Search results for: transfer function method
10145 Available Transmission Transfer Efficiency (ATTE) as an Index Measurement for Power Transmission Grid Performance
Authors: Ahmad Abubakar Sadiq, Mark N. Nwohu, Jacob Tsado, Ahmad A. Ashraf, Agbachi E. Okenna, Enesi E. Yahaya, Ambafi James Garba
Abstract:
Transmission system performance analysis is vital to proper planning and operations of power systems in the presence of deregulation. Key performance indicators (KPIs) are often used as measure of degree of performance. This paper gives a novel method to determine the transmission efficiency by evaluating the ratio of real power losses incurred from a specified transfer direction. Available Transmission Transfer Efficiency (ATTE) expresses the percentage of real power received resulting from inter-area available power transfer. The Tie line (Rated system path) performance is seen to differ from system wide (Network response) performance and ATTE values obtained are transfer direction specific. The required sending end quantities with specified receiving end ATC and the receiving end power circle diagram are obtained for the tie line analysis. The amount of real power loss load relative to the available transfer capability gives a measure of the transmission grid efficiency.Keywords: Available transfer capability, efficiency performance, real power, transmission system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197610144 Similarity Solutions of Nonlinear Stretched Biomagnetic Flow and Heat Transfer with Signum Function and Temperature Power Law Geometries
Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows
Abstract:
Biomagnetic fluid dynamics is an interdisciplinary field comprising engineering, medicine, and biology. Bio fluid dynamics is directed towards finding and developing the solutions to some of the human body related diseases and disorders. This article describes the flow and heat transfer of two dimensional, steady, laminar, viscous and incompressible biomagnetic fluid over a non-linear stretching sheet in the presence of magnetic dipole. Our model is consistent with blood fluid namely biomagnetic fluid dynamics (BFD). This model based on the principles of ferrohydrodynamic (FHD). The temperature at the stretching surface is assumed to follow a power law variation, and stretching velocity is assumed to have a nonlinear form with signum function or sign function. The governing boundary layer equations with boundary conditions are simplified to couple higher order equations using usual transformations. Numerical solutions for the governing momentum and energy equations are obtained by efficient numerical techniques based on the common finite difference method with central differencing, on a tridiagonal matrix manipulation and on an iterative procedure. Computations are performed for a wide range of the governing parameters such as magnetic field parameter, power law exponent temperature parameter, and other involved parameters and the effect of these parameters on the velocity and temperature field is presented. It is observed that for different values of the magnetic parameter, the velocity distribution decreases while temperature distribution increases. Besides, the finite difference solutions results for skin-friction coefficient and rate of heat transfer are discussed. This study will have an important bearing on a high targeting efficiency, a high magnetic field is required in the targeted body compartment.
Keywords: Biomagnetic fluid, FHD, nonlinear stretching sheet, slip parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 82110143 Heat and Mass Transfer of Triple Diffusive Convection in a Rotating Couple Stress Liquid Using Ginzburg-Landau Model
Authors: Sameena Tarannum, S. Pranesh
Abstract:
A nonlinear study of triple diffusive convection in a rotating couple stress liquid has been analysed. It is performed to study the effect of heat and mass transfer by deriving Ginzburg-Landau equation. Heat and mass transfer are quantified in terms of Nusselt number and Sherwood numbers, which are obtained as a function of thermal and solute Rayleigh numbers. The obtained Ginzburg-Landau equation is Bernoulli equation, and it has been elucidated numerically by using Mathematica. The effects of couple stress parameter, solute Rayleigh numbers, and Taylor number on the onset of convection and heat and mass transfer have been examined. It is found that the effects of couple stress parameter and Taylor number are to stabilize the system and to increase the heat and mass transfer.
Keywords: Couple stress liquid, Ginzburg-Landau model, rotation, triple diffusive convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 127110142 Sonic Localization Cues for Classrooms: A Structural Model Proposal
Authors: Abhijit Mitra, C. Ardil
Abstract:
We investigate sonic cues for binaural sound localization within classrooms and present a structural model for the same. Two of the primary cues for localization, interaural time difference (ITD) and interaural level difference (ILD) created between the two ears by sounds from a particular point in space, are used. Although these cues do not lend any information about the elevation of a sound source, the torso, head, and outer ear carry out elevation dependent spectral filtering of sounds before they reach the inner ear. This effect is commonly captured in head related transfer function (HRTF) which aids in resolving the ambiguity from the ITDs and ILDs alone and helps localize sounds in free space. The proposed structural model of HRTF produces well controlled horizontal as well as vertical effects. The implemented HRTF is a signal processing model which tries to mimic the physical effects of the sounds interacting with different parts of the body. The effectiveness of the method is tested by synthesizing spatial audio, in MATLAB, for use in listening tests with human subjects and is found to yield satisfactory results in comparison with existing models.
Keywords: Auditory localization, Binaural sound, Head related impulse response, Head related transfer function, Interaural level difference, Interaural time difference, Localization cues.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172910141 Fabrication of Cylindrical Silicon Nanowire-Embedded Field Effect Transistor Using Al2O3 Transfer Layer
Authors: Sang Hoon Lee, Tae Il Lee, Su Jeong Lee, Jae Min Myoung
Abstract:
In order to manufacture short gap single Si nanowire (NW) field effect transistor (FET) by imprinting and transferring method, we introduce the method using Al2O3 sacrificial layer. The diameters of cylindrical Si NW addressed between Au electrodes by dielectrophoretic (DEP) alignment method are controlled to 106, 128, and 148 nm. After imprinting and transfer process, cylindrical Si NW is embedded in PVP adhesive and dielectric layer. By curing transferred cylindrical Si NW and Au electrodes on PVP-coated p++ Si substrate with 200nm-thick SiO2, 3μm gap Si NW FET fabrication was completed. As the diameter of embedded Si NW increases, the mobility of FET increases from 80.51 to 121.24 cm2/V·s and the threshold voltage moves from –7.17 to –2.44 V because the ratio of surface to volume gets reduced.
Keywords: Al2O3 Sacrificial transfer layer, cylindrical silicon nanowires, Dielectrophorestic alignment, Field effect transistor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 212210140 Identification of Nonlinear Systems Using Radial Basis Function Neural Network
Authors: C. Pislaru, A. Shebani
Abstract:
This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the KMeans clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.
Keywords: System identification, Nonlinear system, Neural networks, RBF neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 286410139 An Extension of the Kratzel Function and Associated Inverse Gaussian Probability Distribution Occurring in Reliability Theory
Authors: R. K. Saxena, Ravi Saxena
Abstract:
In view of their importance and usefulness in reliability theory and probability distributions, several generalizations of the inverse Gaussian distribution and the Krtzel function are investigated in recent years. This has motivated the authors to introduce and study a new generalization of the inverse Gaussian distribution and the Krtzel function associated with a product of a Bessel function of the third kind )(zKQ and a Z - Fox-Wright generalized hyper geometric function introduced in this paper. The introduced function turns out to be a unified gamma-type function. Its incomplete forms are also discussed. Several properties of this gamma-type function are obtained. By means of this generalized function, we introduce a generalization of inverse Gaussian distribution, which is useful in reliability analysis, diffusion processes, and radio techniques etc. The inverse Gaussian distribution thus introduced also provides a generalization of the Krtzel function. Some basic statistical functions associated with this probability density function, such as moments, the Mellin transform, the moment generating function, the hazard rate function, and the mean residue life function are also obtained.KeywordsFox-Wright function, Inverse Gaussian distribution, Krtzel function & Bessel function of the third kind.
Keywords: Fox-Wright function, Inverse Gaussian distribution, Krtzel function & Bessel function of the third kind.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172110138 Lattice Boltzmann Method for Turbulent Heat Transfer in Wavy Channel Flows
Authors: H.Y. Lai, S. C. Chang, W. L. Chen
Abstract:
The hydrodynamic and thermal lattice Boltzmann methods are applied to investigate the turbulent convective heat transfer in the wavy channel flows. In this study, the turbulent phenomena are modeling by large-eddy simulations with the Smagorinsky model. As a benchmark, the laminar and turbulent backward-facing step flows are simulated first. The results give good agreement with other numerical and experimental data. For wavy channel flows, the distribution of Nusselt number and the skin-friction coefficients are calculated to evaluate the heat transfer effect and the drag force. It indicates that the vortices at the trough would affect the magnitude of drag and weaken the heat convection effects on the wavy surface. In turbulent cases, if the amplitude of the wavy boundary is large enough, the secondary vortices would be generated at troughs and contribute to the heat convection. Finally, the effects of different Re on the turbulent transport phenomena are discussed.
Keywords: Heat transfer, lattice Boltzmann method, turbulence, wavy channel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 250110137 The Effect of Vibration on the Absorption of CO2 with Chemical Reaction in Aqueous Solution of Calcium Hydroxide
Authors: B. Sohbi, M. Emtir, M. Elgarni
Abstract:
An interesting method to produce calcium carbonate is based in a gas-liquid reaction between carbon dioxide and aqueous solutions of calcium hydroxide. The design parameters for gas-liquid phase are flow regime, individual mass transfer, gas-liquid specific interfacial area. Most studies on gas-liquid phase were devoted to the experimental determination of some of these parameters, and more specifically, of the mass transfer coefficient, kLa which depends fundamentally on the superficial gas velocity and on the physical properties of absorption phase. The principle investigation was directed to study the effect of the vibration on the mass transfer coefficient kLa in gas-liquid phase during absorption of CO2 in the in aqueous solution of calcium hydroxide. The vibration with a higher frequency increase the mass transfer coefficient kLa, but vibration with lower frequency didn-t improve it, the mass transfer coefficient kLa increase with increase the superficial gas velocity.
Keywords: Environment technology, mass transfer coefficient, absorption, CO2, calcium hydroxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 181610136 A Note on the Numerical Solution of Singular Integral Equations of Cauchy Type
Authors: M. Abdulkawi, Z. K. Eshkuvatov, N. M. A. Nik Long
Abstract:
This manuscript presents a method for the numerical solution of the Cauchy type singular integral equations of the first kind, over a finite segment which is bounded at the end points of the finite segment. The Chebyshev polynomials of the second kind with the corresponding weight function have been used to approximate the density function. The force function is approximated by using the Chebyshev polynomials of the first kind. It is shown that the numerical solution of characteristic singular integral equation is identical with the exact solution, when the force function is a cubic function. Moreover, it also shown that this numerical method gives exact solution for other singular integral equations with degenerate kernels.
Keywords: Singular integral equations, Cauchy kernel, Chebyshev polynomials, interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165510135 Preliminary Study on Fixture Layout Optimization Using Element Strain Energy
Authors: Zeshan Ahmad, Matteo Zoppi, Rezia Molfino
Abstract:
The objective of positioning the fixture elements in the fixture is to make the workpiece stiff, so that geometric errors in the manufacturing process can be reduced. Most of the work for optimal fixture layout used the minimization of the sum of the nodal deflection normal to the surface as objective function. All deflections in other direction have been neglected. We propose a new method for fixture layout optimization in this paper, which uses the element strain energy. The deformations in all the directions have been considered in this way. The objective function in this method is to minimize the sum of square of element strain energy. Strain energy and stiffness are inversely proportional to each other. The optimization problem is solved by the sequential quadratic programming method. Three different kinds of case studies are presented, and results are compared with the method using nodal deflections as objective function to verify the propose method.Keywords: Fixture layout, optimization, strain energy, quadratic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155210134 The Role of Periodic Vortex Shedding in Heat Transfer Enhancement for Transient Pulsatile Flow Inside Wavy Channels
Authors: Esam M. Alawadhi, Raed I. Bourisli
Abstract:
Periodic vortex shedding in pulsating flow inside wavy channel and the effect it has on heat transfer are studied using the finite volume method. A sinusoidally-varying component is superimposed on a uniform flow inside a sinusoidal wavy channel and the effects on the Nusselt number is analyzed. It was found that a unique optimum value of the pulsation frequency, represented by the Strouhal number, exists for Reynolds numbers ranging from 125 to 1000. Results suggest that the gain in heat transfer is related to the process of vortex formation, movement about the troughs of the wavy channel, and subsequent ejection/destruction through the converging section. Heat transfer is the highest when the frequencies of the pulsation and vortex formation approach being in-phase. Analysis of Strouhal number effect on Nu over a period of pulsation substantiates the proposed physical mechanism for enhancement. The effect of changing the amplitude of pulsation is also presented over a period of pulsation, showing a monotonic increase in heat transfer with increasing amplitude. The 60% increase in Nusselt number suggests that sinusoidal fluid pulsation can an effective method for enhancing heat transfer in laminar, wavy-channel flows.Keywords: Vortex shedding, pulsating flow, wavy channel, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191310133 Estimating of the Renewal Function with Heavy-tailed Claims
Authors: Rassoul Abdelaziz
Abstract:
We develop a new estimator of the renewal function for heavy-tailed claims amounts. Our approach is based on the peak over threshold method for estimating the tail of the distribution with a generalized Pareto distribution. The asymptotic normality of an appropriately centered and normalized estimator is established, and its performance illustrated in a simulation study.
Keywords: Renewal function, peak-over-threshold, POT method, extremes value, generalized pareto distribution, heavy-tailed distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147310132 Unsteady Flow and Heat Transfer of Nanofluid from Circular Tube in Cross-Flow
Authors: H. Bayat, M. Majidi, M. Bolhasani, A. Karbalaie Alilou, A. Mirabdolah Lavasani
Abstract:
Unsteady flow and heat transfer from a circular cylinder in cross-flow is studied numerically. The governing equations are solved by using finite volume method. Reynolds number varies in range of 50 to 200; in this range flow is considered to be laminar and unsteady. Al2O3 nanoparticle with volume fraction in range of 5% to 20% is added to pure water. Effects of adding nanoparticle to pure water on lift and drag coefficient and Nusselt number is presented. Addition of Al2O3 has inconsiderable effect on the value of drags and lift coefficient. However, it has significant effect on heat transfer; results show that heat transfer of Al2O3 nanofluid is about 9% to 36% higher than pure water.
Keywords: Nanofluid, heat transfer, unsteady flow, forced convection, cross-flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 252210131 Development of Mathematical Model for Overall Oxygen Transfer Coefficient of an Aerator and Comparison with CFD Modeling
Authors: Shashank.B. Thakre, L.B. Bhuyar, Samir.J. Deshmukh
Abstract:
The value of overall oxygen transfer Coefficient (KLa), which is the best measure of oxygen transfer in water through aeration, is obtained by a simple approach, which sufficiently explains the utility of the method to eliminate the discrepancies due to inaccurate assumption of saturation dissolved oxygen concentration. The rate of oxygen transfer depends on number of factors like intensity of turbulence, which in turns depends on the speed of rotation, size, and number of blades, diameter and immersion depth of the rotor, and size and shape of aeration tank, as well as on physical, chemical, and biological characteristic of water. An attempt is made in this paper to correlate the overall oxygen transfer Coefficient (KLa), as an independent parameter with other influencing parameters mentioned above. It has been estimated that the simulation equation developed predicts the values of KLa and power with an average standard error of estimation of 0.0164 and 7.66 respectively and with R2 values of 0.979 and 0.989 respectively, when compared with experimentally determined values. The comparison of this model is done with the model generated using Computational fluid dynamics (CFD) and both the models were found to be in good agreement with each other.Keywords: CFD Model, Overall oxygen transfer coefficient, Power, Mathematical Model, Validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176810130 The Impact of System Cascading Collapse and Transmission Line Outages to the Transfer Capability Assessment
Authors: N. A. Salim, M. M. Othman, I. Musirin, M. S. Serwan
Abstract:
Uncertainty of system operating conditions is one of the causative reasons which may render to the instability of a transmission system. For that reason, accurate assessment of transmission reliability margin (TRM) is essential to ensure effective power transfer between areas during the occurrence of system uncertainties. The power transfer is also called as the available transfer capability (ATC) which is the information required by the utilities and marketers to instigate selling and buying the electric energy. This paper proposes a computationally effective approach to estimate TRM and ATC by considering the uncertainties of system cascading collapse and transmission line outages. In accordance to the results that have been obtained, the proposed method is essential for the transmission providers which could help the power marketers and planning sectors in the operation and reserving transmission services based on the ATC calculated.
Keywords: Available transfer capability, System cascading collapse, Transmission line outages, Transmission reliability margin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205310129 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis
Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel
Abstract:
Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.
Keywords: Artificial Immune System, Breast Cancer Diagnosis, Euclidean Function, Gaussian Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 212110128 Influence of Artificial Roughness on Heat Transfer in the Rotating Flow
Authors: T. Magrakvelidze, N. Bantsadze, N. Lekveishvili, Kh. Lomidze
Abstract:
The results of an experimental study of the process of convective and boiling heat transfer in the vessel with stirrer for smooth and rough ring-shaped pipes are presented. It is established that creation of two-dimensional artificial roughness on the heated surface causes the essential (~100%) intensification of convective heat transfer. In case of boiling the influence of roughness appears on the initial stage of boiling and in case of fully developed nucleate boiling there was no intensification of heat transfer. The similitude equation for calculating convective heat transfer coefficient, which generalizes well experimental data both for the smooth and the rough surfaces is proposed.Keywords: boiling, heat transfer, roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186610127 From Experiments to Numerical Modeling: A Tool for Teaching Heat Transfer in Mechanical Engineering
Authors: D. Zabala, Y. Cárdenas, G. Núñez
Abstract:
In this work the numerical simulation of transient heat transfer in a cylindrical probe is done. An experiment was conducted introducing a steel cylinder in a heating chamber and registering its surface temperature along the time during one hour. In parallel, a mathematical model was solved for one dimension transient heat transfer in cylindrical coordinates, considering the boundary conditions of the test. The model was solved using finite difference method, because the thermal conductivity in the cylindrical steel bar and the convection heat transfer coefficient used in the model are considered temperature dependant functions, and both conditions prevent the use of the analytical solution. The comparison between theoretical and experimental results showed the average deviation is below 2%. It was concluded that numerical methods are useful in order to solve engineering complex problems. For constant k and h, the experimental methodology used here can be used as a tool for teaching heat transfer in mechanical engineering, using mathematical simplified models with analytical solutions.Keywords: Heat transfer experiment, thermal conductivity, finite difference, engineering education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146010126 An Inverse Heat Transfer Algorithm for Predicting the Thermal Properties of Tumors during Cryosurgery
Authors: Mohamed Hafid, Marcel Lacroix
Abstract:
This study aimed at developing an inverse heat transfer approach for predicting the time-varying freezing front and the temperature distribution of tumors during cryosurgery. Using a temperature probe pressed against the layer of tumor, the inverse approach is able to predict simultaneously the metabolic heat generation and the blood perfusion rate of the tumor. Once these parameters are predicted, the temperature-field and time-varying freezing fronts are determined with the direct model. The direct model rests on one-dimensional Pennes bioheat equation. The phase change problem is handled with the enthalpy method. The Levenberg-Marquardt Method (LMM) combined to the Broyden Method (BM) is used to solve the inverse model. The effect (a) of the thermal properties of the diseased tissues; (b) of the initial guesses for the unknown thermal properties; (c) of the data capture frequency; and (d) of the noise on the recorded temperatures is examined. It is shown that the proposed inverse approach remains accurate for all the cases investigated.
Keywords: Cryosurgery, inverse heat transfer, Levenberg-Marquardt method, thermal properties, Pennes model, enthalpy method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149910125 System Reduction Using Modified Pole Clustering and Modified Cauer Continued Fraction
Authors: Jay Singh, C. B. Vishwakarma, Kalyan Chatterjee
Abstract:
A mixed method by combining modified pole clustering technique and modified cauer continued fraction is proposed for reducing the order of the large-scale dynamic systems. The denominator polynomial of the reduced order model is obtained by using modified pole clustering technique while the coefficients of the numerator are obtained by modified cauer continued fraction. This method generated 'k' number of reduced order models for kth order reduction. The superiority of the proposed method has been elaborated through numerical example taken from the literature and compared with few existing order reduction methods.
Keywords: Modified Pole Clustering, Modified Cauer Continued Fraction, Order Reduction, Stability, Transfer Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196610124 An Evaluation of Software Connection Methods for Heterogeneous Sensor Networks
Authors: M. Hammerton, J. Trevathan, T. Myers, W. Read
Abstract:
The transfer rate of messages in distributed sensor network applications is a critical factor in a system's performance. The Sensor Abstraction Layer (SAL) is one such system. SAL is a middleware integration platform for abstracting sensor specific technology in order to integrate heterogeneous types of sensors in a network. SAL uses Java Remote Method Invocation (RMI) as its connection method, which has unsatisfying transfer rates, especially for streaming data. This paper analyses different connection methods to optimize data transmission in SAL by replacing RMI. Our results show that the most promising Java-based connections were frameworks for Java New Input/Output (NIO) including Apache MINA, JBoss Netty, and xSocket. A test environment was implemented to evaluate each respective framework based on transfer rate, resource usage, and scalability. Test results showed the most suitable connection method to improve data transmission in SAL JBoss Netty as it provides a performance enhancement of 68%.
Keywords: Wireless sensor networks, remote method invocation, transmission time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151710123 Black Box Model and Evolutionary Fuzzy Control Methods of Coupled-Tank System
Authors: S. Yaman, S. Rostami
Abstract:
In this study, a black box modeling of the coupled-tank system is obtained by using fuzzy sets. The derived model is tested via adaptive neuro fuzzy inference system (ANFIS). In order to achieve a better control performance, the parameters of three different controller types, classical proportional integral controller (PID), fuzzy PID and function tuner method, are tuned by one of the evolutionary computation method, genetic algorithm. All tuned controllers are applied to the fuzzy model of the coupled-tank experimental setup and analyzed under the different reference input values. According to the results, it is seen that function tuner method demonstrates better robust control performance and guarantees the closed loop stability.
Keywords: Function tuner method, fuzzy modeling, fuzzy PID controller, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164810122 A Simple Heat and Mass Transfer Model for Salt Gradient Solar Ponds
Authors: Safwan Kanan, Jonathan Dewsbury, Gregory Lane-Serff
Abstract:
A salinity gradient solar pond is a free energy source system for collecting, convertingand storing solar energy as heat. In thispaper, the principles of solar pond are explained. A mathematical model is developed to describe and simulate heat and mass transferbehaviour of salinity gradient solar pond. MATLAB codes are programmed to solve the one dimensional finite difference method for heat and mass transfer equations. Temperature profiles and concentration distributions are calculated. The numerical results are validated with experimental data and the results arefound to be in good agreement.
Keywords: Finite Difference method, Salt-gradient solar-pond, Solar energy, Transient heat and mass transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 497910121 Predicting Protein Function using Decision Tree
Authors: Manpreet Singh, Parminder Kaur Wadhwa, Surinder Kaur
Abstract:
The drug discovery process starts with protein identification because proteins are responsible for many functions required for maintenance of life. Protein identification further needs determination of protein function. Proposed method develops a classifier for human protein function prediction. The model uses decision tree for classification process. The protein function is predicted on the basis of matched sequence derived features per each protein function. The research work includes the development of a tool which determines sequence derived features by analyzing different parameters. The other sequence derived features are determined using various web based tools.Keywords: Sequence Derived Features, decision tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195110120 Transient Heat Transfer Model for Car Body Primer Curing
Authors: D. Zabala, N. Sánchez, J. Pinto
Abstract:
A transient heat transfer mathematical model for the prediction of temperature distribution in the car body during primer baking has been developed by considering the thermal radiation and convection in the furnace chamber and transient heat conduction governing equations in the car framework. The car cockpit is considered like a structure with six flat plates, four vertical plates representing the car doors and the rear and front panels. The other two flat plates are the car roof and floor. The transient heat conduction in each flat plate is modeled by the lumped capacitance method. Comparison with the experimental data shows that the heat transfer model works well for the prediction of thermal behavior of the car body in the curing furnace, with deviations below 5%.Keywords: Transient heat transfer, car body, lumpedcapacitance, primer baking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203310119 Mathematical Models for Overall Gas Transfer Coefficient Using Different Theories and Evaluating Their Measurement Accuracy
Authors: Shashank.B. Thakre, Lalit.B. Bhuyar, Samir.J. Deshmukh
Abstract:
Oxygen transfer, the process by which oxygen is transferred from the gaseous to liquid phase, is a vital part of the waste water treatment process. Because of low solubility of oxygen and consequent low rate of oxygen transfer, sufficient oxygen to meet the requirement of aerobic waste does not enter through normal surface air water interface. Many theories have come up in explaining the mechanism of gas transfer and absorption of non-reacting gases in a liquid, of out of which, Two film theory is important. An exiting mathematical model determines approximate value of Overall Gas Transfer coefficient. The Overall Gas Transfer coefficient, in case of Penetration theory, is 1.13 time more than that obtained in case of Two film theory. The difference is due to the difference in assumptions in the two theories. The paper aims at development of mathematical model which determines the value of Overall Gas Transfer coefficient with greater accuracy than the existing model.Keywords: Theories, Dissolved oxygen, Mathematical model, Gas Transfer coefficient, Accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155910118 Average Turbulent Pipe Flow with Heat Transfer Using a Three-Equation Model
Authors: Khalid Alammar
Abstract:
Aim of this study is to evaluate a new three-equation turbulence model applied to flow and heat transfer through a pipe. Uncertainty is approximated by comparing with published direct numerical simulation results for fully-developed flow. Error in the mean axial velocity, temperature, friction, and heat transfer is found to be negligible.
Keywords: Heat Transfer, Nusselt number, Skin friction, Turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 244710117 Knowledge Management: The Need for a Total Knowledge Transfer Model to Diffuse Innovation of the Public Health Workforce
Authors: Qatawneh H., Yousef S., Shirvani H.
Abstract:
The purpose of this article is to propose a model designed to achieve Total Knowledge Transfer in the public health sector. The Total Knowledge Transfer Model integrated four essential organizational factors which have been under examined in totality in the literature. The research design was inductive in nature and used a case study for accomplishing the research objectives. The researcher investigated the factors that created a base to design a framework for total knowledge transfer in the public health sector. The results of this study are drawn from a fairly large sample in only two hospitals. A further research can be conducted to cover more responses from a wider health sector. The Total Knowledge Transfer Model is essential to improve the transfer and application of total common health knowledge.
Keywords: Health Care, Knowledge Management, Knowledge Transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178110116 Comparison of Three Versions of Conjugate Gradient Method in Predicting an Unknown Irregular Boundary Profile
Authors: V. Ghadamyari, F. Samadi, F. Kowsary
Abstract:
An inverse geometry problem is solved to predict an unknown irregular boundary profile. The aim is to minimize the objective function, which is the difference between real and computed temperatures, using three different versions of Conjugate Gradient Method. The gradient of the objective function, considered necessary in this method, obtained as a result of solving the adjoint equation. The abilities of three versions of Conjugate Gradient Method in predicting the boundary profile are compared using a numerical algorithm based on the method. The predicted shapes show that due to its convergence rate and accuracy of predicted values, the Powell-Beale version of the method is more effective than the Fletcher-Reeves and Polak –Ribiere versions.Keywords: Boundary elements, Conjugate Gradient Method, Inverse Geometry Problem, Sensitivity equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834