special Software Fault Injection Technique (SFIT) is proposed for this purpose. This is done by sequentially scanning the memory of the target process, and trying to edit maximum number of bytes inside that memory. The technique was implemented and tested on a group of programs in software packages such as jet-audio, Notepad, Microsoft Word, Microsoft Excel, and Microsoft Outlook. The results from the test sample process indicate that the size of the scanned area depends on several factors. These factors are: process size, process type, and virtual memory size of the machine under test. The results show that increasing the process size will increase the scanned memory space. They also show that input-output processes have more scanned area size than other processes. Increasing the virtual memory size will also affect the size of the scanned area but to a certain limit.Keywords: Complex software systems, Error detection, Fault tolerance, Injection and testing methodology, Memory faults, Process and virtual memory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885199 Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning
Authors: Soofiyan Atar, Adil Shaikh, Sahil Rajpurkar, Pragnesh Bhalala, Aniket Desai, Irfan Siddavatam
Abstract:
Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics.
Keywords: model-based reinforcement learning, gait stability, supervised learning, pneumatic quadruped
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 587198 Multi-Linear Regression Based Prediction of Mass Transfer by Multiple Plunging Jets
Abstract:
The paper aims to compare the performance of vertical and inclined multiple plunging jets and to model and predict their mass transfer capacity by multi-linear regression based approach. The multiple vertical plunging jets have jet impact angle of θ = 90O; whereas, multiple inclined plunging jets have jet impact angle of θ = 60O. The results of the study suggests that mass transfer is higher for multiple jets, and inclined multiple plunging jets have up to 1.6 times higher mass transfer than vertical multiple plunging jets under similar conditions. The derived relationship, based on multi-linear regression approach, has successfully predicted the volumetric mass transfer coefficient (KLa) from operational parameters of multiple plunging jets with a correlation coefficient of 0.973, root mean square error of 0.002 and coefficient of determination of 0.946. The results suggests that predicted overall mass transfer coefficient is in good agreement with actual experimental values; thereby, suggesting the utility of derived relationship based on multi-linear regression based approach and can be successfully employed in modeling mass transfer by multiple plunging jets.
Keywords: Mass transfer, multiple plunging jets, multi-linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200197 Image Compression with Back-Propagation Neural Network using Cumulative Distribution Function
Authors: S. Anna Durai, E. Anna Saro
Abstract:
Image Compression using Artificial Neural Networks is a topic where research is being carried out in various directions towards achieving a generalized and economical network. Feedforward Networks using Back propagation Algorithm adopting the method of steepest descent for error minimization is popular and widely adopted and is directly applied to image compression. Various research works are directed towards achieving quick convergence of the network without loss of quality of the restored image. In general the images used for compression are of different types like dark image, high intensity image etc. When these images are compressed using Back-propagation Network, it takes longer time to converge. The reason for this is, the given image may contain a number of distinct gray levels with narrow difference with their neighborhood pixels. If the gray levels of the pixels in an image and their neighbors are mapped in such a way that the difference in the gray levels of the neighbors with the pixel is minimum, then compression ratio as well as the convergence of the network can be improved. To achieve this, a Cumulative distribution function is estimated for the image and it is used to map the image pixels. When the mapped image pixels are used, the Back-propagation Neural Network yields high compression ratio as well as it converges quickly.Keywords: Back-propagation Neural Network, Cumulative Distribution Function, Correlation, Convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551196 Comparison of Artificial Neural Network and Multivariate Regression Methods in Prediction of Soil Cation Exchange Capacity
Authors: Ali Keshavarzi, Fereydoon Sarmadian
Abstract:
Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. Then, multivariate regression and neural network model (feedforward back propagation network) were employed to develop a pedotransfer function for predicting soil parameter using easily measurable characteristics of clay and organic carbon. The performance of the multivariate regression and neural network model was evaluated using a test data set. In order to evaluate the models, root mean square error (RMSE) was used. The value of RMSE and R2 derived by ANN model for CEC were 0.47 and 0.94 respectively, while these parameters for multivariate regression model were 0.65 and 0.88 respectively. Results showed that artificial neural network with seven neurons in hidden layer had better performance in predicting soil cation exchange capacity than multivariate regression.Keywords: Easily measurable characteristics, Feed-forwardback propagation, Pedotransfer functions, CEC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210195 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification
Authors: Ishapathik Das
Abstract:
The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.Keywords: Model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1002194 Soil Moisture Control System: A Product Development Approach
Authors: Swapneel U. Naphade, Dushyant A. Patil, Satyabodh M. Kulkarni
Abstract:
In this work, we propose the concept and geometrical design of a soil moisture control system (SMCS) module by following the product development approach to develop an inexpensive, easy to use and quick to install product targeted towards agriculture practitioners. The module delivers water to the agricultural land efficiently by sensing the soil moisture and activating the delivery valve. We start with identifying the general needs of the potential customer. Then, based on customer needs we establish product specifications and identify important measuring quantities to evaluate our product. Keeping in mind the specifications, we develop various conceptual solutions of the product and select the best solution through concept screening and selection matrices. Then, we develop the product architecture by integrating the systems into the final product. In the end, the geometric design is done using human factors engineering concepts like heuristic analysis, task analysis, and human error reduction analysis. The result of human factors analysis reveals the remedies which should be applied while designing the geometry and software components of the product. We find that to design the best grip in terms of comfort and applied force, for a power-type grip, a grip-diameter of 35 mm is the most ideal.
Keywords: Agriculture, human factors, product design, soil moisture control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310193 Statistical Relation between Vegetation Cover and Land Surface Temperature in Phnom Penh City
Authors: Gulam Mohiuddin, Jan-Peter Mund
Abstract:
This study assessed the correlation between Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) in Phnom Penh City (Cambodia) from 2016 to 2020. Understanding the LST and NDVI can be helpful to understand the Urban Heat Island (UHI) scenario, and it can contribute to planning urban greening and combating the effects of UHI. The study used Landsat-8 images as the data for analysis. They have 100 m spatial resolution (per pixel) in the thermal band. The current study used an approach for the statistical analysis that considers every pixel from the study area instead of taking few sample points or analyzing descriptive statistics. Also, this study is examining the correlation between NDVI and LST with a spatially explicit approach. The study found a strong negative correlation between NDVI and LST (coefficient range -0.56 to -0.59), and this relationship is linear. This study showed a way to avoid the probable error from the sample-based approach in examining two spatial variables. The method is reproducible for a similar type of analysis on the correlation between spatial phenomena. The findings of this study will be used further to understand the causation behind LST change in that area triangulating LST, NDVI and land-use changes.
Keywords: Land Surface Temperature, NDVI, Normalized Difference Vegetation Index, remote sensing, methodological development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 470192 Design of a Fuzzy Feed-forward Controller for Monitor HAGC System of Cold Rolling Mill
Authors: S. Khosravi, A. Afshar, F. Barazandeh
Abstract:
In this study we propose a novel monitor hydraulic automatic gauge control (HAGC) system based on fuzzy feedforward controller. This is used in the development of cold rolling mill automation system to improve the quality of cold strip. According to features/ properties of entry steel strip like its average yield stress, width of strip, and desired exit thickness, this controller realizes the compensation for the exit thickness error. The traditional methods of adjusting the roller position, can-t tolerate the variance in the entry steel strip. The proposed method uses a mathematical model of the system together with the expert knowledge to perform this adjustment while minimizing the effect of the stated problem. In order to improve the speed of the controller in rejecting disturbances introduced by entry strip thickness variations, expert knowledge is added as a feed-forward term to the HAGC system. Simulation results for the application of the proposed controller to a real cold mill show that the exit strip quality is highly improved.Keywords: Fuzzy feed-forward controller, monitor HAGC system, dynamic mathematical model, entry strip thickness deviation compensation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205191 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.
Keywords: Building energy prediction, data mining, demand response, electricity market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205