**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31093

##### Estimating Development Time of Software Projects Using a Neuro Fuzzy Approach

**Authors:**
Venus Marza,
Amin Seyyedi,
Luiz Fernando Capretz

**Abstract:**

**Keywords:**
Fuzzy Logic,
Artificial Neural Network,
software estimation,
neuro-fuzzy

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1061597

**References:**

[1] H. Park, S. Baek, "An empirical validation of a neural network model for software effort estimation", Expert Systems with Applications, 2007.

[2] C. Lopez-Martin, C.Yanez-Marquez, A.Gutierrez-Tornes, "Predictive accuracy comparison of fuzzy models for software development effort of small programs, The journal of systems and software", Vol. 81, Issue 6, 2008, pp. 949-960.

[3] J. Jantzen, "Neuro-fuzzy modeling", Report no 98-H-874, 1998.

[4] W. Xia, L.F. Capretz, D. Ho, F.Ahmed, "A new calibration for function point complexity weights", Information and Software Technology, Vol.50, Issue 7-8, 2007, pp.670-683.

[5] M. Jorgensen, B. Faugli, T. Gruschke, "Characteristics of software engineers with optimistic prediction", Journal of Systems and Software, Vol. 80, Issue. 9, 2007, pp. 1472-1482.

[6] C.L. Martin, J.L. Pasquier, M.C. Yanez, T.A. Gutierrez, "Software Development Effort Estimation Using Fuzzy Logic: A Case Study", IEEE Proceedings of the Sixth Mexican International Conference on Computer Science (ENC-05), 2005, pp. 113-120.

[7] M.T. Su, T.C.Ling, K.K.Phang, C.S.Liew, P.Y.Man, "Enhanced Software Development Effort and Cost Estimation Using Fuzzy Logic Model", Malaysian Journal of Computer Science, Vol. 20, No. 2, 2007, pp. 199-207.

[8] A. Heiat, "Comparison of artificial neural network and regression models for estimating software development effort", Information and Software Technology, Vol. 44, Issue 15, 2002, pp. 911-922.

[9] X. Huang, Danny Ho, J. Ren, L.F. Capretz, "Improving the COCOMO model using a neuro-fuzzy approach", Applied Soft Computing , Vol.7, Issue 1, 2007, pp. 29-40.

[10] A. Idri, A.Abran, "A Fuzzy Logic Based Set of Measures for Software Project Similarity: Validation and Possible Improvements", Proceedings of the seventh international software metrics symposium (METRICS -01), 2001, pp.85-96.

[11] S.N. Sivanandam, S. Sumathi, S.N. Deepa, "Introduction to fuzzy logic using MATLAB", Springer, 2007.

[12] A. Lotfi Zadeh, "From Computing with Numbers to Computing with Words - From Manipulation of Measurements to Manipulation of Perceptions", IEEE Transactions on Circuits and Systems, Fundamental Theory and Applications, Vol. 45, No 1, 1999, pp 105-119.

[13] M.R.Braz & S.R.Vergilio, "Using Fuzzy Theory for Effort Estimation of Object-Oriented Software", Proceedings of the 16th IEEE international Conference on Tools with Artificial Intelligence (ICTAI 2004), 2004, pp. 196-201.

[14] K.K.Aggarwal, Y.Singh, P.Chandra, M.Puri, "Sensitivity Analysis of Fuzzy and Neural Network Models", ACM SIGSOFT Software Engineering Notes, Vol. 30, Issue 4, 2005, pp. 1-4.

[15] A.A. Moataz, O.S.Moshood, A.Jarallah, "Adaptive fuzzy-logic-based framework for software development effort prediction", Information and Software Technology, Vol. 47, Issue 1, 2005, pp. 31-48.

[16] W.S. Humphrey, "A Discipline for Software Engineering", Addison Wesley, 2002.

[17] S. Mitra, Y.Hayashi, "Neuro-Fuzzy Rule Generation: Survey in Soft Computing Framework", IEEE Transactions on Neural Networks, Vol.11, No.3, 2000, pp. 748-768.

[18] D. Nauck, F. Klawonn, R. Kruse, "Foundations of Neuro-Fuzzy Systems", Wiley, Chichester, 1997.

[19] D. Nauck, "A Fuzzy Perceptron as a Generic Model for Neuro-Fuzzy Approaches", In Proceedings of Fuzzy-Systeme-94, 2nd GI-Workshop, Munich, Semen Corporation, 1994.

[20] M.O. Saliu, "Adaptive Fuzzy Logic Based Framework for Software Development Effort Prediction", A Thesis Presented to the DEANSHIP OF GRADUATE STUDIES, King Fahd University of Petroleum & Minerals Dhahran, April 2003.

[21] A. Abraham, "Adaptation of Fuzzy Inference System Using Neural Learning", Springer-Verlag Berlin Heidelberg, 2005, pp. 59-83.

[22] Y. Shi, M. Mizumoto, N.Yubazaki, M. Otani, "A Learning Algorithm for Tuning Fuzzy Rules Based on the Gradient Descent Method", Proceedings of Fifth IEEE International Conference on Fuzzy Systems (FUZZ-IEEE'96), New Orleans, USA, Vol.1, 1996, pp.55-61.

[23] V. Xia, L. F. Capretz, D. Ho, "A Neuro-Fuzzy Model for Function Point Calibration", WSEAS Transactions on Information Science & Applications, Vol. 5, Issue 1, 2008, pp. 22-30.