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Abstract—There exists an injective, information-preserving func-
tion that maps a semantic network (i.e a directed labeled network)
to a directed network (i.e. a directed unlabeled network). The edge
label in the semantic network is represented as a topological feature
of the directed network. Also, there exists an injective function that
maps a directed network to an undirected network (i.e. an undirected
unlabeled network). The edge directionality in the directed network
is represented as a topological feature of the undirected network.
Through function composition, there exists an injective function that
maps a semantic network to an undirected network. Thus, aside from
space constraints, the semantic network construct does not have any
modeling functionality that is not possible with either a directed
or undirected network representation. Two proofs of this idea will
be presented. The first is a proof of the aforementioned function
composition concept. The second is a simpler proof involving an
undirected binary encoding of a semantic network.

Keywords—general-modeling, multi-relational networks, semantic
networks

I. INTRODUCTION

A network is a popular data structure for representing
the relationship between discrete elements [7], [9]. There
are various types of networks such as the undirected net-
work (i.e. undirected unlabeled network), the directed network
(i.e. directed unlabeled network), and the semantic network
(i.e. directed labeled network). In an undirected network, there
exists no order to the relationships between the vertices. An
undirected network can be denoted U ⊆ {V u×V u}, where V u

is the vertex set and any edge {i, j} ∈ U denotes an undirected
relationship. The directed network provides the concept of
edge directionality. A directed network can be represented as
D ⊆ (V d × V d), where V d is the vertex set and any edge
(i, j) ∈ D denotes a directed relationship. All edges in both an
undirected and directed network are homogeneous in meaning.
In order to represent edge meaning, a semantic network can
be used. In a semantic network, an edge connecting any two
vertices maintains a label (e.g. character string) that denotes
the type of relationship between two vertices. A semantic
network can be represented as S ⊆ 〈V s×Ω×V s〉, where V s is
the vertex set, Ω is the set of edge labels, and any edge (called
a triple) 〈i, ω, j〉 ∈ S denotes an ordered, labeled relationship.

The semantic network is perhaps best known as a modeling
construct from the early days of knowledge representation in
the cognitive sciences [13]. However, with the inception of the
Semantic Web initiative [5], [4] and with the development of
triple-store technology (i.e. semantic network databases) [8],
[2], [1], there has been an increase in the use of the semantic
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network as a data structure for modeling data sets where there
exists a heterogeneous set of vertices and edges. This trend
has been occurring across various disparate domains such as
bioinformatics [10], [12], digital libraries [3], [6], and general
computer-science [11]. Because of the use of the labeled edge,
the semantic network is seen as the better modeling construct
than both the undirected and directed network for such data
sets.

However, when ignoring space constraints, there is no
modeling gain by using a semantic network representation
as opposed to a directed network representation. Moreover,
there is no modeling gain over using an undirected network
representation. Through a series of information-preserving, in-
jective mappings 1, this article demonstrates that it is possible
to model a semantic network both as a directed and undirected
network. While both the directed and undirected model of
a semantic network utilize more vertices and edges in their
representation, they ultimately have the ability to capture the
same information.

The outline of this article is as follows. Section II presents
an injective function to map a semantic network to a directed
network. Section III presents an injective function to map
a directed network to a semantic network. Finally, through
function composition, Section IV presents an injective function
to map a semantic network to an undirected network.

II. MAPPING A SEMANTIC NETWORK TO A DIRECTED
NETWORK

This section will present an injective, information-
preserving function that maps a semantic network to a directed
network. There is a two step process to this function. First, the
edge labels of a semantic network are represented as a binary
string. Second, each binary string is represented as a unique
directed network encoding. Given that a directed network can
only represent vertices and directed edges, each edge label of
the semantic network is encoded as a topological feature in
the directed network.

Let S ⊆ 〈V s × Ω × V s〉 denote a semantic network where
V s is the set of all vertices and Ω is the set of all edge labels.
Any triple 〈i, ω, j〉 ∈ S represents a directed edge from vertex
i to vertex j with a label of ω. An example semantic network
triple is diagrammed in Fig. 1.

There exists the injective function λ : Ω → {0, 1}�log2(|Ω|)�

(a binary encoder) that represents every label in Ω as a unique
binary string of length �log2(|Ω|)�. While the minimum bits

1An injective function is one such that if f(a) = f(b), then a = b.
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i jω

Fig. 1. An edge in a semantic network.

required to make a one-to-one mapping is �log2(|Ω|)�, pop-
ular examples of other such one-to-one mappings include
the ASCII and Unicode functions that map between human
language characters and binary strings. Furthermore, there
exist the inverse function λ−1 that maps a binary string to its
original symbolic representation. Note that for labels already
represented as unique binary strings, λ and λ−1 are identity
functions. Given the semantic network edge diagrammed in
Fig. 1, the λ(ω) mapping is represented in Fig. 2. Assume
that |Ω| = 8 and thus, each ω ∈ Ω requires 3 bits to encode
it.

i j110

Fig. 2. A example of the λ(ω) mapping.

Next, there exists the injective function γ : {0, 1}n → D
(a directed network encoder), where D is the family of all
directed networks and any D ∈ D is denoted D ⊆ (V d×V d).
If B ∈ {0, 1}n is the ordered multi-set (or bag) of the n-bit
string λ(ω), then

γ(B) =
n≤|B|⋃
n=1

⎧⎪⎨
⎪⎩

(bn, bn+1) if bn = 0 ∧ n < |B|
(bn, bn+1) ∪ (bn, bn) if bn = 1 ∧ n < |B|
(bn, bn) if bn = 1 ∧ n = |B|.

If λ(ω) = (1, 1, 0), then γ(λ(ω)) is represented as dia-
grammed in Fig. 3. The number of vertices in D with respects
to γ is O(�log2(|Ω|)�). The number of directed edges in D
with respects to γ is O(2�log2(|Ω|)� − 1).

b1 b2 b3

Fig. 3. A directed network representation of the edge label λ(ω) = (1, 1, 0).

The function γ is information preserving because there also
exists the inverse function γ−1. If q ∈ {V d}n is the single non-
looping path in D that traverses every vertex in V d (i.e. the
only Hamiltonian path), then

γ−1(D) =
n≤|q|⊎
n=1

{
1 if (qn, qn) ∈ D

0 otherwise.

Thus, λ−1(γ−1(γ(λ(ω)))) = ω. From a set of functions
that transform a symbolic edge label to a directed network
encoding, it is possible to represent an entire semantic network
as a a single directed network. In other words, given γ ◦ λ,
S ⊆ 〈V s ×D × V∫ 〉.

Proposition 1 (Semantic-to-Directed Injection): A seman-
tic network can be modeled as a directed network without loss
of information. There exists an injective function Θ : S → D,

where D ∈ D is a directed network representation of some
S ∈ S.
Proof. If Θ : S → D denotes an injective function that maps
a semantic network to a directed network, then

Θ(S) =
⋃

〈i,ω,j〉∈S

(i, b1) ∪ (b1, i) ∪ γ(λ(ω)) ∪ (bn, j) ∪ (j, bn),

where any b is a vertex in γ(λ(ω)) and n > 1. With
respects to the previous example figures, the Θ(S) mapping
is diagrammed in Fig. 4.

i j

ω

b1 b2 b3

Fig. 4. A D-encoding of S.

Let D ⊆ (V d × V d) denote the directed network Θ(S).
In V d, every vertex that does not self-loop and has an even
degree was originally a vertex in V s. All other vertices in V d

are used to denote the edge labels of Ω. The growth of the
number of vertices in D with respects to Θ(S) is O(|V s| +
|S|�log2(|Ω|)�). The growth of the number of edges in D with
respects to Θ(S) is O(|S|[2�log2(|Ω|)� + 3]).

In order to demonstrate the information-preserving quality
of Θ, the inverse function Θ−1 also exists. Let Γ : V d → N

denote the degree of a vertex and let Qi→j be the set of paths
from vertex i to vertex j in D such that

Qi→j =
⋃

(i, b1, . . . , bn, j),

where |Γ(i)|
2 , |Γ(j)|

2 ∈ N (i.e. i and j’s degree
is even), (i, i), (j, j) /∈ D (i.e. no self-loops),
(i, b1), (b1, i), (b1, . . .), (. . . , bn), (bn, j), (j, bn) ∈ D,
i �= b1 �= . . . �= bn, j �= b1 �= . . . �= bn (i.e. only i
and j can be the same vertex), and no b is in a cycle with
another b in the sequence. If

Q =
⋃

i,j∈V d

Qi→j ,

then

Θ−1(D) =
⋃
q∈Q

〈q1, λ
−1(γ−1(q2, . . . , qn−1)), qn〉,

where q1 = i and qn = j and thus, the original vertices in V s.
Given Θ and Θ−1, a unique, one-to-one mapping between

a semantic network and a directed network exists such that
a semantic network can be modeled as a directed network
without loss of information. �

There exists another proof of this concept. As demonstrated
earlier, a binary string of arbitrary length can be represented
as a single chain (i.e. sequence, path) of vertices, where each
vertex represents a bit. In this representation, a self-loop rep-
resents a bit with value 1 and no self-loop represents a bit with
value 0. Because any representation of a semantic network, at
the lowest level of computing, is ultimately represented as a
sequence of bits, a directed network can be used to model that
sequence.
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III. MAPPING A DIRECTED NETWORK TO AN
UNDIRECTED NETWORK

This section presents the injective, information-preserving
function Θ̂ : D → U that maps a directed network to an
undirected network. A directed network is identified by a set
of ordered vertex pairs. For instance, when D ⊆ (V d × V d),
(i, j) ∈ D denotes a directed edge going from i (the source) to
j (the sink). A directed edge between i and j is diagrammed
in Fig. 5.

i j

Fig. 5. An edge in a directed network.

An undirected network denoted U ⊆ {V u × V u} does not
represent edge directionality as elements of U are unordered
thus, {i, j} states that i and j are connected, but that no partic-
ular direction exists. If a directed network is to be represented
as an undirected network, then a topological feature in the
undirected form must be used to represent edge directionality.

Proposition 2 (Directed-to-Undirected Injection): A
directed network can be modeled as an undirected network
without loss of information. There exists an injective function
Θ̂ : D → U , where U ∈ U is an undirected network
representation of some D ∈ D.
Proof. The function Θ̂ maps each ordered vertex pair in D
to a set of unique unordered vertex pairs in U . If Ri→j =
{i, x} ∪ {x, y} ∪ {x, z} ∪ {y, j} ∪ {z, j}, then

Θ̂(D) =
⋃

(i,j)∈D

{i, i} ∪ Ri→j ∪ {j, j},

where the vertices x, y, and z are unique for each (i, j) ∈ D.
Any vertex with an undirected self-loop in V u is an original
vertex from V d. The vertices x, y, z ∈ V u and their respective
edges represent the direction of the edge. The vertex i has one
edge which denotes the tail of the original directed edge. The
vertex j has two edges which denotes the head of the original
directed edge. Θ̂ incurs a vertex growth of O(|V d| + 3|D|)
and an edge growth of O(|V d| + 5|D|). The Θ̂ mapping of
the directed edge represented in Fig. 5 is diagrammed in Fig.
6.

i jx
y

z

Fig. 6. An undirected network representation of a directed edge.

The function Θ̂ is information preserving because there
exists the inverse function Θ̂−1 such that if q+ : (V × V ) →
{0, 1} is defined as

q+(i, j) =

{
1 if {i, x}, {x, y}, {x, z}, {y, j}, {z, j} ∈ U

0 otherwise,

then

Θ̂−1(U) =
⋃

i,j∈V u

(i, j) : {i, i}, {j, j} ∈ U ∧ q+(i, j) = 1.

Thus, a directed network can be modeled as an undirected
network. �

IV. MAPPING A SEMANTIC NETWORK TO AN
UNDIRECTED NETWORK

This section presents the unification of the concepts pre-
sented in the two previous sections. In this section, by means
of function composition, it is demonstrated that a semantic
network can be modeled as an undirected network without
loss of information. This means that there exists a one-to-one
mapping between a semantic network and some undirected
network. In short, given the functions Θ and Θ̂ presented
previously, an undirected network has the same representative
or modeling power as a semantic network.

Proposition 3 (Semantic-to-Undirected Injection): A
semantic network can be modeled as an undirected network
without loss of information. There exists an injective function
Θ̂ : S → U , where U ∈ U is an undirected network
representation of some S ∈ S.
Proof. Recall the injective functions Θ : S → D and Θ̂ : D →
U . Through function composition, there exists the function
Υ : S → U with the rule

Υ(S) = Θ̂(Θ(S)).

Υ incurs a vertex growth of

O([|V s| + 7|S|�log2(|Ω|)� + 9|S|)
and an edge growth of

O([|V s| + 11|S|�log2(|Ω|)� + 15|S|).
Finally, there also exists the inverse function Υ−1, where

Υ−1(U) = Θ−1(Θ̂−1(U)).

Thus, a semantic network can be modeled as an undirected
network. �

Given the example semantic network triple diagrammed in
Fig. 1, where S = 〈i, ω, j〉 and λ(ω) = (1, 1, 0), the undirected
network representation given by Υ(S) is diagrammed in Fig.
7. Note that each x, y, and z is a unique vertex even though
they are not notated as such.

b1 b2 b3 j

i

ω

x
y

z

x

y

z
x

y z

x
y

z

x

y z

x
y

z

x
y

z

x

y

z

Fig. 7. An undirected network representation of a semantic network triple.

It is interesting to note the various types of self-loops in
the undirected network representation in Fig. 7. There are
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the undirected self-loops as demonstrated by the edges {i, i},
{bn, bn}, and {j, j}. Next, there are the directed self-loops as
demonstrated by the b1 and b2 sub-networks which include
their respective x, y, z vertices. Finally, if i = j, there also
exists the semantic self-loop.

There exists another method to map a semantic network to
an undirected network. As discussed previously, a directed net-
work can represent a binary string and any semantic network
representation, computationally, is ultimately represented as a
series of bits. Therefore, it is possible to represent a semantic
network as a directed network binary string. Given Θ̂, it is
possible to represent that directed network binary string as an
undirected network.

V. CONCLUSION

This article defined the injective function Υ : S → U . This
function demonstrates that a semantic network has a one-to-
one mapping with some undirected network. In this model,
because an edge in an undirected network is neither labeled
nor directed, both the semantic network edge labels and the
directionality of edges are represented as topological features
of the undirected network. While representing a semantic
network as an undirected network is perhaps an inefficient
use of resources, it is theoretically possible.
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