Search results for: Strongly convex function.
2440 Function Approximation with Radial Basis Function Neural Networks via FIR Filter
Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim
Abstract:
Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore , the number of centers will be considered since it affects the performance of approximation.
Keywords: Extended kalmin filter (EKF), classification problem, radial basis function networks (RBFN), finite impulse response (FIR)filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24022439 Learning Flexible Neural Networks for Pattern Recognition
Authors: A. Mirzaaghazadeh, H. Motameni, M. Karshenas, H. Nematzadeh
Abstract:
Learning the gradient of neuron's activity function like the weight of links causes a new specification which is flexibility. In flexible neural networks because of supervising and controlling the operation of neurons, all the burden of the learning is not dedicated to the weight of links, therefore in each period of learning of each neuron, in fact the gradient of their activity function, cooperate in order to achieve the goal of learning thus the number of learning will be decreased considerably. Furthermore, learning neurons parameters immunes them against changing in their inputs and factors which cause such changing. Likewise initial selecting of weights, type of activity function, selecting the initial gradient of activity function and selecting a fixed amount which is multiplied by gradient of error to calculate the weight changes and gradient of activity function, has a direct affect in convergence of network for learning.Keywords: Back propagation, Flexible, Gradient, Learning, Neural network, Pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14982438 Customer Segmentation in Foreign Trade based on Clustering Algorithms Case Study: Trade Promotion Organization of Iran
Authors: Samira Malekmohammadi Golsefid, Mehdi Ghazanfari, Somayeh Alizadeh
Abstract:
The goal of this paper is to segment the countries based on the value of export from Iran during 14 years ending at 2005. To measure the dissimilarity among export baskets of different countries, we define Dissimilarity Export Basket (DEB) function and use this distance function in K-means algorithm. The DEB function is defined based on the concepts of the association rules and the value of export group-commodities. In this paper, clustering quality function and clusters intraclass inertia are defined to, respectively, calculate the optimum number of clusters and to compare the functionality of DEB versus Euclidean distance. We have also study the effects of importance weight in DEB function to improve clustering quality. Lastly when segmentation is completed, a designated RFM model is used to analyze the relative profitability of each cluster.Keywords: Customers segmentation, Customer relationship management, Clustering, Data Mining
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22892437 Super-ellipsoidal Potential Function for Autonomous Collision Avoidance of a Teleoperated UAV
Authors: Mohammed Qasim, Kyoung-Dae Kim
Abstract:
In this paper, we present the design of the super-ellipsoidal potential function (SEPF), that can be used for autonomous collision avoidance of an unmanned aerial vehicle (UAV) in a 3-dimensional space. In the design of SEPF, we have the full control over the shape and size of the potential function. In particular, we can adjust the length, width, height, and the amount of flattening at the tips of the potential function so that the collision avoidance motion vector generated from the potential function can be adjusted accordingly. Based on the idea of the SEPF, we also propose an approach for the local autonomy of a UAV for its collision avoidance when the UAV is teleoperated by a human operator. In our proposed approach, a teleoperated UAV can not only avoid collision autonomously with other surrounding objects but also track the operator’s control input as closely as possible. As a result, an operator can always be in control of the UAV for his/her high-level guidance and navigation task without worrying too much about the UAVs collision avoidance while it is being teleoperated. The effectiveness of the proposed approach is demonstrated through a human-in-the-loop simulation of quadrotor UAV teleoperation using virtual robot experimentation platform (v-rep) and Matlab programs.Keywords: Artificial potential function, autonomy, collision avoidance, teleoperation, quadrotor, UAV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19972436 Performance Evaluation of Complex Valued Neural Networks Using Various Error Functions
Authors: Anita S. Gangal, P. K. Kalra, D. S. Chauhan
Abstract:
The backpropagation algorithm in general employs quadratic error function. In fact, most of the problems that involve minimization employ the Quadratic error function. With alternative error functions the performance of the optimization scheme can be improved. The new error functions help in suppressing the ill-effects of the outliers and have shown good performance to noise. In this paper we have tried to evaluate and compare the relative performance of complex valued neural network using different error functions. During first simulation for complex XOR gate it is observed that some error functions like Absolute error, Cauchy error function can replace Quadratic error function. In the second simulation it is observed that for some error functions the performance of the complex valued neural network depends on the architecture of the network whereas with few other error functions convergence speed of the network is independent of architecture of the neural network.Keywords: Complex backpropagation algorithm, complex errorfunctions, complex valued neural network, split activation function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24282435 On the Numbers of Various Young Tableaux
Authors: Hsuan-Chu Li
Abstract:
We demonstrate a way to count the number of Young tableau u of shape λ = (k, k,L, k) with | λ |= lk by expanding Schur function. This result gives an answer to the question that was put out by Jenny Buontempo and Brian Hopkins.Keywords: Young tableau, Schur function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11492434 A New Quadrature Rule Derived from Spline Interpolation with Error Analysis
Authors: Hadi Taghvafard
Abstract:
We present a new quadrature rule based on the spline interpolation along with the error analysis. Moreover, some error estimates for the reminder when the integrand is either a Lipschitzian function, a function of bounded variation or a function whose derivative belongs to Lp are given. We also give some examples to show that, practically, the spline rule is better than the trapezoidal rule.Keywords: Quadrature, Spline interpolation, Trapezoidal rule, Numericalintegration, Error analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22262433 Mapping Semantic Networks to Undirected Networks
Authors: Marko A. Rodriguez
Abstract:
There exists an injective, information-preserving function that maps a semantic network (i.e a directed labeled network) to a directed network (i.e. a directed unlabeled network). The edge label in the semantic network is represented as a topological feature of the directed network. Also, there exists an injective function that maps a directed network to an undirected network (i.e. an undirected unlabeled network). The edge directionality in the directed network is represented as a topological feature of the undirected network. Through function composition, there exists an injective function that maps a semantic network to an undirected network. Thus, aside from space constraints, the semantic network construct does not have any modeling functionality that is not possible with either a directed or undirected network representation. Two proofs of this idea will be presented. The first is a proof of the aforementioned function composition concept. The second is a simpler proof involving an undirected binary encoding of a semantic network.Keywords: general-modeling, multi-relational networks, semantic networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14452432 Quadrilateral Decomposition by Two-Ear Property Resulting in CAD Segmentation
Authors: Maharavo Randrianarivony
Abstract:
The objective is to split a simply connected polygon into a set of convex quadrilaterals without inserting new boundary nodes. The presented approach consists in repeatedly removing quadrilaterals from the polygon. Theoretical results pertaining to quadrangulation of simply connected polygons are derived from the usual 2-ear theorem. It produces a quadrangulation technique with O(n) number of quadrilaterals. The theoretical methodology is supplemented by practical results and CAD surface segmentation.Keywords: Quadrangulation, simply connected, two-ear theorem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12602431 Improved MARS Ciphering Using a Metamorphic-Enhanced Function
Authors: Moataz M. Naguib, Hatem Khater, A. Baith Mohamed
Abstract:
MARS is a shared-key (symmetric) block cipher algorithm supporting 128-bit block size and a variable key size of between 128 and 448 bits. MARS has a several rounds of cryptographic core that is designed to take advantage of the powerful results for improving security/performance tradeoff over existing ciphers. In this work, a new function added to improve the ciphering process it is called, Meta-Morphic function. This function use XOR, Rotating, Inverting and No-Operation logical operations before and after encryption process. The aim of these operations is to improve MARS cipher process and makes a high confusion criterion for the Ciphertext.
Keywords: AES, MARS, Metamorphic, Cryptography, Block Cipher.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20462430 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis
Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel
Abstract:
Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.
Keywords: Artificial Immune System, Breast Cancer Diagnosis, Euclidean Function, Gaussian Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21242429 An Iterated Function System for Reich Contraction in Complete b Metric Space
Authors: R. Uthayakumar, G. Arockia Prabakar
Abstract:
In this paper, we introduce R Iterated Function System and employ the Hutchinson Barnsley theory (HB) to construct a fractal set as its unique fixed point by using Reich contractions in a complete b metric space. We discuss about well posedness of fixed point problem for b metric space.
Keywords: Fractals, Iterated Function System, Compact set, Reich Contraction, Well posedness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17892428 Implementation of a New Neural Network Function Block to Programmable Logic Controllers Library Function
Authors: Hamid Abdi, Abolfazl Salami, Abolfazl Ahmadi
Abstract:
Programmable logic controllers are the main controllers in the today's industries; they are used for several applications in industrial control systems and there are lots of examples exist from the PLC applications in industries especially in big companies and plants such as refineries, power plants, petrochemical companies, steel companies, and food and production companies. In the PLCs there are some functions in the function library in software that can be used in PLC programs as basic program elements. The aim of this project are introducing and implementing a new function block of a neural network to the function library of PLC. This block can be applied for some control applications or nonlinear functions calculations after it has been trained for these applications. The implemented neural network is a Perceptron neural network with three layers, three input nodes and one output node. The block can be used in manual or automatic mode. In this paper the structure of the implemented function block, the parameters and the training method of the network are presented by considering the especial method of PLC programming and its complexities. Finally the application of the new block is compared with a classic simulated block and the results are presented.Keywords: Programmable Logic Controller, PLC Programming, Neural Networks, Perception Network, Intelligent Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38142427 On Fractional (k,m)-Deleted Graphs with Constrains Conditions
Authors: Sizhong Zhou, Hongxia Liu
Abstract:
Let G be a graph of order n, and let k 2 and m 0 be two integers. Let h : E(G) [0, 1] be a function. If e∋x h(e) = k holds for each x V (G), then we call G[Fh] a fractional k-factor of G with indicator function h where Fh = {e E(G) : h(e) > 0}. A graph G is called a fractional (k,m)-deleted graph if there exists a fractional k-factor G[Fh] of G with indicator function h such that h(e) = 0 for any e E(H), where H is any subgraph of G with m edges. In this paper, it is proved that G is a fractional (k,m)-deleted graph if (G) k + m + m k+1 , n 4k2 + 2k − 6 + (4k 2 +6k−2)m−2 k−1 and max{dG(x), dG(y)} n 2 for any vertices x and y of G with dG(x, y) = 2. Furthermore, it is shown that the result in this paper is best possible in some sense.
Keywords: Graph, degree condition, fractional k-factor, fractional (k, m)-deleted graph.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12062426 Analysis of Gamma-Ray Spectra Using Levenberg-Marquardt Method
Authors: A. H. Fatah, A. H. Ahmed
Abstract:
Levenberg-Marquardt method (LM) was proposed to be applied as a non-linear least-square fitting in the analysis of a natural gamma-ray spectrum that was taken by the Hp (Ge) detector. The Gaussian function that composed of three components, main Gaussian, a step background function and tailing function in the lowenergy side, has been suggested to describe each of the y-ray lines mathematically in the spectrum. The whole spectrum has been analyzed by determining the energy and relative intensity for the strong y-ray lines.Keywords: Gamma-Ray, Spectrum analysis, Non-linear leastsquare fitting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24142425 Slip Suppression Sliding Mode Control with Various Chattering Functions
Authors: Shun Horikoshi, Tohru Kawabe
Abstract:
This study presents performance analysis results of SMC (Sliding mode control) with changing the chattering functions applied to slip suppression problem of electric vehicles (EVs). In SMC, chattering phenomenon always occurs through high frequency switching of the control inputs. It is undesirable phenomenon and degrade the control performance, since it causes the oscillations of the control inputs. Several studies have been conducted on this problem by introducing some general saturation function. However, study about whether saturation function was really best and the performance analysis when using the other functions, weren’t being done so much. Therefore, in this paper, several candidate functions for SMC are selected and control performance of candidate functions is analyzed. In the analysis, evaluation function based on the trade-off between slip suppression performance and chattering reduction performance is proposed. The analyses are conducted in several numerical simulations of slip suppression problem of EVs. Then, we can see that there is no difference of employed candidate functions in chattering reduction performance. On the other hand, in slip suppression performance, the saturation function is excellent overall. So, we conclude the saturation function is most suitable for slip suppression sliding mode control.Keywords: Sliding mode control, chattering function, electric vehicle, slip suppression, performance analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12612424 Existence of Solution of Nonlinear Second Order Neutral Stochastic Differential Inclusions with Infinite Delay
Authors: Yong Li
Abstract:
The paper is concerned with the existence of solution of nonlinear second order neutral stochastic differential inclusions with infinite delay in a Hilbert Space. Sufficient conditions for the existence are obtained by using a fixed point theorem for condensing maps.
Keywords: Mild solution, Convex multivalued map, Neutral stochastic differential inclusions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16082423 Sparse Frequencies Extracting from Partial Phase-Only Measurements
Authors: R. Fan, Q. Wan, H. Chen, Y.L. Liu, Y.P. Liu
Abstract:
This paper considers a robust recovery of sparse frequencies from partial phase-only measurements. With the proposed method, sparse frequencies can be reconstructed, which makes full use of the sparse distribution in the Fourier representation of the complex-valued time signal. Simulation experiments illustrate the proposed method-s advantages over conventional methods in both noiseless and additive white Gaussian noise cases.Keywords: Sparse signal recovery, phase-only measurements, Compressive sensing, convex relaxation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14672422 Sampled-Data Control for Fuel Cell Systems
Authors: H. Y. Jung, Ju H. Park, S. M. Lee
Abstract:
Sampled-data controller is presented for solid oxide fuel cell systems which is expressed by a sector bounded nonlinear model. The proposed control law is obtained by solving a convex problem satisfying several linear matrix inequalities. Simulation results are given to show the effectiveness of the proposed design method.Keywords: Sampled-data control, Sector bound, Solid oxide fuel cell, Time-delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17242421 Two-step Iterative Process For Common Fixed Points of Two Asymptotically Quasi-nonexpansive Mappings
Authors: Safeer Hussain Khan
Abstract:
In this paper, we consider an iteration process for approximating common fixed points of two asymptotically quasinonexpansive mappings and we prove some strong and weak convergence theorems for such mappings in uniformly convex Banach spaces.Keywords: Asypmtotically quasi-nonexpansive mappings, Commonfixed point, Strong and weak convergence, Iteration process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15442420 Using Genetic Algorithm to Improve Information Retrieval Systems
Authors: Ahmed A. A. Radwan, Bahgat A. Abdel Latef, Abdel Mgeid A. Ali, Osman A. Sadek
Abstract:
This study investigates the use of genetic algorithms in information retrieval. The method is shown to be applicable to three well-known documents collections, where more relevant documents are presented to users in the genetic modification. In this paper we present a new fitness function for approximate information retrieval which is very fast and very flexible, than cosine similarity fitness function.Keywords: Cosine similarity, Fitness function, Genetic Algorithm, Information Retrieval, Query learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27582419 Development of a New CFD Multi-Coupling Tool Based on Immersed Boundary Method: toward SRM Analysis
Authors: Ho Phu TRAN, Frédéric PLOURDE
Abstract:
The ongoing effort to develop an in-house compressible solver with multi-disciplinary physics is presented in this paper. Basic compressible solver combined with IBM technique provides us an effective numerical tool able to tackle the physics phenomena and especially physic phenomena involved in Solid Rocket Motors (SRMs). Main principles are introduced step by step describing its implementation. This paper sheds light on the whole potentiality of our proposed numerical model and we strongly believe a way to introduce multi-physics mechanisms strongly coupled is opened to ablation in nozzle, fluid/structure interaction and burning propellant surface with time.Keywords: Compressible Flow, Immersed Boundary Method, Multi-disciplinary physics, Solid Rocket Motors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18402418 Correspondence between Function and Interaction in Protein Interaction Network of Saccaromyces cerevisiae
Authors: Nurcan Tuncbag, Turkan Haliloglu, Ozlem Keskin
Abstract:
Understanding the cell's large-scale organization is an interesting task in computational biology. Thus, protein-protein interactions can reveal important organization and function of the cell. Here, we investigated the correspondence between protein interactions and function for the yeast. We obtained the correlations among the set of proteins. Then these correlations are clustered using both the hierarchical and biclustering methods. The detailed analyses of proteins in each cluster were carried out by making use of their functional annotations. As a result, we found that some functional classes appear together in almost all biclusters. On the other hand, in hierarchical clustering, the dominancy of one functional class is observed. In the light of the clustering data, we have verified some interactions which were not identified as core interactions in DIP and also, we have characterized some functionally unknown proteins according to the interaction data and functional correlation. In brief, from interaction data to function, some correlated results are noticed about the relationship between interaction and function which might give clues about the organization of the proteins, also to predict new interactions and to characterize functions of unknown proteins.Keywords: Pair-wise protein interactions, DIP database, functional correlations, biclustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15932417 Estimation of Production Function in Fishery on the Coasts of Caspian Sea
Authors: Komeil Jahanifar, Zahra Abedi, Yaghob Zeraatkish
Abstract:
This research was conducted for the first time at the southeastern coasts of the Caspian Sea in order to evaluate the performance of osteichthyes cooperatives through production (catch) function. Using one of the indirect valuation methods in this research, contributory factors in catch were identified and were inserted into the function as independent variables. In order to carry out this research, the performance of 25 Osteichthyes catching cooperatives in the utilization year of 2009 which were involved in fishing in Miankale wildlife refuge region. The contributory factors in catch were divided into groups of economic, ecological and biological factors. In the mentioned function, catch rate of the cooperative were inserted into as the dependant variable and fourteen partial variables in terms of nine general variables as independent variables. Finally, after function estimation, seven variables were rendered significant at 99 percent reliably level. The results of the function estimation indicated that human resource (fisherman quantity) had the greatest positive effect on catch rate with an influence coefficient of 1.7 while weather conditions had the greatest negative effect on the catch rate of cooperatives with an influence coefficient of -2.07. Moreover, factors like member's share, experience and fisherman training and fishing effort played the main roles in the catch rate of cooperative with influence coefficients of 0.81, 0.5 and 0.21, respectively.Keywords: Production Function, Coefficient, Variable, Osteichthyes, Caspian Sea
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20462416 Education Function of Botanical Gardens
Authors: Ruhugül Özge Ocak, Banu Öztürk Kurtaslan
Abstract:
Botanical gardens are very significant organizations which protect the environment against the increasing environmental problems, provide environmental education for people, offer recreation possibilities, etc. This article describes botanical gardens and their functions. The most important function of botanical garden is to provide environmental education for people and improve environmental awareness. Considering this function, some botanical gardens were examined and opinions were suggested about the subject.Keywords: Botanical garden, environment, environmental education, recreation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16822415 Relation between Roots and Tangent Lines of Function in Fractional Dimensions: A Method for Optimization Problems
Authors: Ali Dorostkar
Abstract:
In this paper, a basic schematic of fractional dimensional optimization problem is presented. As will be shown, a method is performed based on a relation between roots and tangent lines of function in fractional dimensions for an arbitrary initial point. It is shown that for each polynomial function with order N at least N tangent lines must be existed in fractional dimensions of 0 < α < N+1 which pass exactly through the all roots of the proposed function. Geometrical analysis of tangent lines in fractional dimensions is also presented to clarify more intuitively the proposed method. Results show that with an appropriate selection of fractional dimensions, we can directly find the roots. Method is presented for giving a different direction of optimization problems by the use of fractional dimensions.
Keywords: Tangent line, fractional dimension, root, optimization problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5732414 A Propagator Method like Algorithm for Estimation of Multiple Real-Valued Sinusoidal Signal Frequencies
Authors: Sambit Prasad Kar, P.Palanisamy
Abstract:
In this paper a novel method for multiple one dimensional real valued sinusoidal signal frequency estimation in the presence of additive Gaussian noise is postulated. A computationally simple frequency estimation method with efficient statistical performance is attractive in many array signal processing applications. The prime focus of this paper is to combine the subspace-based technique and a simple peak search approach. This paper presents a variant of the Propagator Method (PM), where a collaborative approach of SUMWE and Propagator method is applied in order to estimate the multiple real valued sine wave frequencies. A new data model is proposed, which gives the dimension of the signal subspace is equal to the number of frequencies present in the observation. But, the signal subspace dimension is twice the number of frequencies in the conventional MUSIC method for estimating frequencies of real-valued sinusoidal signal. The statistical analysis of the proposed method is studied, and the explicit expression of asymptotic (large-sample) mean-squared-error (MSE) or variance of the estimation error is derived. The performance of the method is demonstrated, and the theoretical analysis is substantiated through numerical examples. The proposed method can achieve sustainable high estimation accuracy and frequency resolution at a lower SNR, which is verified by simulation by comparing with conventional MUSIC, ESPRIT and Propagator Method.
Keywords: Frequency estimation, peak search, subspace-based method without eigen decomposition, quadratic convex function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17362413 Observation of the Correlations between Pair Wise Interaction and Functional Organization of the Proteins, in the Protein Interaction Network of Saccaromyces Cerevisiae
Authors: N. Tuncbag, T. Haliloglu, O. Keskin
Abstract:
Understanding the cell's large-scale organization is an interesting task in computational biology. Thus, protein-protein interactions can reveal important organization and function of the cell. Here, we investigated the correspondence between protein interactions and function for the yeast. We obtained the correlations among the set of proteins. Then these correlations are clustered using both the hierarchical and biclustering methods. The detailed analyses of proteins in each cluster were carried out by making use of their functional annotations. As a result, we found that some functional classes appear together in almost all biclusters. On the other hand, in hierarchical clustering, the dominancy of one functional class is observed. In brief, from interaction data to function, some correlated results are noticed about the relationship between interaction and function which might give clues about the organization of the proteins.Keywords: Pair-wise protein interactions, DIP database, functional correlations, biclustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17122412 The First Integral Approach in Stability Problem of Large Scale Nonlinear Dynamical Systems
Authors: M. Kidouche, H. Habbi, M. Zelmat, S. Grouni
Abstract:
In analyzing large scale nonlinear dynamical systems, it is often desirable to treat the overall system as a collection of interconnected subsystems. Solutions properties of the large scale system are then deduced from the solution properties of the individual subsystems and the nature of the interconnections. In this paper a new approach is proposed for the stability analysis of large scale systems, which is based upon the concept of vector Lyapunov functions and the decomposition methods. The present results make use of graph theoretic decomposition techniques in which the overall system is partitioned into a hierarchy of strongly connected components. We show then, that under very reasonable assumptions, the overall system is stable once the strongly connected subsystems are stables. Finally an example is given to illustrate the constructive methodology proposed.Keywords: Comparison principle, First integral, Large scale system, Lyapunov stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15302411 Diffusion Analysis of a Scalable Feistel Network
Authors: Subariah Ibrahim, Mohd Aizaini Maarof
Abstract:
A generalization of the concepts of Feistel Networks (FN), known as Extended Feistel Network (EFN) is examined. EFN splits the input blocks into n > 2 sub-blocks. Like conventional FN, EFN consists of a series of rounds whereby at least one sub-block is subjected to an F function. The function plays a key role in the diffusion process due to its completeness property. It is also important to note that in EFN the F-function is the most computationally expensive operation in a round. The aim of this paper is to determine a suitable type of EFN for a scalable cipher. This is done by analyzing the threshold number of rounds for different types of EFN to achieve the completeness property as well as the number of F-function required in the network. The work focuses on EFN-Type I, Type II and Type III only. In the analysis it is found that EFN-Type II and Type III diffuses at the same rate and both are faster than Type-I EFN. Since EFN-Type-II uses less F functions as compared to EFN-Type III, therefore Type II is the most suitable EFN for use in a scalable cipher.
Keywords: Cryptography, Extended Feistel Network, Diffusion Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715