Search results for: fuzzy and optimization.
2627 Multi-objective Optimization with Fuzzy Based Ranking for TCSC Supplementary Controller to Improve Rotor Angle and Voltage Stability
Authors: S. Panda, S. C. Swain, A. K. Baliarsingh, A. K. Mohanty, C. Ardil
Abstract:
Many real-world optimization problems involve multiple conflicting objectives and the use of evolutionary algorithms to solve the problems has attracted much attention recently. This paper investigates the application of multi-objective optimization technique for the design of a Thyristor Controlled Series Compensator (TCSC)-based controller to enhance the performance of a power system. The design objective is to improve both rotor angle stability and system voltage profile. A Genetic Algorithm (GA) based solution technique is applied to generate a Pareto set of global optimal solutions to the given multi-objective optimisation problem. Further, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto solution set. Simulation results are presented to show the effectiveness and robustness of the proposed approach.
Keywords: Multi-objective optimisation, thyristor controlled series compensator, power system stability, genetic algorithm, pareto solution set, fuzzy ranking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19512626 Dependent Weighted Aggregation Operators of Hesitant Fuzzy Numbers
Authors: Jing Liu
Abstract:
In this paper, motivated by the ideas of dependent weighted aggregation operators, we develop some new hesitant fuzzy dependent weighted aggregation operators to aggregate the input arguments taking the form of hesitant fuzzy numbers rather than exact numbers, or intervals. In fact, we propose three hesitant fuzzy dependent weighted averaging(HFDWA) operators, and three hesitant fuzzy dependent weighted geometric(HFDWG) operators based on different weight vectors, and the most prominent characteristic of these operators is that the associated weights only depend on the aggregated hesitant fuzzy numbers and can relieve the influence of unfair hesitant fuzzy numbers on the aggregated results by assigning low weights to those “false” and “biased” ones. Some examples are given to illustrated the efficiency of the proposed operators.
Keywords: Hesitant fuzzy numbers, hesitant fuzzy dependent weighted averaging(HFDWA) operators, hesitant fuzzy dependent weighted geometric(HFDWG) operators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17832625 Simplex Method for Fuzzy Variable Linear Programming Problems
Authors: S.H. Nasseri, E. Ardil
Abstract:
Fuzzy linear programming is an application of fuzzy set theory in linear decision making problems and most of these problems are related to linear programming with fuzzy variables. A convenient method for solving these problems is based on using of auxiliary problem. In this paper a new method for solving fuzzy variable linear programming problems directly using linear ranking functions is proposed. This method uses simplex tableau which is used for solving linear programming problems in crisp environment before.
Keywords: Fuzzy variable linear programming, fuzzy number, ranking function, simplex method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33722624 Sensitizing Rules for Fuzzy Control Charts
Authors: N. Pekin Alakoç, A. Apaydın
Abstract:
Quality control charts indicate out of control conditions if any nonrandom pattern of the points is observed or any point is plotted beyond the control limits. Nonrandom patterns of Shewhart control charts are tested with sensitizing rules. When the processes are defined with fuzzy set theory, traditional sensitizing rules are insufficient for defining all out of control conditions. This is due to the fact that fuzzy numbers increase the number of out of control conditions. The purpose of the study is to develop a set of fuzzy sensitizing rules, which increase the flexibility and sensitivity of fuzzy control charts. Fuzzy sensitizing rules simplify the identification of out of control situations that results in a decrease in the calculation time and number of evaluations in fuzzy control chart approach.Keywords: Fuzzy set theory, Quality control charts, Run Rules, Unnatural patterns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35552623 A Note on Characterization of Regular Γ-Semigroups in terms of (∈,∈ ∨q)-Fuzzy Bi-ideal
Authors: S.K.Sardar, B.Davvaz, S.Kayal, S.K.Majumdar
Abstract:
The purpose of this note is to obtain some properties of (∈,∈ ∨q)- fuzzy bi-ideals in a Γ-semigroup in order to characterize regular and intra-regular Γ-semigroups.Keywords: Regular Γ-semigroup, belong to or quasi-coincident, (∈, ∈ ∨q)-fuzzy subsemigroup, (∈, ∈ ∨q)-fuzzy bi-ideals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22342622 Optimization of Energy Conservation Potential for VAV Air Conditioning System using Fuzzy based Genetic Algorithm
Authors: R. Parameshwaran, R. Karunakaran, S. Iniyan, Anand A. Samuel
Abstract:
The objective of this study is to present the test results of variable air volume (VAV) air conditioning system optimized by two objective genetic algorithm (GA). The objective functions are energy savings and thermal comfort. The optimal set points for fuzzy logic controller (FLC) are the supply air temperature (Ts), the supply duct static pressure (Ps), the chilled water temperature (Tw), and zone temperature (Tz) that is taken as the problem variables. Supply airflow rate and chilled water flow rate are considered to be the constraints. The optimal set point values are obtained from GA process and assigned into fuzzy logic controller (FLC) in order to conserve energy and maintain thermal comfort in real time VAV air conditioning system. A VAV air conditioning system with FLC installed in a software laboratory has been taken for the purpose of energy analysis. The total energy saving obtained in VAV GA optimization system with FLC compared with constant air volume (CAV) system is expected to achieve 31.5%. The optimal duct static pressure obtained through Genetic fuzzy methodology attributes to better air distribution by delivering the optimal quantity of supply air to the conditioned space. This combination enhanced the advantages of uniform air distribution, thermal comfort and improved energy savings potential.Keywords: Energy savings, fuzzy logic, Genetic algorithm, Thermal Comfort
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32162621 Some Equalities Connected with Fuzzy Soft Matrices
Authors: D. R. Jain
Abstract:
The aim of this paper is to use matrix representation of Fuzzy soft sets for proving some equalities connected with Fuzzy soft sets based on set-operations.
Keywords: Equality, Fuzzy soft matrix, Fuzzy soft sets, operations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17932620 Fuzzy Shortest Paths Approximation for Solving the Fuzzy Steiner Tree Problem in Graphs
Authors: Miloš Šeda
Abstract:
In this paper, we deal with the Steiner tree problem (STP) on a graph in which a fuzzy number, instead of a real number, is assigned to each edge. We propose a modification of the shortest paths approximation based on the fuzzy shortest paths (FSP) evaluations. Since a fuzzy min operation using the extension principle leads to nondominated solutions, we propose another approach to solving the FSP using Cheng's centroid point fuzzy ranking method.Keywords: Steiner tree, single shortest path problem, fuzzyranking, binary heap, priority queue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17052619 Ranking Fuzzy Numbers Based On Epsilon-Deviation Degree
Authors: Vincent F. Yu, Ha Thi Xuan Chi
Abstract:
Nejad and Mashinchi (2011) proposed a revision for ranking fuzzy numbers based on the areas of the left and the right sides of a fuzzy number. However, this method still has some shortcomings such as lack of discriminative power to rank similar fuzzy numbers and no guarantee the consistency between the ranking of fuzzy numbers and the ranking of their images. To overcome these drawbacks, we propose an epsilon-deviation degree method based on the left area and the right area of a fuzzy number, and the concept of the centroid point. The main advantage of the new approach is the development of an innovative index value which can be used to consistently evaluate and rank fuzzy numbers. Numerical examples are presented to illustrate the efficiency and superiority of the proposed method.
Keywords: Ranking fuzzy numbers, Centroid, Deviation degree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16022618 Design of Gain Scheduled Fuzzy PID Controller
Authors: Leehter Yao, Chin-Chin Lin
Abstract:
An adaptive fuzzy PID controller with gain scheduling is proposed in this paper. The structure of the proposed gain scheduled fuzzy PID (GS_FPID) controller consists of both fuzzy PI-like controller and fuzzy PD-like controller. Both of fuzzy PI-like and PD-like controllers are weighted through adaptive gain scheduling, which are also determined by fuzzy logic inference. A modified genetic algorithm called accumulated genetic algorithm is designed to learn the parameters of fuzzy inference system. In order to learn the number of fuzzy rules required for the TSK model, the fuzzy rules are learned in an accumulated way. In other words, the parameters learned in the previous rules are accumulated and updated along with the parameters in the current rule. It will be shown that the proposed GS_FPID controllers learned by the accumulated GA perform well for not only the regular linear systems but also the higher order and time-delayed systems.
Keywords: Gain scheduling, fuzzy PID controller, adaptive control, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40842617 Intuitionistic Fuzzy Implicative Ideals with Thresholds (λ,μ) of BCI-Algebras
Authors: Qianqian Li, Shaoquan Sun
Abstract:
The aim of this paper is to introduce the notion of intuitionistic fuzzy implicative ideals with thresholds (λ, μ) of BCI-algebras and to investigate its properties and characterizations.
Keywords: BCI-algebra, intuitionistic fuzzy set, intuitionistic fuzzy ideal with thresholds (λ, μ), intuitionistic fuzzy implicative ideal with thresholds (λ, μ).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32872616 Takagi-Sugeno Fuzzy Control of Induction Motor
Authors: Allouche Moez, Souissi Mansour, Chaabane Mohamed, Mehdi Driss
Abstract:
This paper deals with the synthesis of fuzzy state feedback controller of induction motor with optimal performance. First, the Takagi-Sugeno (T-S) fuzzy model is employed to approximate a non linear system in the synchronous d-q frame rotating with electromagnetic field-oriented. Next, a fuzzy controller is designed to stabilise the induction motor and guaranteed a minimum disturbance attenuation level for the closed-loop system. The gains of fuzzy control are obtained by solving a set of Linear Matrix Inequality (LMI). Finally, simulation results are given to demonstrate the controller-s effectiveness.
Keywords: Rejection disturbance, fuzzy modelling, open-loop control, Fuzzy feedback controller, fuzzy observer, Linear Matrix Inequality (LMI)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19132615 A Neurofuzzy Learning and its Application to Control System
Authors: Seema Chopra, R. Mitra, Vijay Kumar
Abstract:
A neurofuzzy approach for a given set of input-output training data is proposed in two phases. Firstly, the data set is partitioned automatically into a set of clusters. Then a fuzzy if-then rule is extracted from each cluster to form a fuzzy rule base. Secondly, a fuzzy neural network is constructed accordingly and parameters are tuned to increase the precision of the fuzzy rule base. This network is able to learn and optimize the rule base of a Sugeno like Fuzzy inference system using Hybrid learning algorithm, which combines gradient descent, and least mean square algorithm. This proposed neurofuzzy system has the advantage of determining the number of rules automatically and also reduce the number of rules, decrease computational time, learns faster and consumes less memory. The authors also investigate that how neurofuzzy techniques can be applied in the area of control theory to design a fuzzy controller for linear and nonlinear dynamic systems modelling from a set of input/output data. The simulation analysis on a wide range of processes, to identify nonlinear components on-linely in a control system and a benchmark problem involving the prediction of a chaotic time series is carried out. Furthermore, the well-known examples of linear and nonlinear systems are also simulated under the Matlab/Simulink environment. The above combination is also illustrated in modeling the relationship between automobile trips and demographic factors.
Keywords: Fuzzy control, neuro-fuzzy techniques, fuzzy subtractive clustering, extraction of rules, and optimization of membership functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26012614 Prime(Semiprime) Fuzzy h-ideal in Γ-hemiring
Authors: Sujit Kumar Sardar, Debabrata Mandal
Abstract:
The notions of prime(semiprime) fuzzy h-ideal(h-biideal, h-quasi-ideal) in Γ-hemiring are introduced and some of their characterizations are obtained by using "belongingness(∈)" and "quasi - coincidence(q)". Cartesian product of prime(semiprime) fuzzy h-ideals of Γ-hemirings are also investigated.Keywords: Γ-hemiring, Fuzzy h-ideals, Prime fuzzy left h-ideal, Prime(semiprime) (∈, ∈ ∨q)-fuzzy left h-bi-ideal(h-ideal, h-quasiideal), Cartesian product
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27782613 On the Fuzzy Difference Equation xn+1 = A +
Authors: Qianhong Zhang, Lihui Yang, Daixi Liao,
Abstract:
In this paper, we study the existence, the boundedness and the asymptotic behavior of the positive solutions of a fuzzy nonlinear difference equations xn+1 = A + k i=0 Bi xn-i , n= 0, 1, · · · . where (xn) is a sequence of positive fuzzy numbers, A,Bi and the initial values x-k, x-k+1, · · · , x0 are positive fuzzy numbers. k ∈ {0, 1, 2, · · ·}.
Keywords: Fuzzy difference equation, boundedness, persistence, equilibrium point, asymptotic behaviour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16282612 Correspondence Theorem for Anti L-fuzzy Normal Subgroups
Authors: Jian Tang, Yunfei Yao
Abstract:
In this paper the concept of the cosets of an anti Lfuzzy normal subgroup of a group is given. Furthermore, the group G/A of cosets of an anti L-fuzzy normal subgroup A of a group G is shown to be isomorphic to a factor group of G in a natural way. Finally, we prove that if f : G1 -→ G2 is an epimorphism of groups, then there is a one-to-one order-preserving correspondence between the anti L-fuzzy normal subgroups of G2 and those of G1 which are constant on the kernel of f. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17112611 A Fuzzy Time Series Forecasting Model for Multi-Variate Forecasting Analysis with Fuzzy C-Means Clustering
Authors: Emrah Bulut, Okan Duru, Shigeru Yoshida
Abstract:
In this study, a fuzzy integrated logical forecasting method (FILF) is extended for multi-variate systems by using a vector autoregressive model. Fuzzy time series forecasting (FTSF) method was recently introduced by Song and Chissom [1]-[2] after that Chen improved the FTSF method. Rather than the existing literature, the proposed model is not only compared with the previous FTS models, but also with the conventional time series methods such as the classical vector autoregressive model. The cluster optimization is based on the C-means clustering method. An empirical study is performed for the prediction of the chartering rates of a group of dry bulk cargo ships. The root mean squared error (RMSE) metric is used for the comparing of results of methods and the proposed method has superiority than both traditional FTS methods and also the classical time series methods.
Keywords: C-means clustering, Fuzzy time series, Multi-variate design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23102610 Comparative Study of Some Adaptive Fuzzy Algorithms for Manipulator Control
Authors: Sudeept Mohan, Surekha Bhanot
Abstract:
The problem of manipulator control is a highly complex problem of controlling a system which is multi-input, multioutput, non-linear and time variant. In this paper some adaptive fuzzy, and a new hybrid fuzzy control algorithm have been comparatively evaluated through simulations, for manipulator control. The adaptive fuzzy controllers consist of self-organizing, self-tuning, and coarse/fine adaptive fuzzy schemes. These controllers are tested for different trajectories and for varying manipulator parameters through simulations. Various performance indices like the RMS error, steady state error and maximum error are used for comparison. It is observed that the self-organizing fuzzy controller gives the best performance. The proposed hybrid fuzzy plus integral error controller also performs remarkably well, given its simple structure.Keywords: Hybrid fuzzy, Self-organizing, Self-tuning, Trajectory tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14902609 On Weakly Prime and Weakly Quasi-Prime Fuzzy Left Ideals in Ordered Semigroups
Authors: Jian Tang
Abstract:
In this paper, we first introduce the concepts of weakly prime and weakly quasi-prime fuzzy left ideals of an ordered semigroup S. Furthermore, we give some characterizations of weakly prime and weakly quasi-prime fuzzy left ideals of an ordered semigroup S by the ordered fuzzy points and fuzzy subsets of S.
Keywords: Ordered semigroup, ordered fuzzy point, weakly prime fuzzy left ideal, weakly quasi-prime fuzzy left ideal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16502608 Compromise Ratio Method for Decision Making under Fuzzy Environment using Fuzzy Distance Measure
Authors: Debashree Guha, Debjani Chakraborty
Abstract:
The aim of this paper is to adopt a compromise ratio (CR) methodology for fuzzy multi-attribute single-expert decision making proble. In this paper, the rating of each alternative has been described by linguistic terms, which can be expressed as triangular fuzzy numbers. The compromise ratio method for fuzzy multi-attribute single expert decision making has been considered here by taking the ranking index based on the concept that the chosen alternative should be as close as possible to the ideal solution and as far away as possible from the negative-ideal solution simultaneously. From logical point of view, the distance between two triangular fuzzy numbers also is a fuzzy number, not a crisp value. Therefore a fuzzy distance measure, which is itself a fuzzy number, has been used here to calculate the difference between two triangular fuzzy numbers. Now in this paper, with the help of this fuzzy distance measure, it has been shown that the compromise ratio is a fuzzy number and this eases the problem of the decision maker to take the decision. The computation principle and the procedure of the compromise ratio method have been described in detail in this paper. A comparative analysis of the compromise ratio method previously proposed [1] and the newly adopted method have been illustrated with two numerical examples.
Keywords: Compromise ratio method, Fuzzy multi-attributesingle-expert decision making, Fuzzy number, Linguistic variable
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14272607 Fuzzy Scan Method to Detect Clusters
Authors: Laureano Rodríguez, Gladys Casas, Ricardo Grau, Yailen Martínez
Abstract:
The classical temporal scan statistic is often used to identify disease clusters. In recent years, this method has become as a very popular technique and its field of application has been notably increased. Many bioinformatic problems have been solved with this technique. In this paper a new scan fuzzy method is proposed. The behaviors of classic and fuzzy scan techniques are studied with simulated data. ROC curves are calculated, being demonstrated the superiority of the fuzzy scan technique.Keywords: Scan statistic, fuzzy scan, simulating study
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14062606 Type–2 Fuzzy Programming for Optimizing the Heat Rate of an Industrial Gas Turbine via Absorption Chiller Technology
Authors: T. Ganesan, M. S. Aris, I. Elamvazuthi, Momen Kamal Tageldeen
Abstract:
Terms set in power purchase agreements (PPA) challenge power utility companies in balancing between the returns (from maximizing power production) and securing long term supply contracts at capped production. The production limitation set in the PPA has driven efforts to maximize profits through efficient and economic power production. In this paper, a combined industrial-scale gas turbine (GT) - absorption chiller (AC) system is considered to cool the GT air intake for reducing the plant’s heat rate (HR). This GT-AC system is optimized while considering power output limitations imposed by the PPA. In addition, the proposed formulation accounts for uncertainties in the ambient temperature using Type-2 fuzzy programming. Using the enhanced chaotic differential evolution (CEDE), the Pareto frontier was constructed and the optimization results are analyzed in detail.Keywords: Absorption chillers, turbine inlet air cooling, power purchase agreement, multiobjective optimization, type-2 fuzzy programming, chaotic differential evolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9482605 Implementation of Intuitionistic Fuzzy Approach in Maximizing Net Present Value
Authors: Gaurav Kumar, Rakesh Kumar Bajaj
Abstract:
The applicability of Net Present Value (NPV) in an investment project is becoming more and more popular in the field of engineering economics. The classical NPV methodology involves only the precise and accurate data of the investment project. In the present communication, we give a new mathematical model for NPV which uses the concept of intuitionistic fuzzy set theory. The proposed model is based on triangular intuitionistic fuzzy number, which may be known as Intuitionistic Fuzzy Net Present Value (IFNPV). The model has been applied to an example and the results are presented.
Keywords: Net Present Value, Intuitionistic Fuzzy Set, Investment Projects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25312604 Comparison Results of Two-point Fuzzy Boundary Value Problems
Authors: Hsuan-Ku Liu
Abstract:
This paper investigates the solutions of two-point fuzzy boundary value problems as the form x = f(t, x(t)), x(0) = A and x(l) = B, where A and B are fuzzy numbers. There are four different solutions for the problems when the lateral type of H-derivative is employed to solve the problems. As f(t, x) is a monotone function of x, these four solutions are reduced to two different solutions. As f(t, x(t)) = λx(t) or f(t, x(t)) = -λx(t), solutions and several comparison results are presented to indicate advantages of each solution.
Keywords: Fuzzy derivative, lateral type of H-derivative, fuzzy differential equations, fuzzy boundary value problems, boundary value problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15432603 On λ− Summable of Orlicz Space of Gai Sequences of Fuzzy Numbers
Authors: N.Subramanian, S.Krishnamoorthy, S. Balasubramanian
Abstract:
In this paper the concept of strongly (λM)p - Ces'aro summability of a sequence of fuzzy numbers and strongly λM- statistically convergent sequences of fuzzy numbers is introduced.Keywords: Fuzzy numbers, statistical convergence, Orlicz space, gai sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19652602 Estimating Development Time of Software Projects Using a Neuro Fuzzy Approach
Authors: Venus Marza, Amin Seyyedi, Luiz Fernando Capretz
Abstract:
Software estimation accuracy is among the greatest challenges for software developers. This study aimed at building and evaluating a neuro-fuzzy model to estimate software projects development time. The forty-one modules developed from ten programs were used as dataset. Our proposed approach is compared with fuzzy logic and neural network model and Results show that the value of MMRE (Mean of Magnitude of Relative Error) applying neuro-fuzzy was substantially lower than MMRE applying fuzzy logic and neural network.Keywords: Artificial Neural Network, Fuzzy Logic, Neuro-Fuzzy, Software Estimation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16712601 Generalized Measures of Fuzzy Entropy and their Properties
Authors: K.C. Deshmukh, P.G. Khot, Nikhil
Abstract:
In the present communication, we have proposed some new generalized measure of fuzzy entropy based upon real parameters, discussed their and desirable properties, and presented these measures graphically. An important property, that is, monotonicity of the proposed measures has also been studied.Keywords: Fuzzy numbers, Fuzzy entropy, Characteristicfunction, Crisp set, Monotonicity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14802600 Improving Digital Image Edge Detection by Fuzzy Systems
Authors: Begol, Moslem, Maghooli, Keivan
Abstract:
Image Edge Detection is one of the most important parts of image processing. In this paper, by fuzzy technique, a new method is used to improve digital image edge detection. In this method, a 3x3 mask is employed to process each pixel by means of vicinity. Each pixel is considered a fuzzy input and by examining fuzzy rules in its vicinity, the edge pixel is specified and by utilizing calculation algorithms in image processing, edges are displayed more clearly. This method shows significant improvement compared to different edge detection methods (e.g. Sobel, Canny).Keywords: Fuzzy Systems, Edge Detection, Fuzzy edgedetection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20982599 Fuzzy Mathematical Morphology approach in Image Processing
Authors: Yee Yee Htun, Dr. Khaing Khaing Aye
Abstract:
Morphological operators transform the original image into another image through the interaction with the other image of certain shape and size which is known as the structure element. Mathematical morphology provides a systematic approach to analyze the geometric characteristics of signals or images, and has been applied widely too many applications such as edge detection, objection segmentation, noise suppression and so on. Fuzzy Mathematical Morphology aims to extend the binary morphological operators to grey-level images. In order to define the basic morphological operations such as fuzzy erosion, dilation, opening and closing, a general method based upon fuzzy implication and inclusion grade operators is introduced. The fuzzy morphological operations extend the ordinary morphological operations by using fuzzy sets where for fuzzy sets, the union operation is replaced by a maximum operation, and the intersection operation is replaced by a minimum operation. In this work, it consists of two articles. In the first one, fuzzy set theory, fuzzy Mathematical morphology which is based on fuzzy logic and fuzzy set theory; fuzzy Mathematical operations and their properties will be studied in details. As a second part, the application of fuzziness in Mathematical morphology in practical work such as image processing will be discussed with the illustration problems.Keywords: Binary Morphological, Fuzzy sets, Grayscalemorphology, Image processing, Mathematical morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32562598 Assessment the Quality of Telecommunication Services by Fuzzy Inferences System
Authors: Oktay Nusratov, Ramin Rzaev, Aydin Goyushov
Abstract:
Fuzzy inference method based approach to the forming of modular intellectual system of assessment the quality of communication services is proposed. Developed under this approach the basic fuzzy estimation model takes into account the recommendations of the International Telecommunication Union in respect of the operation of packet switching networks based on IPprotocol. To implement the main features and functions of the fuzzy control system of quality telecommunication services it is used multilayer feedforward neural network.
Keywords: Quality of communication, IP-telephony, Fuzzy set, Fuzzy implication, Neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2352