Search results for: Multi-variate design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4958

Search results for: Multi-variate design

4958 Mathematical Programming on Multivariate Calibration Estimation in Stratified Sampling

Authors: Dinesh Rao, M.G.M. Khan, Sabiha Khan

Abstract:

Calibration estimation is a method of adjusting the original design weights to improve the survey estimates by using auxiliary information such as the known population total (or mean) of the auxiliary variables. A calibration estimator uses calibrated weights that are determined to minimize a given distance measure to the original design weights while satisfying a set of constraints related to the auxiliary information. In this paper, we propose a new multivariate calibration estimator for the population mean in the stratified sampling design, which incorporates information available for more than one auxiliary variable. The problem of determining the optimum calibrated weights is formulated as a Mathematical Programming Problem (MPP) that is solved using the Lagrange multiplier technique.

Keywords: Calibration estimation, Stratified sampling, Multivariate auxiliary information, Mathematical programming problem, Lagrange multiplier technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
4957 An AK-Chart for the Non-Normal Data

Authors: Chia-Hau Liu, Tai-Yue Wang

Abstract:

Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.

Keywords: Multivariate control chart, statistical process control, one-class classification method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2270
4956 A Multivariate Moving Average Control Chart for Photovoltaic Processes

Authors: Chunchom Pongchavalit

Abstract:

For the electrical metrics that describe photovoltaic cell performance are inherently multivariate in nature, use of a univariate, or one variable, statistical process control chart can have important limitations. Development of a comprehensive process control strategy is known to be significantly beneficial to reducing process variability that ultimately drives up the manufacturing cost photovoltaic cells. The multivariate moving average or MMA chart, is applied to the electrical metrics of photovoltaic cells to illustrate the improved sensitivity on process variability this method of control charting offers. The result show the ability of the MMA chart to expand to as any variables as needed, suggests an application with multiple photovoltaic electrical metrics being used in concert to determine the processes state of control.

Keywords: The multivariate moving average control chart, Photovoltaic processes control, Multivariate system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
4955 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification

Authors: Ishapathik Das

Abstract:

The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.

Keywords: Model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1003
4954 Interpreting the Out-of-Control Signals of Multivariate Control Charts Employing Neural Networks

Authors: Francisco Aparisi, José Sanz

Abstract:

Multivariate quality control charts show some advantages to monitor several variables in comparison with the simultaneous use of univariate charts, nevertheless, there are some disadvantages. The main problem is how to interpret the out-ofcontrol signal of a multivariate chart. For example, in the case of control charts designed to monitor the mean vector, the chart signals showing that it must be accepted that there is a shift in the vector, but no indication is given about the variables that have produced this shift. The MEWMA quality control chart is a very powerful scheme to detect small shifts in the mean vector. There are no previous specific works about the interpretation of the out-of-control signal of this chart. In this paper neural networks are designed to interpret the out-of-control signal of the MEWMA chart, and the percentage of correct classifications is studied for different cases.

Keywords: Multivariate quality control, Artificial Intelligence, Neural Networks, Computer Applications

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2507
4953 Applying Gibbs Sampler for Multivariate Hierarchical Linear Model

Authors: Satoshi Usami

Abstract:

Among various HLM techniques, the Multivariate Hierarchical Linear Model (MHLM) is desirable to use, particularly when multivariate criterion variables are collected and the covariance structure has information valuable for data analysis. In order to reflect prior information or to obtain stable results when the sample size and the number of groups are not sufficiently large, the Bayes method has often been employed in hierarchical data analysis. In these cases, although the Markov Chain Monte Carlo (MCMC) method is a rather powerful tool for parameter estimation, Procedures regarding MCMC have not been formulated for MHLM. For this reason, this research presents concrete procedures for parameter estimation through the use of the Gibbs samplers. Lastly, several future topics for the use of MCMC approach for HLM is discussed.

Keywords: Gibbs sampler, Hierarchical Linear Model, Markov Chain Monte Carlo, Multivariate Hierarchical Linear Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
4952 Multivariate Analysis of Spectroscopic Data for Agriculture Applications

Authors: Asmaa M. Hussein, Amr Wassal, Ahmed Farouk Al-Sadek, A. F. Abd El-Rahman

Abstract:

In this study, a multivariate analysis of potato spectroscopic data was presented to detect the presence of brown rot disease or not. Near-Infrared (NIR) spectroscopy (1,350-2,500 nm) combined with multivariate analysis was used as a rapid, non-destructive technique for the detection of brown rot disease in potatoes. Spectral measurements were performed in 565 samples, which were chosen randomly at the infection place in the potato slice. In this study, 254 infected and 311 uninfected (brown rot-free) samples were analyzed using different advanced statistical analysis techniques. The discrimination performance of different multivariate analysis techniques, including classification, pre-processing, and dimension reduction, were compared. Applying a random forest algorithm classifier with different pre-processing techniques to raw spectra had the best performance as the total classification accuracy of 98.7% was achieved in discriminating infected potatoes from control.

Keywords: Brown rot disease, NIR spectroscopy, potato, random forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 887
4951 A Simplified Higher-Order Markov Chain Model

Authors: Chao Wang, Ting-Zhu Huang, Chen Jia

Abstract:

In this paper, we present a simplified higher-order Markov chain model for multiple categorical data sequences also called as simplified higher-order multivariate Markov chain model.

Keywords: Higher-order multivariate Markov chain model, Categorical data sequences, Multivariate Markov chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3290
4950 Developing Pedotransfer Functions for Estimating Some Soil Properties using Artificial Neural Network and Multivariate Regression Approaches

Authors: Fereydoon Sarmadian, Ali Keshavarzi

Abstract:

Study of soil properties like field capacity (F.C.) and permanent wilting point (P.W.P.) play important roles in study of soil moisture retention curve. Although these parameters can be measured directly, their measurement is difficult and expensive. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. In this investigation, 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. The data set was divided into two subsets for calibration (80%) and testing (20%) of the models and their normality were tested by Kolmogorov-Smirnov method. Both multivariate regression and artificial neural network (ANN) techniques were employed to develop the appropriate PTFs for predicting soil parameters using easily measurable characteristics of clay, silt, O.C, S.P, B.D and CaCO3. The performance of the multivariate regression and ANN models was evaluated using an independent test data set. In order to evaluate the models, root mean square error (RMSE) and R2 were used. The comparison of RSME for two mentioned models showed that the ANN model gives better estimates of F.C and P.W.P than the multivariate regression model. The value of RMSE and R2 derived by ANN model for F.C and P.W.P were (2.35, 0.77) and (2.83, 0.72), respectively. The corresponding values for multivariate regression model were (4.46, 0.68) and (5.21, 0.64), respectively. Results showed that ANN with five neurons in hidden layer had better performance in predicting soil properties than multivariate regression.

Keywords: Artificial neural network, Field capacity, Permanentwilting point, Pedotransfer functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
4949 Multi Task Scheme to Monitor Multivariate Environments Using Artificial Neural Network

Authors: K. Atashgar

Abstract:

When an assignable cause(s) manifests itself to a multivariate process and the process shifts to an out-of-control condition, a root-cause analysis should be initiated by quality engineers to identify and eliminate the assignable cause(s) affected the process. A root-cause analysis in a multivariate process is more complex compared to a univariate process. In the case of a process involved several correlated variables an effective root-cause analysis can be only experienced when it is possible to identify the required knowledge including the out-of-control condition, the change point, and the variable(s) responsible to the out-of-control condition, all simultaneously. Although literature addresses different schemes to monitor multivariate processes, one can find few scientific reports focused on all the required knowledge. To the best of the author’s knowledge this is the first time that a multi task model based on artificial neural network (ANN) is reported to monitor all the required knowledge at the same time for a multivariate process with more than two correlated quality characteristics. The performance of the proposed scheme is evaluated numerically when different step shifts affect the mean vector. Average run length is used to investigate the performance of the proposed multi task model. The simulated results indicate the multi task scheme performs all the required knowledge effectively.

Keywords: Artificial neural network, Multivariate process, Statistical process control, Change point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
4948 Generating Normally Distributed Clusters by Means of a Self-organizing Growing Neural Network– An Application to Market Segmentation –

Authors: Reinhold Decker, Christian Holsing, Sascha Lerke

Abstract:

This paper presents a new growing neural network for cluster analysis and market segmentation, which optimizes the size and structure of clusters by iteratively checking them for multivariate normality. We combine the recently published SGNN approach [8] with the basic principle underlying the Gaussian-means algorithm [13] and the Mardia test for multivariate normality [18, 19]. The new approach distinguishes from existing ones by its holistic design and its great autonomy regarding the clustering process as a whole. Its performance is demonstrated by means of synthetic 2D data and by real lifestyle survey data usable for market segmentation.

Keywords: Artificial neural network, clustering, multivariatenormality, market segmentation, self-organization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
4947 On the Bootstrap P-Value Method in Identifying out of Control Signals in Multivariate Control Chart

Authors: O. Ikpotokin

Abstract:

In any production process, every product is aimed to attain a certain standard, but the presence of assignable cause of variability affects our process, thereby leading to low quality of product. The ability to identify and remove this type of variability reduces its overall effect, thereby improving the quality of the product. In case of a univariate control chart signal, it is easy to detect the problem and give a solution since it is related to a single quality characteristic. However, the problems involved in the use of multivariate control chart are the violation of multivariate normal assumption and the difficulty in identifying the quality characteristic(s) that resulted in the out of control signals. The purpose of this paper is to examine the use of non-parametric control chart (the bootstrap approach) for obtaining control limit to overcome the problem of multivariate distributional assumption and the p-value method for detecting out of control signals. Results from a performance study show that the proposed bootstrap method enables the setting of control limit that can enhance the detection of out of control signals when compared, while the p-value method also enhanced in identifying out of control variables.

Keywords: Bootstrap control limit, p-value method, out-of-control signals, p-value, quality characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1013
4946 Comparison of Artificial Neural Network and Multivariate Regression Methods in Prediction of Soil Cation Exchange Capacity

Authors: Ali Keshavarzi, Fereydoon Sarmadian

Abstract:

Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. Then, multivariate regression and neural network model (feedforward back propagation network) were employed to develop a pedotransfer function for predicting soil parameter using easily measurable characteristics of clay and organic carbon. The performance of the multivariate regression and neural network model was evaluated using a test data set. In order to evaluate the models, root mean square error (RMSE) was used. The value of RMSE and R2 derived by ANN model for CEC were 0.47 and 0.94 respectively, while these parameters for multivariate regression model were 0.65 and 0.88 respectively. Results showed that artificial neural network with seven neurons in hidden layer had better performance in predicting soil cation exchange capacity than multivariate regression.

Keywords: Easily measurable characteristics, Feed-forwardback propagation, Pedotransfer functions, CEC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212
4945 Simulation of Sample Paths of Non Gaussian Stationary Random Fields

Authors: Fabrice Poirion, Benedicte Puig

Abstract:

Mathematical justifications are given for a simulation technique of multivariate nonGaussian random processes and fields based on Rosenblatt-s transformation of Gaussian processes. Different types of convergences are given for the approaching sequence. Moreover an original numerical method is proposed in order to solve the functional equation yielding the underlying Gaussian process autocorrelation function.

Keywords: Simulation, nonGaussian, random field, multivariate, stochastic process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
4944 Model of Optimal Centroids Approach for Multivariate Data Classification

Authors: Pham Van Nha, Le Cam Binh

Abstract:

Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.

Keywords: Analysis of optimization, artificial intelligence-based optimization, optimization for learning and data analysis, global optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 913
4943 Distribution Sampling of Vector Variance without Duplications

Authors: Erna T. Herdiani, Maman A. Djauhari

Abstract:

In recent years, the use of vector variance as a measure of multivariate variability has received much attention in wide range of statistics. This paper deals with a more economic measure of multivariate variability, defined as vector variance minus all duplication elements. For high dimensional data, this will increase the computational efficiency almost 50 % compared to the original vector variance. Its sampling distribution will be investigated to make its applications possible.

Keywords: Asymptotic distribution, covariance matrix, likelihood ratio test, vector variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
4942 Effects of Video Games and Online Chat on Mathematics Performance in High School: An Approach of Multivariate Data Analysis

Authors: Lina Wu, Wenyi Lu, Ye Li

Abstract:

Regarding heavy video game players for boys and super online chat lovers for girls as a symbolic phrase in the current adolescent culture, this project of data analysis verifies the displacement effect on deteriorating mathematics performance. To evaluate correlation or regression coefficients between a factor of playing video games or chatting online and mathematics performance compared with other factors, we use multivariate analysis technique and take gender difference into account. We find the most important reason for the negative sign of the displacement effect on mathematics performance due to students’ poor academic background. Statistical analysis methods in this project could be applied to study internet users’ academic performance from the high school education to the college education.

Keywords: Correlation coefficients, displacement effect, gender difference, multivariate analysis technique, regression coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
4941 Packaging in a Multivariate Conceptual Design Synthesis of a BWB Aircraft

Authors: Paul Okonkwo, Howard Smith

Abstract:

A study to estimate the size of the cabin and major aircraft components as well as detect and avoid interference between internally placed components and the external surface, during the conceptual design synthesis and optimisation to explore the design space of a BWB, was conducted. Sizing of components follows the Bradley cabin sizing and rubber engine scaling procedures to size the cabin and engine respectively. The interference detection and avoidance algorithm relies on the ability of the Class Shape Transform parameterisation technique to generate polynomial functions of the surfaces of a BWB aircraft configuration from the sizes of the cabin and internal objects using few variables. Interference detection is essential in packaging of non-conventional configuration like the BWB because of the non-uniform airfoil-shaped sections and resultant varying internal space. The unique configuration increases the need for a methodology to prevent objects from being placed in locations that do not sufficiently enclose them within the geometry.

Keywords: Packaging, Optimisation, BWB, Parameterisation, Aircraft Conceptual Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2412
4940 Diagnosis of Multivariate Process via Nonlinear Kernel Method Combined with Qualitative Representation of Fault Patterns

Authors: Hyun-Woo Cho

Abstract:

The fault detection and diagnosis of complicated production processes is one of essential tasks needed to run the process safely with good final product quality. Unexpected events occurred in the process may have a serious impact on the process. In this work, triangular representation of process measurement data obtained in an on-line basis is evaluated using simulation process. The effect of using linear and nonlinear reduced spaces is also tested. Their diagnosis performance was demonstrated using multivariate fault data. It has shown that the nonlinear technique based diagnosis method produced more reliable results and outperforms linear method. The use of appropriate reduced space yielded better diagnosis performance. The presented diagnosis framework is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. The use of reduced model space helps to mitigate the sensitivity of the fault pattern to noise.

Keywords: Real-time Fault diagnosis, triangular representation of patterns in reduced spaces, Nonlinear kernel technique, multivariate statistical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
4939 Multivariate High Order Fuzzy Time Series Forecasting for Car Road Accidents

Authors: Tahseen A. Jilani, S. M. Aqil Burney, C. Ardil

Abstract:

In this paper, we have presented a new multivariate fuzzy time series forecasting method. This method assumes mfactors with one main factor of interest. History of past three years is used for making new forecasts. This new method is applied in forecasting total number of car accidents in Belgium using four secondary factors. We also make comparison of our proposed method with existing methods of fuzzy time series forecasting. Experimentally, it is shown that our proposed method perform better than existing fuzzy time series forecasting methods. Practically, actuaries are interested in analysis of the patterns of causalities in road accidents. Thus using fuzzy time series, actuaries can define fuzzy premium and fuzzy underwriting of car insurance and life insurance for car insurance. National Institute of Statistics, Belgium provides region of risk classification for each road. Thus using this risk classification, we can predict premium rate and underwriting of insurance policy holders.

Keywords: Average forecasting error rate (AFER), Fuzziness offuzzy sets Fuzzy, If-Then rules, Multivariate fuzzy time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2492
4938 SDVAR Algorithm for Detecting Fraud in Telecommunications

Authors: Fatimah Almah Saaid, Darfiana Nur, Robert King

Abstract:

This paper presents a procedure for estimating VAR using Sequential Discounting VAR (SDVAR) algorithm for online model learning to detect fraudulent acts using the telecommunications call detailed records (CDR). The volatility of the VAR is observed allowing for non-linearity, outliers and change points based on the works of [1]. This paper extends their procedure from univariate to multivariate time series. A simulation and a case study for detecting telecommunications fraud using CDR illustrate the use of the algorithm in the bivariate setting.

Keywords: Telecommunications Fraud, SDVAR Algorithm, Multivariate time series, Vector Autoregressive, Change points.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2256
4937 Nonparametric Control Chart Using Density Weighted Support Vector Data Description

Authors: Myungraee Cha, Jun Seok Kim, Seung Hwan Park, Jun-Geol Baek

Abstract:

In manufacturing industries, development of measurement leads to increase the number of monitoring variables and eventually the importance of multivariate control comes to the fore. Statistical process control (SPC) is one of the most widely used as multivariate control chart. Nevertheless, SPC is restricted to apply in processes because its assumption of data as following specific distribution. Unfortunately, process data are composed by the mixture of several processes and it is hard to estimate as one certain distribution. To alternative conventional SPC, therefore, nonparametric control chart come into the picture because of the strength of nonparametric control chart, the absence of parameter estimation. SVDD based control chart is one of the nonparametric control charts having the advantage of flexible control boundary. However,basic concept of SVDD has been an oversight to the important of data characteristic, density distribution. Therefore, we proposed DW-SVDD (Density Weighted SVDD) to cover up the weakness of conventional SVDD. DW-SVDD makes a new attempt to consider dense of data as introducing the notion of density Weight. We extend as control chart using new proposed SVDD and a simulation study of various distributional data is conducted to demonstrate the improvement of performance.

Keywords: Density estimation, Multivariate control chart, Oneclass classification, Support vector data description (SVDD)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122
4936 Information Fusion for Identity Verification

Authors: Girija Chetty, Monica Singh

Abstract:

In this paper we propose a novel approach for ascertaining human identity based on fusion of profile face and gait biometric cues The identification approach based on feature learning in PCA-LDA subspace, and classification using multivariate Bayesian classifiers allows significant improvement in recognition accuracy for low resolution surveillance video scenarios. The experimental evaluation of the proposed identification scheme on a publicly available database [2] showed that the fusion of face and gait cues in joint PCA-LDA space turns out to be a powerful method for capturing the inherent multimodality in walking gait patterns, and at the same time discriminating the person identity..

Keywords: Biometrics, gait recognition, PCA, LDA, Eigenface, Fisherface, Multivariate Gaussian Classifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
4935 Sensor Monitoring of the Concentrations of Different Gases Present in Synthesis of Ammonia Based On Multi-Scale Entropy and Multivariate Statistics

Authors: S. Aouabdi, M. Taibi

Abstract:

This paper presents powerful techniques for the development of a new monitoring method based on multi-scale entropy (MSE) in order to characterize the behaviour of the concentrations of different gases present in the synthesis of Ammonia and soft-sensor based on Principal Component Analysis (PCA).

Keywords: Ammonia synthesis, concentrations of different gases, soft sensor, multi-scale entropy, multivariate statistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149
4934 Irrigation Water Quality Evaluation Based on Multivariate Statistical Analysis: A Case Study of Jiaokou Irrigation District

Authors: Panpan Xu, Qiying Zhang, Hui Qian

Abstract:

Groundwater is main source of water supply in the Guanzhong Basin, China. To investigate the quality of groundwater for agricultural purposes in Jiaokou Irrigation District located in the east of the Guanzhong Basin, 141 groundwater samples were collected for analysis of major ions (K+, Na+, Mg2+, Ca2+, SO42-, Cl-, HCO3-, and CO32-), pH, and total dissolved solids (TDS). Sodium percentage (Na%), residual sodium carbonate (RSC), magnesium hazard (MH), and potential salinity (PS) were applied for irrigation water quality assessment. In addition, multivariate statistical techniques were used to identify the underlying hydrogeochemical processes. Results show that the content of TDS mainly depends on Cl-, Na+, Mg2+, and SO42-, and the HCO3- content is generally high except for the eastern sand area. These are responsible for complex hydrogeochemical processes, such as dissolution of carbonate minerals (dolomite and calcite), gypsum, halite, and silicate minerals, the cation exchange, as well as evaporation and concentration. The average evaluation levels of Na%, RSC, MH, and PS for irrigation water quality are doubtful, good, unsuitable, and injurious to unsatisfactory, respectively. Therefore, it is necessary for decision makers to comprehensively consider the indicators and thus reasonably evaluate the irrigation water quality.

Keywords: Irrigation water quality, multivariate statistical analysis, groundwater, hydrogeochemical process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 572
4933 Multivariate Output-Associative RVM for Multi-Dimensional Affect Predictions

Authors: Achut Manandhar, Kenneth D. Morton, Peter A. Torrione, Leslie M. Collins

Abstract:

The current trends in affect recognition research are to consider continuous observations from spontaneous natural interactions in people using multiple feature modalities, and to represent affect in terms of continuous dimensions, incorporate spatio-temporal correlation among affect dimensions, and provide fast affect predictions. These research efforts have been propelled by a growing effort to develop affect recognition system that can be implemented to enable seamless real-time human-computer interaction in a wide variety of applications. Motivated by these desired attributes of an affect recognition system, in this work a multi-dimensional affect prediction approach is proposed by integrating multivariate Relevance Vector Machine (MVRVM) with a recently developed Output-associative Relevance Vector Machine (OARVM) approach. The resulting approach can provide fast continuous affect predictions by jointly modeling the multiple affect dimensions and their correlations. Experiments on the RECOLA database show that the proposed approach performs competitively with the OARVM while providing faster predictions during testing.

Keywords: Dimensional affect prediction, Output-associative RVM, Multivariate regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
4932 Landslide Susceptibility Mapping: A Comparison between Logistic Regression and Multivariate Adaptive Regression Spline Models in the Municipality of Oudka, Northern of Morocco

Authors: S. Benchelha, H. C. Aoudjehane, M. Hakdaoui, R. El Hamdouni, H. Mansouri, T. Benchelha, M. Layelmam, M. Alaoui

Abstract:

The logistic regression (LR) and multivariate adaptive regression spline (MarSpline) are applied and verified for analysis of landslide susceptibility map in Oudka, Morocco, using geographical information system. From spatial database containing data such as landslide mapping, topography, soil, hydrology and lithology, the eight factors related to landslides such as elevation, slope, aspect, distance to streams, distance to road, distance to faults, lithology map and Normalized Difference Vegetation Index (NDVI) were calculated or extracted. Using these factors, landslide susceptibility indexes were calculated by the two mentioned methods. Before the calculation, this database was divided into two parts, the first for the formation of the model and the second for the validation. The results of the landslide susceptibility analysis were verified using success and prediction rates to evaluate the quality of these probabilistic models. The result of this verification was that the MarSpline model is the best model with a success rate (AUC = 0.963) and a prediction rate (AUC = 0.951) higher than the LR model (success rate AUC = 0.918, rate prediction AUC = 0.901).

Keywords: Landslide susceptibility mapping, regression logistic, multivariate adaptive regression spline, Oudka, Taounate, Morocco.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992
4931 Diagnosing the Cause and its Timing of Changes in Multivariate Process Mean Vector from Quality Control Charts using Artificial Neural Network

Authors: Farzaneh Ahmadzadeh

Abstract:

Quality control charts are very effective in detecting out of control signals but when a control chart signals an out of control condition of the process mean, searching for a special cause in the vicinity of the signal time would not always lead to prompt identification of the source(s) of the out of control condition as the change point in the process parameter(s) is usually different from the signal time. It is very important to manufacturer to determine at what point and which parameters in the past caused the signal. Early warning of process change would expedite the search for the special causes and enhance quality at lower cost. In this paper the quality variables under investigation are assumed to follow a multivariate normal distribution with known means and variance-covariance matrix and the process means after one step change remain at the new level until the special cause is being identified and removed, also it is supposed that only one variable could be changed at the same time. This research applies artificial neural network (ANN) to identify the time the change occurred and the parameter which caused the change or shift. The performance of the approach was assessed through a computer simulation experiment. The results show that neural network performs effectively and equally well for the whole shift magnitude which has been considered.

Keywords: Artificial neural network, change point estimation, monte carlo simulation, multivariate exponentially weighted movingaverage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
4930 Producing Outdoor Design Conditions Based on the Dependency between Meteorological Elements: Copula Approach

Authors: Zhichao Jiao, Craig Farnham, Jihui Yuan, Kazuo Emura

Abstract:

It is common to use the outdoor design weather data to select the air-conditioning capacity in the building design stage. The meteorological elements of outdoor design weather data are usually selected based on their excess frequency separately while the dependency between the elements is not well considered. It means that the simultaneous occurrence probability of these elements is smaller than the original excess frequency which may cause an overestimation of selecting air-conditioning capacity. Therefore, the copula approach which can capture the dependency between multivariate data was used to model the joint distributions of the meteorological elements, like air temperature and global solar radiation. We suggest a method based on the specific simultaneous occurrence probability of these two elements of selecting more credible outdoor design conditions. The hourly weather data at 12 noon from 2001 to 2010 in Tokyo, Japan are used to analyze the dependency structure and joint distribution, the Gaussian copula represents the dependence of data best. According to calculating the air temperature and global solar radiation in specific simultaneous occurrence probability and the common exceeding, the results show that both the air temperature and global solar radiation based on simultaneous occurrence probability are lower than these based on the conventional method in the same probability.

Keywords: Copula approach, Design weather database, energy conservation, HVAC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 361
4929 A Multivariate Statistical Approach for Water Quality Assessment of River Hindon, India

Authors: Nida Rizvi, Deeksha Katyal, Varun Joshi

Abstract:

River Hindon is an important river catering the demand of highly populated rural and industrial cluster of western Uttar Pradesh, India. Water quality of river Hindon is deteriorating at an alarming rate due to various industrial, municipal and agricultural activities. The present study aimed at identifying the pollution sources and quantifying the degree to which these sources are responsible for the deteriorating water quality of the river. Various water quality parameters, like pH, temperature, electrical conductivity, total dissolved solids, total hardness, calcium, chloride, nitrate, sulphate, biological oxygen demand, chemical oxygen demand, and total alkalinity were assessed. Water quality data obtained from eight study sites for one year has been subjected to the two multivariate techniques, namely, principal component analysis and cluster analysis. Principal component analysis was applied with the aim to find out spatial variability and to identify the sources responsible for the water quality of the river. Three Varifactors were obtained after varimax rotation of initial principal components using principal component analysis. Cluster analysis was carried out to classify sampling stations of certain similarity, which grouped eight different sites into two clusters. The study reveals that the anthropogenic influence (municipal, industrial, waste water and agricultural runoff) was the major source of river water pollution. Thus, this study illustrates the utility of multivariate statistical techniques for analysis and elucidation of multifaceted data sets, recognition of pollution sources/factors and understanding temporal/spatial variations in water quality for effective river water quality management.

Keywords: Cluster analysis, multivariate statistical technique, river Hindon, water Quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3816