Search results for: High Numerical Aperture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7764

Search results for: High Numerical Aperture

6594 Effects of High-Protein, Low-Energy Diet on Body Composition in Overweight and Obese Adults: A Clinical Trial

Authors: Makan Cheraghpour, Seyed Ahmad Hosseini, Damoon Ashtary-Larky, Saeed Shirali, Matin Ghanavati, Meysam Alipour

Abstract:

Background: In addition to reducing body weight, the low-calorie diets can reduce the lean body mass. It is hypothesized that in addition to reducing the body weight, the low-calorie diets can maintain the lean body mass. So, the current study aimed at evaluating the effects of high-protein diet with calorie restriction on body composition in overweight and obese individuals. Methods: 36 obese and overweight subjects were divided randomly into two groups. The first group received a normal-protein, low-energy diet (RDA), and the second group received a high-protein, low-energy diet (2×RDA). The anthropometric indices including height, weight, body mass index, body fat mass, fat free mass, and body fat percentage were evaluated before and after the study. Results: A significant reduction was observed in anthropometric indices in both groups (high-protein, low-energy diets and normal-protein, low-energy diets). In addition, more reduction in fat free mass was observed in the normal-protein, low-energy diet group compared to the high -protein, low-energy diet group. In other the anthropometric indices, significant differences were not observed between the two groups. Conclusion: Independently of the type of diet, low-calorie diet can improve the anthropometric indices, but during a weight loss, high-protein diet can help the fat free mass to be maintained.

Keywords: Diet, high-protein, body mass index, body fat percentage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239
6593 Characteristics and Outcomes of COVID-19 Related Stroke: A Cohort Study

Authors: Kasra Afsahi, Maryam Soheilifar

Abstract:

Cerebrovascular accident (CVA) is a neurological side effect of COVID-19 disease wit high rate in pandemics. Effect of COVID-19 disease on disorder is unclear. In this cohort, patients with COVID-19 disease were assessed. 60 CVA cases were assessed in a referral hospital in 2020. The major factor was mortality and the cases were those with and without death. The groups were compared for all features about mortality in the patients with COVID-19 and CVA. Totally 23 out of 60 cases (38.3%) were expired. In univariate analysis there was significant association for death by ischemic heart disease (P = 0.015), high-severity stroke (P = 0.012), high C-reactive protein (CRP) (P = 0.001), high ESR (P = 0.009), pleural effusion (P = 0.005), pericardial effusion (P = 0.027), cardiomegaly (P = 0.005), ground glass opacity (P = 0.001), and consolidation (P = 0.001). Among these factors, there was significant association only for CRP (P = 0.001) and consolidation (P = 0.003) in multivariate analysis. Mortality in the cases with COVID-19-related CVA is one-third and it has relationship to elevated CRP and finding the consolidation in the computerized tomography scan of the lungs.

Keywords: COVID-19, stroke, prognosis, C-reactive protein, CRP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 306
6592 On the System of Nonlinear Rational Difference Equations

Authors: Qianhong Zhang, Wenzhuan Zhang

Abstract:

This paper is concerned with the global asymptotic behavior of positive solution for a system of two nonlinear rational difference equations. Moreover, some numerical examples are given to illustrate results obtained.

Keywords: Difference equations, stability, unstable, global asymptotic behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2417
6591 Anonymous Editing Prevention Technique Using Gradient Method for High-Quality Video

Authors: Jiwon Lee, Chanho Jung, Si-Hwan Jang, Kyung-Ill Kim, Sanghyun Joo, Wook-Ho Son

Abstract:

Since the advances in digital imaging technologies have led to development of high quality digital devices, there are a lot of illegal copies of copyrighted video content on the Internet. Also, unauthorized editing is occurred frequently. Thus, we propose an editing prevention technique for high-quality (HQ) video that can prevent these illegally edited copies from spreading out. The proposed technique is applied spatial and temporal gradient methods to improve the fidelity and detection performance. Also, the scheme duplicates the embedding signal temporally to alleviate the signal reduction caused by geometric and signal-processing distortions. Experimental results show that the proposed scheme achieves better performance than previously proposed schemes and it has high fidelity. The proposed scheme can be used in unauthorized access prevention method of visual communication or traitor tracking applications which need fast detection process to prevent illegally edited video content from spreading out.

Keywords: Editing prevention technique, gradient method, high-quality video, luminance change, visual communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
6590 Computable Function Representations Using Effective Chebyshev Polynomial

Authors: Mohammed A. Abutheraa, David Lester

Abstract:

We show that Chebyshev Polynomials are a practical representation of computable functions on the computable reals. The paper presents error estimates for common operations and demonstrates that Chebyshev Polynomial methods would be more efficient than Taylor Series methods for evaluation of transcendental functions.

Keywords: Approximation Theory, Chebyshev Polynomial, Computable Functions, Computable Real Arithmetic, Integration, Numerical Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3056
6589 On the Early Development of Dispersion in Flow through a Tube with Wall Reactions

Authors: M. W. Lau, C. O. Ng

Abstract:

This is a study on numerical simulation of the convection-diffusion transport of a chemical species in steady flow through a small-diameter tube, which is lined with a very thin layer made up of retentive and absorptive materials. The species may be subject to a first-order kinetic reversible phase exchange with the wall material and irreversible absorption into the tube wall. Owing to the velocity shear across the tube section, the chemical species may spread out axially along the tube at a rate much larger than that given by the molecular diffusion; this process is known as dispersion. While the long-time dispersion behavior, well described by the Taylor model, has been extensively studied in the literature, the early development of the dispersion process is by contrast much less investigated. By early development, that means a span of time, after the release of the chemical into the flow, that is shorter than or comparable to the diffusion time scale across the tube section. To understand the early development of the dispersion, the governing equations along with the reactive boundary conditions are solved numerically using the Flux Corrected Transport Algorithm (FCTA). The computation has enabled us to investigate the combined effects on the early development of the dispersion coefficient due to the reversible and irreversible wall reactions. One of the results is shown that the dispersion coefficient may approach its steady-state limit in a short time under the following conditions: (i) a high value of Damkohler number (say Da ≥ 10); (ii) a small but non-zero value of absorption rate (say Γ* ≤ 0.5).

Keywords: Dispersion coefficient, early development of dispersion, FCTA, wall reactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
6588 Productive Design and Calculation of Intermittent Mechanisms with Radial Parallel Cams

Authors: Pavel Dostrašil, Petr Jirásko

Abstract:

The paper deals with the kinematics and automated calculation of intermittent mechanisms with radial cams. Currently, electronic cams are increasingly applied in the drives of working link mechanisms. Despite a huge advantage of electronic cams in their reprogrammability or instantaneous change of displacement diagrams, conventional cam mechanisms have an irreplaceable role in production and handling machines. With high frequency of working cycle periods, the dynamic load of the proper servomotor rotor increases and efficiency of electronic cams strongly decreases. Though conventional intermittent mechanisms with radial cams are representatives of fixed automation, they have distinct advantages in their high speed (high dynamics), positional accuracy and relatively easy manufacture. We try to remove the disadvantage of firm displacement diagram by reducing costs for simple design and automated calculation that leads reliably to high-quality and inexpensive manufacture.

Keywords: Cam mechanism, displacement diagram, intermittentmechanism, radial parallel cam

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
6587 Evolutionary of Prostate Cancer Stem Cells in Prostate Duct

Authors: Zachariah Sinkala

Abstract:

A systems approach model for prostate cancer in prostate duct, as a sub-system of the organism is developed. It is accomplished in two steps. First this research work starts with a nonlinear system of coupled Fokker-Plank equations which models continuous process of the system like motion of cells. Then extended to PDEs that include discontinuous processes like cell mutations, proliferation and deaths. The discontinuous processes is modeled by using intensity poisson processes. The model incorporates the features of the prostate duct. The system of PDEs spatial coordinate is along the proximal distal axis. Its parameters depend on features of the prostate duct. The movement of cells is biased towards distal region and mutations of prostate cancer cells is localized in the proximal region. Numerical solutions of the full system of equations are provided, and are exhibit traveling wave fronts phenomena. This motivates the use of the standard transformation to derive a canonically related system of ODEs for traveling wave solutions. The results obtained show persistence of prostate cancer by showing that the non-negative cone for the traveling wave system is time invariant. The traveling waves have a unique global attractor is proved also. Biologically, the global attractor verifies that evolution of prostate cancer stem cells exhibit the avascular tumor growth. These numerical solutions show that altering prostate stem cell movement or mutation of prostate cancer cells lead to avascular tumor. Conclusion with comments on clinical implications of the model is discussed.

Keywords: Fokker-Plank equations, global attractor, stem cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
6586 Dissipation Capacity of Steel Building with Fiction Pendulum Base-Isolation System

Authors: A. Ras, I. Nait Zerrad, N. Benmouna, N. Boumechra

Abstract:

Use of base isolators in the seismic design of structures has attracted considerable attention in recent years. The major concern in the design of these structures is to have enough lateral stability to resist wind and seismic forces. There are different systems providing such isolation, among them there are friction- pendulum base isolation systems (FPS) which are rather widely applied nowadays involving to both affordable cost and high fundamental periods. These devices are characterised by a stiff resistance against wind loads and to be flexible to the seismic tremors, which make them suitable for different situations. In this paper, a 3D numerical investigation is done considering the seismic response of a twelve-storey steel building retrofitted with a FPS. Fast nonlinear time history analysis (FNA) of Boumerdes earthquake (Algeria, May 2003) is considered for analysis and carried out using SAP2000 software. Comparisons between fixed base, bearing base isolated and braced structures are shown in a tabulated and graphical format. The results of the various alternatives studies to compare the structural response without and with this device of dissipation energy thus obtained were discussed and the conclusions showed the interesting potential of the FPS isolator. This system may to improve the dissipative capacities of the structure without increasing its rigidity in a significant way which contributes to optimize the quantity of steel necessary for its general stability.

Keywords: Steel structure, energy dissipation, friction-pendulum system, nonlinear analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1341
6585 Multicast Optimization Techniques using Best Effort Genetic Algorithms

Authors: Dinesh Kumar, Y. S. Brar, V. K. Banga

Abstract:

Multicast Network Technology has pervaded our lives-a few examples of the Networking Techniques and also for the improvement of various routing devices we use. As we know the Multicast Data is a technology offers many applications to the user such as high speed voice, high speed data services, which is presently dominated by the Normal networking and the cable system and digital subscriber line (DSL) technologies. Advantages of Multi cast Broadcast such as over other routing techniques. Usually QoS (Quality of Service) Guarantees are required in most of Multicast applications. The bandwidth-delay constrained optimization and we use a multi objective model and routing approach based on genetic algorithm that optimizes multiple QoS parameters simultaneously. The proposed approach is non-dominated routes and the performance with high efficiency of GA. Its betterment and high optimization has been verified. We have also introduced and correlate the result of multicast GA with the Broadband wireless to minimize the delay in the path.

Keywords: GA (genetic Algorithms), Quality of Service, MOGA, Steiner Tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
6584 Study of Cahn-Hilliard Equation to Simulate Phase Separation

Authors: Nara Guimarães, Marcelo Aquino Martorano, Douglas Gouvêa

Abstract:

An investigation into Cahn-Hilliard equation was carried out through numerical simulation to identify a possible phase separation for one and two dimensional domains. It was observed that this equation can reproduce important mass fluxes necessary for phase separation within the miscibility gap and for coalescence of particles.

Keywords: Cahn-Hilliard equation, miscibility gap, phase separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
6583 The High Temperature Damage of DV – 2 Turbine Blade Made from Ni – Base Superalloy

Authors: Juraj Belan, Lenka Hurtalová, Eva Tillová, Alan Vaško, Milan Uhríčik

Abstract:

High pressure turbine (HPT) blades of DV – 2 jet engines are made from Ni – based superalloy. This alloy was originally manufactured in the Soviet Union and referred as ŽS6K. For improving alloy’s high temperature resistance are blades coated with Al – Si diffusion layer. A regular operation temperature of HPT blades vary from 705°C to 750°C depending on jet engine regime. An overcrossing working temperature range causes degradation of the protective coating as well as base material which microstructure is formed by the gamma matrix and strengthening phase gamma prime (forming small particles in the microstructure). Diffusion processes inside the material during exposition of the material to high temperatures causes mainly coarsening of the gamma prime particles, thus decreasing its strengthening effect. Degradation of the Al – Si coating caused its thickness growth. All the microstructure changes and coating layer thickness growth results in decreasing of the turbine blade operation lifetime.

Keywords: Alitize coating layer, gamma prime phase, high temperature degradation, Ni – base superalloy ŽS6K, turbine blade.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161
6582 Numerical Analysis of Laminar Reflux Condensation from Gas-Vapour Mixtures in Vertical Parallel Plate Channels

Authors: Foad Hassaninejadafarahani, Scott Ormiston

Abstract:

Reflux condensation occurs in vertical channels and tubes when there is an upward core flow of vapour (or gas-vapour mixture) and a downward flow of the liquid film. The understanding of this condensation configuration is crucial in the design of reflux condensers, distillation columns, and in loss-of-coolant safety analyses in nuclear power plant steam generators. The unique feature of this flow is the upward flow of the vapour-gas mixture (or pure vapour) that retards the liquid flow via shear at the liquid-mixture interface. The present model solves the full, elliptic governing equations in both the film and the gas-vapour core flow. The computational mesh is non-orthogonal and adapts dynamically the phase interface, thus produces a sharp and accurate interface. Shear forces and heat and mass transfer at the interface are accounted for fundamentally. This modeling is a big step ahead of current capabilities by removing the limitations of previous reflux condensation models which inherently cannot account for the detailed local balances of shear, mass, and heat transfer at the interface. Discretisation has been done based on finite volume method and co-located variable storage scheme. An in-house computer code was developed to implement the numerical solution scheme. Detailed results are presented for laminar reflux condensation from steam-air mixtures flowing in vertical parallel plate channels. The results include velocity and gas mass fraction profiles, as well as axial variations of film thickness.

Keywords: Reflux Condensation, Heat Transfer, Channel, Laminar Flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
6581 Passive and Active Spatial Pendulum Tuned Mass Damper with Two Tuning Frequencies

Authors: W. T. A. Mohammed, M. Eltaeb, R. Kashani

Abstract:

The first bending modes of tall asymmetric structures in the two lateral X and Y-directions have two different natural frequencies. To add tuned damping to these bending modes, one needs to either a) use two pendulum-tuned mass dampers (PTMDs) with one tuning frequency, each PTMD targeting one of the bending modes, or b) use one PTMD with two tuning frequencies (one in each lateral directions). Option (a), being more massive, requiring more space, and being more expensive, is less attractive than option (b). Considering that the tuning frequency of a pendulum depends mainly on the pendulum length, one way of realizing option (b) is by constraining the swinging length of the pendulum in one direction but not in the other; such PTMD is dubbed passive Bi-PTMD. Alternatively, option (b) can be realized by actively setting the tuning frequencies of the PTMD in the two directions. In this work, accurate physical models of passive Bi-PTMD and active PTMD are developed and incorporated into the numerical model of a tall asymmetric structure. The model of PTMDs plus structure is used for a) synthesizing such PTMDs for particular applications and b) evaluating their damping effectiveness in mitigating the dynamic lateral responses of their target asymmetric structures, perturbed by wind load in X and Y-directions. Depending on how elaborate the control scheme is, the active PTMD can either be made to yield the same damping effectiveness as the passive Bi-PTMD of the same size or the passive Bi-TMD twice as massive as the active PTMD.

Keywords: Active tuned mass damper, high-rise building, multi-frequency tuning, vibration control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68
6580 Identification of Impact of Electromagnetic Fields at Low and High Frequency on Human Body

Authors: P. Sowa

Abstract:

The article reviews the current state of large-scale studies about the impact of electromagnetic field on natural environment. The scenario of investigations – simulation of natural conditions at the workplace, taking into consideration the influence both low and high frequency electromagnetic fields is shown.The biological effects of low and high frequency electromagnetic fields are below presented. Results of investigation with animals are shown. The norms and regulations concerning the levels of electromagnetic field intensity are reviewed.

Keywords: Electromagnetic field and environment, biological effects of electric field on human body, simulation of natural condition at workplace

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774
6579 A Simple Adaptive Atomic Decomposition Voice Activity Detector Implemented by Matching Pursuit

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

A simple adaptive voice activity detector (VAD) is implemented using Gabor and gammatone atomic decomposition of speech for high Gaussian noise environments. Matching pursuit is used for atomic decomposition, and is shown to achieve optimal speech detection capability at high data compression rates for low signal to noise ratios. The most active dictionary elements found by matching pursuit are used for the signal reconstruction so that the algorithm adapts to the individual speakers dominant time-frequency characteristics. Speech has a high peak to average ratio enabling matching pursuit greedy heuristic of highest inner products to isolate high energy speech components in high noise environments. Gabor and gammatone atoms are both investigated with identical logarithmically spaced center frequencies, and similar bandwidths. The algorithm performs equally well for both Gabor and gammatone atoms with no significant statistical differences. The algorithm achieves 70% accuracy at a 0 dB SNR, 90% accuracy at a 5 dB SNR and 98% accuracy at a 20dB SNR using 30d B SNR as a reference for voice activity.

Keywords: Atomic Decomposition, Gabor, Gammatone, Matching Pursuit, Voice Activity Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
6578 Behavior Model Mapping and Transformation using Model-Driven Architecture

Authors: Mohammed Abdalla Osman Mukhtar, Azween Abdullah, Alan Giffin Downe

Abstract:

Model mapping and transformation are important processes in high level system abstractions, and form the cornerstone of model-driven architecture (MDA) techniques. Considerable research in this field has devoted attention to static system abstraction, despite the fact that most systems are dynamic with high frequency changes in behavior. In this paper we provide an overview of work that has been done with regard to behavior model mapping and transformation, based on: (1) the completeness of the platform independent model (PIM); (2) semantics of behavioral models; (3) languages supporting behavior model transformation processes; and (4) an evaluation of model composition to effect the best approach to describing large systems with high complexity.

Keywords: MDA; PIM, PSM, QVT, Model Transformation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
6577 An Iterative Method for Quaternionic Linear Equations

Authors: Bin Yu, Minghui Wang, Juntao Zhang

Abstract:

By the real representation of the quaternionic matrix, an iterative method for quaternionic linear equations Ax = b is proposed. Then the convergence conditions are obtained. At last, a numerical example is given to illustrate the efficiency of this method.

Keywords: Quaternionic linear equations, Real representation, Iterative algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
6576 Hopf Bifurcation for a New Chaotic System

Authors: Kejun Zhuang

Abstract:

In this paper, a three dimensional autonomous chaotic system is considered. The existence of Hopf bifurcation is investigated by choosing the appropriate bifurcation parameter. Furthermore, formulas for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are derived with the help of normal form theory. Finally, a numerical example is given.

Keywords: Chaotic system, Hopf bifurcation, normal form theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
6575 Study of the Effectiveness of Solar Heat Gain and Day Light Factors on Minimizing Electricity Use in High Rise Buildings

Authors: Mansour Nikpour, Mohd Zin kandar, Mohsen Ghasemi, Hossein Fallah

Abstract:

Over half of the total electricity consumption is used in buildings. Air-conditioning and electric lighting are the two main resources of electricity consumption in high rise buildings. One way to reduce electricity consumption would be to limit heat gain into buildings, therefore reduce the demand for air-conditioning during hot summer months especially in hot regions. On the other hand natural daylight can be used to reduce the use of electricity for artificial lighting. In this paper effective factors on minimizing heat gain and achieving required day light were reviewed .As daylight always accompanied by solar heat gain. Also interactions between heat gain and daylight were discussed through previous studies and equations which are related to heat gain and day lighting especially in high rise buildings. As a result importance of building-s form and its component on energy consumption in buildings were clarified.

Keywords: High rise buildings, energy demand, day lighting, heat gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2860
6574 A Hybrid Mesh Free Local RBF- Cartesian FD Scheme for Incompressible Flow around Solid Bodies

Authors: A. Javed, K. Djidjeli, J. T. Xing, S. J. Cox

Abstract:

A method for simulating flow around the solid bodies has been presented using hybrid meshfree and mesh-based schemes. The presented scheme optimizes the computational efficiency by combining the advantages of both meshfree and mesh-based methods. In this approach, a cloud of meshfree nodes has been used in the domain around the solid body. These meshfree nodes have the ability to efficiently adapt to complex geometrical shapes. In the rest of the domain, conventional Cartesian grid has been used beyond the meshfree cloud. Complex geometrical shapes can therefore be dealt efficiently by using meshfree nodal cloud and computational efficiency is maintained through the use of conventional mesh-based scheme on Cartesian grid in the larger part of the domain. Spatial discretization of meshfree nodes has been achieved through local radial basis functions in finite difference mode (RBF-FD). Conventional finite difference scheme has been used in the Cartesian ‘meshed’ domain. Accuracy tests of the hybrid scheme have been conducted to establish the order of accuracy. Numerical tests have been performed by simulating two dimensional steady and unsteady incompressible flows around cylindrical object. Steady flow cases have been run at Reynolds numbers of 10, 20 and 40 and unsteady flow problems have been studied at Reynolds numbers of 100 and 200. Flow Parameters including lift, drag, vortex shedding, and vorticity contours are calculated. Numerical results have been found to be in good agreement with computational and experimental results available in the literature.

Keywords: CFD, Meshfree particle methods, Hybrid grid, Incompressible Navier Strokes equations, RBF-FD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2880
6573 A Two-Phase Flow Interface Tracking Algorithm Using a Fully Coupled Pressure-Based Finite Volume Method

Authors: Shidvash Vakilipour, Scott Ormiston, Masoud Mohammadi, Rouzbeh Riazi, Kimia Amiri, Sahar Barati

Abstract:

Two-phase and multi-phase flows are common flow types in fluid mechanics engineering. Among the basic and applied problems of these flow types, two-phase parallel flow is the one that two immiscible fluids flow in the vicinity of each other. In this type of flow, fluid properties (e.g. density, viscosity, and temperature) are different at the two sides of the interface of the two fluids. The most challenging part of the numerical simulation of two-phase flow is to determine the location of interface accurately. In the present work, a coupled interface tracking algorithm is developed based on Arbitrary Lagrangian-Eulerian (ALE) approach using a cell-centered, pressure-based, coupled solver. To validate this algorithm, an analytical solution for fully developed two-phase flow in presence of gravity is derived, and then, the results of the numerical simulation of this flow are compared with analytical solution at various flow conditions. The results of the simulations show good accuracy of the algorithm despite using a nearly coarse and uniform grid. Temporal variations of interface profile toward the steady-state solution show that a greater difference between fluids properties (especially dynamic viscosity) will result in larger traveling waves. Gravity effect studies also show that favorable gravity will result in a reduction of heavier fluid thickness and adverse gravity leads to increasing it with respect to the zero gravity condition. However, the magnitude of variation in favorable gravity is much more than adverse gravity.

Keywords: Coupled solver, gravitational force, interface tracking, Reynolds number to Froude number, two-phase flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988
6572 Designing of a Non-Zero Dispersion Shifted Fiber with Ultra-High Birefringence and High Non-Linearity

Authors: Shabbir Chowdhury, Japatosh Mondal

Abstract:

Photonic Crystal Fiber (PCF) uses are no longer limited to telecommunication only rather it is now used for many sensors-based fiber optics application, medical science, space application and so on. In this paper, the authors have proposed a microstructure PCF that is designed by using Finite Element Method (FEM) based software. Besides designing, authors have discussed the necessity of the characteristics that it poses for some specified applications because it is not possible to have all good characteristics from a single PCF. Proposed PCF shows the property of ultra-high birefringence (0.0262 at 1550 nm) which is more useful for sensor based on fiber optics. The non-linearity of this fiber is 50.86 w-1km-1 at 1550 nm wavelength which is very high to guide the light through the core tightly. For Perfectly Matched Boundary Layer (PML), 0.6 μm diameter is taken. This design will offer the characteristics of Nonzero-Dispersion-Shifted Fiber (NZ-DSF) for 450 nm waveband. Since it is a software-based design and no practical evaluation has made, 2% tolerance is checked and the authors have found very small variation of the characteristics.

Keywords: Chromatic dispersion, birefringence, NZ-DSF, FEM, non-linear coefficient, DCF, waveband.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 462
6571 Improvement of Gregory's formula using Particle Swarm Optimization

Authors: N. Khelil. L. Djerou , A. Zerarka, M. Batouche

Abstract:

Consider the Gregory integration (G) formula with end corrections where h Δ is the forward difference operator with step size h. In this study we prove that can be optimized by minimizing some of the coefficient k a in the remainder term by particle swarm optimization. Experimental tests prove that can be rendered a powerful formula for library use.

Keywords: Numerical integration, Gregory Formula, Particle Swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
6570 Benchmarking: Performance on ALPS and Formosa Clusters

Authors: Chih-Wei Hsieh, Chau-Yi Chou, Sheng-HsiuKuo, Tsung-Che Tsai, I-Chen Wu

Abstract:

This paper presents the benchmarking results and performance evaluation of differentclustersbuilt atthe National Center for High-Performance Computingin Taiwan. Performance of processor, memory subsystem andinterconnect is a critical factor in the overall performance of high performance computing platforms. The evaluation compares different system architecture and software platforms. Most supercomputer used HPL to benchmark their system performance, in accordance with the requirement of the TOP500 List. In this paper we consider system memory access factors that affect benchmark performance, such as processor and memory performance.We hope these works will provide useful information for future development and construct cluster system.

Keywords: Performance Evaluation, Benchmarking and High-Performance Computing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
6569 Fractal Analysis of 16S rRNA Gene Sequences in Archaea Thermophiles

Authors: T. Holden, G. Tremberger, Jr, E. Cheung, R. Subramaniam, R. Sullivan, N. Gadura, P. Schneider, P. Marchese, A. Flamholz, T. Cheung, D. Lieberman

Abstract:

A nucleotide sequence can be expressed as a numerical sequence when each nucleotide is assigned its proton number. A resulting gene numerical sequence can be investigated for its fractal dimension in terms of evolution and chemical properties for comparative studies. We have investigated such nucleotide fluctuation in the 16S rRNA gene of archaea thermophiles. The studied archaea thermophiles were archaeoglobus fulgidus, methanothermobacter thermautotrophicus, methanocaldococcus jannaschii, pyrococcus horikoshii, and thermoplasma acidophilum. The studied five archaea-euryarchaeota thermophiles have fractal dimension values ranging from 1.93 to 1.97. Computer simulation shows that random sequences would have an average of about 2 with a standard deviation about 0.015. The fractal dimension was found to correlate (negative correlation) with the thermophile-s optimal growth temperature with R2 value of 0.90 (N =5). The inclusion of two aracheae-crenarchaeota thermophiles reduces the R2 value to 0.66 (N = 7). Further inclusion of two bacterial thermophiles reduces the R2 value to 0.50 (N =9). The fractal dimension is correlated (positive) to the sequence GC content with an R2 value of 0.89 for the five archaea-euryarchaeota thermophiles (and 0.74 for the entire set of N = 9), although computer simulation shows little correlation. The highest correlation (positive) was found to be between the fractal dimension and di-nucleotide Shannon entropy. However Shannon entropy and sequence GC content were observed to correlate with optimal growth temperature having an R2 of 0.8 (negative), and 0.88 (positive), respectively, for the entire set of 9 thermophiles; thus the correlation lacks species specificity. Together with another correlation study of bacterial radiation dosage with RecA repair gene sequence fractal dimension, it is postulated that fractal dimension analysis is a sensitive tool for studying the relationship between genotype and phenotype among closely related sequences.

Keywords: Fractal dimension, archaea thermophiles, Shannon entropy, GC content

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
6568 Desktop High-Speed Aerodynamics by Shallow Water Analogy in a Tin Box for Engineering Students

Authors: Etsuo Morishita

Abstract:

In this paper, we show shallow water in a tin box as an analogous simulation tool for high-speed aerodynamics education and research. It is customary that we use a water tank to create shallow water flow. While a flow in a water tank is not necessarily uniform and is sometimes wavy, we can visualize a clear supercritical flow even when we move a body manually in stationary water in a simple shallow tin box. We can visualize a blunt shock wave around a moving circular cylinder together with a shock pattern around a diamond airfoil. Another interesting analogous experiment is a hydrodynamic shock tube with water and tea. We observe the contact surface clearly due to color difference of the two liquids those are invisible in the real gas dynamics experiment. We first revisit the similarities between high-speed aerodynamics and shallow water hydraulics. Several educational and research experiments are then introduced for engineering students. Shallow water experiments in a tin box simulate properly the high-speed flows.

Keywords: Aerodynamics compressible flow, gas dynamics, hydraulics, shock wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 919
6567 Comparison of Two Maintenance Policies for a Two-Unit Series System Considering General Repair

Authors: Seyedvahid Najafi, Viliam Makis

Abstract:

In recent years, maintenance optimization has attracted special attention due to the growth of industrial systems complexity. Maintenance costs are high for many systems, and preventive maintenance is effective when it increases operations' reliability and safety at a reduced cost. The novelty of this research is to consider general repair in the modeling of multi-unit series systems and solve the maintenance problem for such systems using the semi-Markov decision process (SMDP) framework. We propose an opportunistic maintenance policy for a series system composed of two main units. Unit 1, which is more expensive than unit 2, is subjected to condition monitoring, and its deterioration is modeled using a gamma process. Unit 1 hazard rate is estimated by the proportional hazards model (PHM), and two hazard rate control limits are considered as the thresholds of maintenance interventions for unit 1. Maintenance is performed on unit 2, considering an age control limit. The objective is to find the optimal control limits and minimize the long-run expected average cost per unit time. The proposed algorithm is applied to a numerical example to compare the effectiveness of the proposed policy (policy Ⅰ) with policy Ⅱ, which is similar to policy Ⅰ, but instead of general repair, replacement is performed. Results show that policy Ⅰ leads to lower average cost compared with policy Ⅱ. 

Keywords: Condition-based maintenance, proportional hazards model, semi-Markov decision process, two-unit series systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 540
6566 Variation of Quality of Roller-Compacted Concrete Based on Consistency

Authors: C. Chhorn, S. H. Han, S. W. Lee

Abstract:

Roller-compacted concrete (RCC) has been used for decades in many pavement applications due to its economic cost and high construction speed. However, due to the lack of deep researches and experiences, this material has not been widely employed. An RCC mixture with appropriate consistency can induce high compacted density, while high density can induce good aggregate interlock and high strength. Consistency of RCC is mainly known to define its constructability. However, it was not well specified how this property may affect other properties of a constructed RCC pavement (RCCP). This study suggested the possibility of an ideal range of consistency that may provide adequate quality of RCCP. In this research, five sections of RCCP consisted of both 13 mm and 19 mm aggregate sections were investigated. The effects of consistency on compacted depth, strength, international roughness index (IRI), skid resistance are examined. From this study, a new range of consistency is suggested for RCCP application.

Keywords: Compacted depth, consistency, international roughness index, pavement, roller-compacted concrete, skid resistance, strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1099
6565 A 0.9 V, High-Speed, Low-Power Tunable Gain Current Mirror

Authors: Hassan Faraji Baghtash

Abstract:

A high-speed current mirror with low-power method of adjusting current gain is presented. The current mirror provides continuous gain adjustment; yet, its gain can simply be programmed digitally, as well. The structure features the ever interesting merits of linear-in-dB gain control scheme and low power/voltage operation. The performance of proposed structure is verified through the simulation in TSMC 0.18 µm CMOS Technology. The proposed tunable gain current mirror structure draws only 18 µW from 0.9 V power supply and can operate at high frequencies up to 550 MHz in the worst case condition of maximum gain setting.

Keywords: Current mirror, current mode, low power, low voltage, tunable circuit, variable current amplifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 799