Search results for: fin problem
3474 Modeling and Simulation of Flow Shop Scheduling Problem through Petri Net Tools
Authors: Joselito Medina Marin, Norberto Hernández Romero, Juan Carlos Seck Tuoh Mora, Erick S. Martinez Gomez
Abstract:
The Flow Shop Scheduling Problem (FSSP) is a typical problem that is faced by production planning managers in Flexible Manufacturing Systems (FMS). This problem consists in finding the optimal scheduling to carry out a set of jobs, which are processed in a set of machines or shared resources. Moreover, all the jobs are processed in the same machine sequence. As in all the scheduling problems, the makespan can be obtained by drawing the Gantt chart according to the operations order, among other alternatives. On this way, an FMS presenting the FSSP can be modeled by Petri nets (PNs), which are a powerful tool that has been used to model and analyze discrete event systems. Then, the makespan can be obtained by simulating the PN through the token game animation and incidence matrix. In this work, we present an adaptive PN to obtain the makespan of FSSP by applying PN analytical tools.
Keywords: Flow-shop scheduling problem, makespan, Petri nets, state equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17433473 On Problem of Parameters Identification of Dynamic Object
Authors: Kamil Aida-zade, C. Ardil
Abstract:
In this paper, some problem formulations of dynamic object parameters recovery described by non-autonomous system of ordinary differential equations with multipoint unshared edge conditions are investigated. Depending on the number of additional conditions the problem is reduced to an algebraic equations system or to a problem of quadratic programming. With this purpose the paper offers a new scheme of the edge conditions transfer method called by conditions shift. The method permits to get rid from differential links and multipoint unshared initially-edge conditions. The advantage of the proposed approach is concluded by capabilities of reduction of a parametric identification problem to essential simple problems of the solution of an algebraic system or quadratic programming.Keywords: dynamic objects, ordinary differential equations, multipoint unshared edge conditions, quadratic programming, conditions shift
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14633472 Supplier Selection by Considering Cost and Reliability
Authors: K. -H. Yang
Abstract:
Supplier selection problem is one of the important issues of supply chain problems. Two categories of methodologies include qualitative and quantitative approaches which can be applied to supplier selection problems. However, due to the complexities of the problem and lacking of reliable and quantitative data, qualitative approaches are more than quantitative approaches. This study considers operational cost and supplier’s reliability factor and solves the problem by using a quantitative approach. A mixed integer programming model is the primary analytic tool. Analyses of different scenarios with variable cost and reliability structures show that the effectiveness of this approach to the supplier selection problem.Keywords: Mixed integer programming, quantitative approach, supplier’s reliability, supplier selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25753471 A Deterministic Dynamic Programming Approach for Optimization Problem with Quadratic Objective Function and Linear Constraints
Authors: S. Kavitha, Nirmala P. Ratchagar
Abstract:
This paper presents the novel deterministic dynamic programming approach for solving optimization problem with quadratic objective function with linear equality and inequality constraints. The proposed method employs backward recursion in which computations proceeds from last stage to first stage in a multi-stage decision problem. A generalized recursive equation which gives the exact solution of an optimization problem is derived in this paper. The method is purely analytical and avoids the usage of initial solution. The feasibility of the proposed method is demonstrated with a practical example. The numerical results show that the proposed method provides global optimum solution with negligible computation time.
Keywords: Backward recursion, Dynamic programming, Multi-stage decision problem, Quadratic objective function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35933470 Six-Phase Tooth-Coil Winding Starter-Generator Embedded in Aerospace Engine
Authors: Flur R. Ismagilov, Vyacheslav E. Vavilov, Denis V. Gusakov
Abstract:
This paper is devoted to solve the problem of increasing the electrification of aircraft engines by installing a synchronous generator at high pressure shaft. Technical solution of this problem by various research centers is discussed. A design solution of the problem was proposed. To evaluate the effectiveness of the proposed cooling system, thermal analysis was carried out in ANSYS software.
Keywords: Flur R. Ismagilov, Vyacheslav E. Vavilov, Denis V. Gusakov
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12753469 Dynamic Construction Site Layout Using Ant Colony Optimization
Authors: Y. Abdelrazig
Abstract:
Evolutionary optimization methods such as genetic algorithms have been used extensively for the construction site layout problem. More recently, ant colony optimization algorithms, which are evolutionary methods based on the foraging behavior of ants, have been successfully applied to benchmark combinatorial optimization problems. This paper proposes a formulation of the site layout problem in terms of a sequencing problem that is suitable for solution using an ant colony optimization algorithm. In the construction industry, site layout is a very important planning problem. The objective of site layout is to position temporary facilities both geographically and at the correct time such that the construction work can be performed satisfactorily with minimal costs and improved safety and working environment. During the last decade, evolutionary methods such as genetic algorithms have been used extensively for the construction site layout problem. This paper proposes an ant colony optimization model for construction site layout. A simple case study for a highway project is utilized to illustrate the application of the model.Keywords: Construction site layout, optimization, ant colony.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31313468 A Branch and Bound Algorithm for Resource Constrained Project Scheduling Problem Subject to Cumulative Resources
Authors: A. Shirzadeh Chaleshtari, Sh. Shadrokh
Abstract:
Renewable and non-renewable resource constraints have been vast studied in theoretical fields of project scheduling problems. However, although cumulative resources are widespread in practical cases, the literature on project scheduling problems subject to these resources is scant. So in order to study this type of resources more, in this paper we use the framework of a resource constrained project scheduling problem (RCPSP) with finish-start precedence relations between activities and subject to the cumulative resources in addition to the renewable resources. We develop a branch and bound algorithm for this problem customizing precedence tree algorithm of RCPSP. We perform extensive experimental analysis on the algorithm to check its effectiveness and performance for solving different instances of the problem in question.
Keywords: Resource constrained project scheduling problem, cumulative resources, branch and bound algorithm, precedence tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29123467 An Effective Hybrid Genetic Algorithm for Job Shop Scheduling Problem
Authors: Bin Cai, Shilong Wang, Haibo Hu
Abstract:
The job shop scheduling problem (JSSP) is well known as one of the most difficult combinatorial optimization problems. This paper presents a hybrid genetic algorithm for the JSSP with the objective of minimizing makespan. The efficiency of the genetic algorithm is enhanced by integrating it with a local search method. The chromosome representation of the problem is based on operations. Schedules are constructed using a procedure that generates full active schedules. In each generation, a local search heuristic based on Nowicki and Smutnicki-s neighborhood is applied to improve the solutions. The approach is tested on a set of standard instances taken from the literature and compared with other approaches. The computation results validate the effectiveness of the proposed algorithm.
Keywords: Genetic algorithm, Job shop scheduling problem, Local search, Meta-heuristic algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16583466 A Hybridization of Constructive Beam Search with Local Search for Far From Most Strings Problem
Authors: Sayyed R Mousavi
Abstract:
The Far From Most Strings Problem (FFMSP) is to obtain a string which is far from as many as possible of a given set of strings. All the input and the output strings are of the same length, and two strings are said to be far if their hamming distance is greater than or equal to a given positive integer. FFMSP belongs to the class of sequences consensus problems which have applications in molecular biology. The problem is NP-hard; it does not admit a constant-ratio approximation either, unless P = NP. Therefore, in addition to exact and approximate algorithms, (meta)heuristic algorithms have been proposed for the problem in recent years. On the other hand, in the recent years, hybrid algorithms have been proposed and successfully used for many hard problems in a variety of domains. In this paper, a new metaheuristic algorithm, called Constructive Beam and Local Search (CBLS), is investigated for the problem, which is a hybridization of constructive beam search and local search algorithms. More specifically, the proposed algorithm consists of two phases, the first phase is to obtain several candidate solutions via the constructive beam search and the second phase is to apply local search to the candidate solutions obtained by the first phase. The best solution found is returned as the final solution to the problem. The proposed algorithm is also similar to memetic algorithms in the sense that both use local search to further improve individual solutions. The CBLS algorithm is compared with the most recent published algorithm for the problem, GRASP, with significantly positive results; the improvement is by order of magnitudes in most cases.
Keywords: Bioinformatics, Far From Most Strings Problem, Hybrid metaheuristics, Matheuristics, Sequences consensus problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17513465 Using Tabu Search to Analyze the Mauritian Economic Sectors
Authors: J. Cheeneebash, V. Beeharry, A. Gopaul
Abstract:
The aim of this paper is to express the input-output matrix as a linear ordering problem which is classified as an NP-hard problem. We then use a Tabu search algorithm to find the best permutation among sectors in the input-output matrix that will give an optimal solution. This optimal permutation can be useful in designing policies and strategies for economists and government in their goal of maximizing the gross domestic product.Keywords: Input-Output matrix, linear ordering problem, Tabusearch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14983464 New Algorithms for Finding Short Reset Sequences in Synchronizing Automata
Authors: Adam Roman
Abstract:
Finding synchronizing sequences for the finite automata is a very important problem in many practical applications (part orienters in industry, reset problem in biocomputing theory, network issues etc). Problem of finding the shortest synchronizing sequence is NP-hard, so polynomial algorithms probably can work only as heuristic ones. In this paper we propose two versions of polynomial algorithms which work better than well-known Eppstein-s Greedy and Cycle algorithms.
Keywords: Synchronizing words, reset sequences, Černý Conjecture
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16043463 Proposing a Pareto-based Multi-Objective Evolutionary Algorithm to Flexible Job Shop Scheduling Problem
Authors: Seyed Habib A. Rahmati
Abstract:
During last decades, developing multi-objective evolutionary algorithms for optimization problems has found considerable attention. Flexible job shop scheduling problem, as an important scheduling optimization problem, has found this attention too. However, most of the multi-objective algorithms that are developed for this problem use nonprofessional approaches. In another words, most of them combine their objectives and then solve multi-objective problem through single objective approaches. Of course, except some scarce researches that uses Pareto-based algorithms. Therefore, in this paper, a new Pareto-based algorithm called controlled elitism non-dominated sorting genetic algorithm (CENSGA) is proposed for the multi-objective FJSP (MOFJSP). Our considered objectives are makespan, critical machine work load, and total work load of machines. The proposed algorithm is also compared with one the best Pareto-based algorithms of the literature on some multi-objective criteria, statistically.Keywords: Scheduling, Flexible job shop scheduling problem, controlled elitism non-dominated sorting genetic algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19413462 An Alternative Proof for the NP-completeness of Top Right Access point-Minimum Length Corridor Problem
Authors: Priyadarsini P.L.K, Hemalatha T.
Abstract:
In the Top Right Access point Minimum Length Corridor (TRA-MLC) problem [1], a rectangular boundary partitioned into rectilinear polygons is given and the problem is to find a corridor of least total length and it must include the top right corner of the outer rectangular boundary. A corridor is a tree containing a set of line segments lying along the outer rectangular boundary and/or on the boundary of the rectilinear polygons. The corridor must contain at least one point from the boundaries of the outer rectangle and also the rectilinear polygons. Gutierrez and Gonzalez [1] proved that the MLC problem, along with some of its restricted versions and variants, are NP-complete. In this paper, we give a shorter proof of NP-Completeness of TRA-MLC by findig the reduction in the following way.
Keywords: NP-complete, 2-connected planar graph, Grid embedding of a plane graph.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12863461 Online Robust Model Predictive Control for Linear Fractional Transformation Systems Using Linear Matrix Inequalities
Authors: Peyman Sindareh Esfahani, Jeffery Kurt Pieper
Abstract:
In this paper, the problem of robust model predictive control (MPC) for discrete-time linear systems in linear fractional transformation form with structured uncertainty and norm-bounded disturbance is investigated. The problem of minimization of the cost function for MPC design is converted to minimization of the worst case of the cost function. Then, this problem is reduced to minimization of an upper bound of the cost function subject to a terminal inequality satisfying the l2-norm of the closed loop system. The characteristic of the linear fractional transformation system is taken into account, and by using some mathematical tools, the robust predictive controller design problem is turned into a linear matrix inequality minimization problem. Afterwards, a formulation which includes an integrator to improve the performance of the proposed robust model predictive controller in steady state condition is studied. The validity of the approaches is illustrated through a robust control benchmark problem.
Keywords: Linear fractional transformation, linear matrix inequality, robust model predictive control, state feedback control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13003460 Optimum Stratification of a Skewed Population
Authors: D.K. Rao, M.G.M. Khan, K.G. Reddy
Abstract:
The focus of this paper is to develop a technique of solving a combined problem of determining Optimum Strata Boundaries(OSB) and Optimum Sample Size (OSS) of each stratum, when the population understudy isskewed and the study variable has a Pareto frequency distribution. The problem of determining the OSB isformulated as a Mathematical Programming Problem (MPP) which is then solved by dynamic programming technique. A numerical example is presented to illustrate the computational details of the proposed method. The proposed technique is useful to obtain OSB and OSS for a Pareto type skewed population, which minimizes the variance of the estimate of population mean.
Keywords: Stratified sampling, Optimum strata boundaries, Optimum sample size, Pareto distribution, Mathematical programming problem, Dynamic programming technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40613459 Developing Research Involving Different Species: Opportunities and Empirical Foundations
Authors: A. V. Varfolomeeva, N. S. Tkachenko, A. G. Tishchenko
Abstract:
In this study, we addressed the problem of weak validity, implausible results, and inaccurate reporting in psychological research on different species. The theoretical basis of the study was the systems-evolutionary approach (SEA). We assumed that the root of the problem is the values and attitudes of the researchers (in particular anthropomorphism and anthropocentrism). The first aim of the study was the formulation of a research design that avoids this problem. Based on a literature review, we concluded that such design, amongst other things, should include methodics with playful components. The second aim was to conduct a series of studies on the differences in the formation of instrumental skill in rats raised and housed in different environments. As a result, we revealed that there are contradictions between some of the statements of SEA, so that it is not possible to choose one of the alternative hypotheses. We suggested that in order to get out of this problem, it is necessary to modify these provisions by aligning them with the attitude of multicentrism.
Keywords: epistemological attitudes, experimental design, validity, psychological structure, learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4343458 The Inverse Problem of Nonsymmetric Matrices with a Submatrix Constraint and its Approximation
Authors: Yongxin Yuan, Hao Liu
Abstract:
In this paper, we first give the representation of the general solution of the following least-squares problem (LSP): Given matrices X ∈ Rn×p, B ∈ Rp×p and A0 ∈ Rr×r, find a matrix A ∈ Rn×n such that XT AX − B = min, s. t. A([1, r]) = A0, where A([1, r]) is the r×r leading principal submatrix of the matrix A. We then consider a best approximation problem: given an n × n matrix A˜ with A˜([1, r]) = A0, find Aˆ ∈ SE such that A˜ − Aˆ = minA∈SE A˜ − A, where SE is the solution set of LSP. We show that the best approximation solution Aˆ is unique and derive an explicit formula for it. Keyw
Keywords: Inverse problem, Least-squares solution, model updating, Singular value decomposition (SVD), Optimal approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16563457 An Efficient Ant Colony Optimization Algorithm for Multiobjective Flow Shop Scheduling Problem
Authors: Ahmad Rabanimotlagh
Abstract:
In this paper an ant colony optimization algorithm is developed to solve the permutation flow shop scheduling problem. In the permutation flow shop scheduling problem which has been vastly studied in the literature, there are a set of m machines and a set of n jobs. All the jobs are processed on all the machines and the sequence of jobs being processed is the same on all the machines. Here this problem is optimized considering two criteria, makespan and total flow time. Then the results are compared with the ones obtained by previously developed algorithms. Finally it is visible that our proposed approach performs best among all other algorithms in the literature.Keywords: Scheduling, Flow shop, Ant colony optimization, Makespan, Flow time
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24283456 Approximation Algorithm for the Shortest Approximate Common Superstring Problem
Authors: A.S. Rebaï, M. Elloumi
Abstract:
The Shortest Approximate Common Superstring (SACS) problem is : Given a set of strings f={w1, w2, ... , wn}, where no wi is an approximate substring of wj, i ≠ j, find a shortest string Sa, such that, every string of f is an approximate substring of Sa. When the number of the strings n>2, the SACS problem becomes NP-complete. In this paper, we present a greedy approximation SACS algorithm. Our algorithm is a 1/2-approximation for the SACS problem. It is of complexity O(n2*(l2+log(n))) in computing time, where n is the number of the strings and l is the length of a string. Our SACS algorithm is based on computation of the Length of the Approximate Longest Overlap (LALO).Keywords: Shortest approximate common superstring, approximation algorithms, strings overlaps, complexities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15143455 Parallel Branch and Bound Model Using Logarithmic Sampling (PBLS) for Symmetric Traveling Salesman Problem
Authors: Sheikh Muhammad Azam, Masood-ur-Rehman, Adnan Khalid Bhatti, Nadeem Daudpota
Abstract:
Very Large and/or computationally complex optimization problems sometimes require parallel or highperformance computing for achieving a reasonable time for computation. One of the most popular and most complicate problems of this family is “Traveling Salesman Problem". In this paper we have introduced a Branch & Bound based algorithm for the solution of such complicated problems. The main focus of the algorithm is to solve the “symmetric traveling salesman problem". We reviewed some of already available algorithms and felt that there is need of new algorithm which should give optimal solution or near to the optimal solution. On the basis of the use of logarithmic sampling, it was found that the proposed algorithm produced a relatively optimal solution for the problem and results excellent performance as compared with the traditional algorithms of this series.
Keywords: Parallel execution, symmetric traveling salesman problem, branch and bound algorithm, logarithmic sampling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23473454 A Combined Meta-Heuristic with Hyper-Heuristic Approach to Single Machine Production Scheduling Problem
Authors: C. E. Nugraheni, L. Abednego
Abstract:
This paper is concerned with minimization of mean tardiness and flow time in a real single machine production scheduling problem. Two variants of genetic algorithm as metaheuristic are combined with hyper-heuristic approach are proposed to solve this problem. These methods are used to solve instances generated with real world data from a company. Encouraging results are reported.
Keywords: Hyper-heuristics, evolutionary algorithms, production scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24193453 Robot Cell Planning
Authors: Allan Tubaileh, Ibrahim Hammad, Loay Al Kafafi
Abstract:
A new approach to determine the machine layout in flexible manufacturing cell, and to find the feasible robot configuration of the robot to achieve minimum cycle time is presented in this paper. The location of the input/output location and the optimal robot configuration is obtained for all sequences of work tasks of the robot within a specified period of time. A more realistic approach has been presented to model the problem using the robot joint space. The problem is formulated as a nonlinear optimization problem and solved using Sequential Quadratic Programming algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20513452 Ant Colony Optimization for Optimal Distributed Generation in Distribution Systems
Authors: I. A. Farhat
Abstract:
The problem of optimal planning of multiple sources of distributed generation (DG) in distribution networks is treated in this paper using an improved Ant Colony Optimization algorithm (ACO). This objective of this problem is to determine the DG optimal size and location that in order to minimize the network real power losses. Considering the multiple sources of DG, both size and location are simultaneously optimized in a single run of the proposed ACO algorithm. The various practical constraints of the problem are taken into consideration by the problem formulation and the algorithm implementation. A radial power flow algorithm for distribution networks is adopted and applied to satisfy these constraints. To validate the proposed technique and demonstrate its effectiveness, the well-know 69-bus feeder standard test system is employed.cm.
Keywords: About Ant Colony Optimization (ACO), Distributed Generation (DG).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32903451 Solving of the Fourth Order Differential Equations with the Neumann Problem
Authors: Marziyeh Halimi, Roushanak Lotfikar, Simin Mansouri Borojeni
Abstract:
In this paper we considered the Neumann problem for the fourth order differential equation. First we define the weighted Sobolev space 2 Wα and generalized solution for this equation. Then we consider the existence and uniqueness of the generalized solution, as well as give the description of the spectrum and of the domain of definition of the corresponding operator.Keywords: Neumann problem, weighted Sobolev spaces, generalized solution, spectrum of linear operators.2000 mathematic subject classification: 34A05, 34A30.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14303450 Research on Self-Perceptions of Pre-Service Turkish Language Teachers in Turkey with Regard to Problem Solving Skills
Authors: Canan Aslan
Abstract:
The aim of this research is to determine how preservice Turkish teachers perceive themselves in terms of problem solving skills. Students attending Department of Turkish Language Teaching of Gazi University Education Faculty in 2005-2006 academic year constitute the study group (n= 270) of this research in which survey model was utilized. Data were obtained by Problem Solving Inventory developed by Heppner & Peterson and Personal Information Form. Within the settings of this research, Cronbach Alpha reliability coefficient of the scale was found as .87. Besides, reliability coefficient obtained by split-half technique which splits odd and even numbered items of the scale was found as r=.81 (Split- Half Reliability). The findings of the research revealed that preservice Turkish teachers were sufficiently qualified on the subject of problem solving skills and statistical significance was found in favor of male candidates in terms of “gender" variable. According to the “grade" variable, statistical significance was found in favor of 4th graders.
Keywords: Problem Solving, problem solving skills, PreserviceTurkish Language Teachers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13633449 Multiobjective Optimization Solution for Shortest Path Routing Problem
Authors: C. Chitra, P. Subbaraj
Abstract:
The shortest path routing problem is a multiobjective nonlinear optimization problem with constraints. This problem has been addressed by considering Quality of service parameters, delay and cost objectives separately or as a weighted sum of both objectives. Multiobjective evolutionary algorithms can find multiple pareto-optimal solutions in one single run and this ability makes them attractive for solving problems with multiple and conflicting objectives. This paper uses an elitist multiobjective evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm (NSGA), for solving the dynamic shortest path routing problem in computer networks. A priority-based encoding scheme is proposed for population initialization. Elitism ensures that the best solution does not deteriorate in the next generations. Results for a sample test network have been presented to demonstrate the capabilities of the proposed approach to generate well-distributed pareto-optimal solutions of dynamic routing problem in one single run. The results obtained by NSGA are compared with single objective weighting factor method for which Genetic Algorithm (GA) was applied.Keywords: Multiobjective optimization, Non-dominated SortingGenetic Algorithm, Routing, Weighted sum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32703448 A Multi-Level GA Search with Application to the Resource-Constrained Re-Entrant Flow Shop Scheduling Problem
Authors: Danping Lin, C.K.M. Lee
Abstract:
Re-entrant scheduling is an important search problem with many constraints in the flow shop. In the literature, a number of approaches have been investigated from exact methods to meta-heuristics. This paper presents a genetic algorithm that encodes the problem as multi-level chromosomes to reflect the dependent relationship of the re-entrant possibility and resource consumption. The novel encoding way conserves the intact information of the data and fastens the convergence to the near optimal solutions. To test the effectiveness of the method, it has been applied to the resource-constrained re-entrant flow shop scheduling problem. Computational results show that the proposed GA performs better than the simulated annealing algorithm in the measure of the makespanKeywords: Resource-constrained, re-entrant, genetic algorithm (GA), multi-level encoding
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17943447 Positive Solutions for Discrete Third-order Three-point Boundary Value Problem
Authors: Benshi Zhu
Abstract:
In this paper, the existence of multiple positive solutions for a class of third-order three-point discrete boundary value problem is studied by applying algebraic topology method.Keywords: Positive solutions, Discrete boundary value problem, Third-order, Three-point, Algebraic topology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12513446 An Iterative Updating Method for Damped Gyroscopic Systems
Authors: Yongxin Yuan
Abstract:
The problem of updating damped gyroscopic systems using measured modal data can be mathematically formulated as following two problems. Problem I: Given Ma ∈ Rn×n, Λ = diag{λ1, ··· , λp} ∈ Cp×p, X = [x1, ··· , xp] ∈ Cn×p, where p<n and both Λ and X are closed under complex conjugation in the sense that λ2j = λ¯2j−1 ∈ C, x2j = ¯x2j−1 ∈ Cn for j = 1, ··· , l, and λk ∈ R, xk ∈ Rn for k = 2l + 1, ··· , p, find real-valued symmetric matrices D,K and a real-valued skew-symmetric matrix G (that is, GT = −G) such that MaXΛ2 + (D + G)XΛ + KX = 0. Problem II: Given real-valued symmetric matrices Da, Ka ∈ Rn×n and a real-valued skew-symmetric matrix Ga, find (D, ˆ G, ˆ Kˆ ) ∈ SE such that Dˆ −Da2+Gˆ−Ga2+Kˆ −Ka2 = min(D,G,K)∈SE (D− Da2 + G − Ga2 + K − Ka2), where SE is the solution set of Problem I and · is the Frobenius norm. This paper presents an iterative algorithm to solve Problem I and Problem II. By using the proposed iterative method, a solution of Problem I can be obtained within finite iteration steps in the absence of roundoff errors, and the minimum Frobenius norm solution of Problem I can be obtained by choosing a special kind of initial matrices. Moreover, the optimal approximation solution (D, ˆ G, ˆ Kˆ ) of Problem II can be obtained by finding the minimum Frobenius norm solution of a changed Problem I. A numerical example shows that the introduced iterative algorithm is quite efficient.
Keywords: Model updating, iterative algorithm, gyroscopic system, partially prescribed spectral data, optimal approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14493445 The Economic Lot Scheduling Problem in Flow Lines with Sequence-Dependent Setups
Authors: M. Heydari, S. A. Torabi
Abstract:
The problem of lot sizing, sequencing and scheduling multiple products in flow line production systems has been studied by several authors. Almost all of the researches in this area assumed that setup times and costs are sequence –independent even though sequence dependent setups are common in practice. In this paper we present a new mixed integer non linear program (MINLP) and a heuristic method to solve the problem in sequence dependent case. Furthermore, a genetic algorithm has been developed which applies this constructive heuristic to generate initial population. These two proposed solution methods are compared on randomly generated problems. Computational results show a clear superiority of our proposed GA for majority of the test problems.Keywords: Economic lot scheduling problem, finite horizon, genetic algorithm, mixed zero-one nonlinear programming, sequence-dependent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541