Search results for: Integral equations
1510 Numerical Treatment of Block Method for the Solution of Ordinary Differential Equations
Authors: A. M. Sagir
Abstract:
Discrete linear multistep block method of uniform order for the solution of first order initial value problems (IVPs) in ordinary differential equations (ODEs) is presented in this paper. The approach of interpolation and collocation approximation are adopted in the derivation of the method which is then applied to first order ordinary differential equations with associated initial conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. Furthermore, a stability analysis and efficiency of the block method are tested on ordinary differential equations, and the results obtained compared favorably with the exact solution.
Keywords: Block Method, First Order Ordinary Differential Equations, Hybrid, Self starting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27961509 A Numerical Method for Diffusion and Cahn-Hilliard Equations on Evolving Spherical Surfaces
Authors: Jyh-Yang Wu, Sheng-Gwo Chen
Abstract:
In this paper, we present a simple effective numerical geometric method to estimate the divergence of a vector field over a curved surface. The conservation law is an important principle in physics and mathematics. However, many well-known numerical methods for solving diffusion equations do not obey conservation laws. Our presented method in this paper combines the divergence theorem with a generalized finite difference method and obeys the conservation law on discrete closed surfaces. We use the similar method to solve the Cahn-Hilliard equations on evolving spherical surfaces and observe stability results in our numerical simulations.Keywords: Conservation laws, diffusion equations, Cahn-Hilliard Equations, evolving surfaces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15051508 A Comparative Study of P-I, I-P, Fuzzy and Neuro-Fuzzy Controllers for Speed Control of DC Motor Drive
Authors: S.R. Khuntia, K.B. Mohanty, S. Panda, C. Ardil
Abstract:
This paper presents a comparative study of various controllers for the speed control of DC motor. The most commonly used controller for the speed control of dc motor is Proportional- Integral (P-I) controller. However, the P-I controller has some disadvantages such as: the high starting overshoot, sensitivity to controller gains and sluggish response due to sudden disturbance. So, the relatively new Integral-Proportional (I-P) controller is proposed to overcome the disadvantages of the P-I controller. Further, two Fuzzy logic based controllers namely; Fuzzy control and Neuro-fuzzy control are proposed and the performance these controllers are compared with both P-I and I-P controllers. Simulation results are presented and analyzed for all the controllers. It is observed that fuzzy logic based controllers give better responses than the traditional P-I as well as I-P controller for the speed control of dc motor drives.Keywords: Proportional-Integral (P-I) controller, Integral- Proportional (I-P) controller, Fuzzy logic control, Neuro-fuzzy control, Speed control, DC Motor drive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12591507 Refitting Equations for Peak Ground Acceleration in Light of the PF-L Database
Authors: M. Breška, I. Peruš, V. Stankovski
Abstract:
The number of Ground Motion Prediction Equations (GMPEs) used for predicting peak ground acceleration (PGA) and the number of earthquake recordings that have been used for fitting these equations has increased in the past decades. The current PF-L database contains 3550 recordings. Since the GMPEs frequently model the peak ground acceleration the goal of the present study was to refit a selection of 44 of the existing equation models for PGA in light of the latest data. The algorithm Levenberg-Marquardt was used for fitting the coefficients of the equations and the results are evaluated both quantitatively by presenting the root mean squared error (RMSE) and qualitatively by drawing graphs of the five best fitted equations. The RMSE was found to be as low as 0.08 for the best equation models. The newly estimated coefficients vary from the values published in the original works.
Keywords: Ground Motion Prediction Equations, Levenberg-Marquardt algorithm, refitting PF-L database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14951506 Existence of Solutions for a Nonlinear Fractional Differential Equation with Integral Boundary Condition
Abstract:
This paper deals with a nonlinear fractional differential equation with integral boundary condition of the following form: Dαt x(t) = f(t, x(t),Dβ t x(t)), t ∈ (0, 1), x(0) = 0, x(1) = 1 0 g(s)x(s)ds, where 1 < α ≤ 2, 0 < β < 1. Our results are based on the Schauder fixed point theorem and the Banach contraction principle.
Keywords: Fractional differential equation, Integral boundary condition, Schauder fixed point theorem, Banach contraction principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16591505 On Symmetries and Exact Solutions of Einstein Vacuum Equations for Axially Symmetric Gravitational Fields
Authors: Nisha Goyal, R.K. Gupta
Abstract:
Einstein vacuum equations, that is a system of nonlinear partial differential equations (PDEs) are derived from Weyl metric by using relation between Einstein tensor and metric tensor. The symmetries of Einstein vacuum equations for static axisymmetric gravitational fields are obtained using the Lie classical method. We have examined the optimal system of vector fields which is further used to reduce nonlinear PDE to nonlinear ordinary differential equation (ODE). Some exact solutions of Einstein vacuum equations in general relativity are also obtained.Keywords: Gravitational fields, Lie Classical method, Exact solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19351504 On the System of Nonlinear Rational Difference Equations
Authors: Qianhong Zhang, Wenzhuan Zhang
Abstract:
This paper is concerned with the global asymptotic behavior of positive solution for a system of two nonlinear rational difference equations. Moreover, some numerical examples are given to illustrate results obtained.
Keywords: Difference equations, stability, unstable, global asymptotic behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24651503 Immunity of Integrated Drive System, Effects of Radiated and Conducted Emission
Authors: M. Ektesabi
Abstract:
In this paper the problems associated with immunity of embedded systems used in Motor-Drive systems are investigated and appropriate solutions are presented. Integration of VSD motor systems (Integral Motor) while partially reducing some of these effects, adds to immunity problem of their embedded systems. Fail safe operation of an Integral Motor in arduous industrial environments is considered. In this paper an integral motor with a unique design is proposed to overcome critical issues such as heat, vibration and electromagnetic interference which are damaging to sensitive electronics without requirement of any additional cooling system. Advantages of the proposed Integral motor are compactness of combo motor and drive system with no external cabling/wiring. This motor provides a perfect shielding for least amount of radiated emission. It has an inbuilt filter for EMC compliance and has been designed to provide lower EMC noise for immunity of the internal electronics as well as the other neighbouring systems.Keywords: Electromagnetic Interference, Immunity, IntegralMotor, Radiated & Conducted Emission, Sensitive Electronics, Variable Speed Drive
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19031502 PID Control Design Based on Genetic Algorithm with Integrator Anti-Windup for Automatic Voltage Regulator and Speed Governor of Brushless Synchronous Generator
Authors: O. S. Ebrahim, M. A. Badr, Kh. H. Gharib, H. K. Temraz
Abstract:
This paper presents a methodology based on genetic algorithm (GA) to tune the parameters of proportional-integral-differential (PID) controllers utilized in the automatic voltage regulator (AVR) and speed governor of a brushless synchronous generator driven by three-stage steam turbine. The parameter tuning is represented as a nonlinear optimization problem solved by GA to minimize the integral of absolute error (IAE). The problem of integral windup due to physical system limitations is solved using simple anti-windup scheme. The obtained controllers are compared to those designed using classical Ziegler-Nichols technique and constrained optimization. Results show distinct superiority of the proposed method.
Keywords: Brushless synchronous generator, Genetic Algorithm, GA, Proportional-Integral-Differential control, PID control, automatic voltage regulator, AVR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2981501 ψ-exponential Stability for Non-linear Impulsive Differential Equations
Authors: Bhanu Gupta, Sanjay K. Srivastava
Abstract:
In this paper, we shall present sufficient conditions for the ψ-exponential stability of a class of nonlinear impulsive differential equations. We use the Lyapunov method with functions that are not necessarily differentiable. In the last section, we give some examples to support our theoretical results.Keywords: Exponential stability, globally exponential stability, impulsive differential equations, Lyapunov function, ψ-stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39371500 Research of Amplitude-Frequency Characteristics of Nonlinear Oscillations of the Interface of Two-Layered Liquid
Authors: Win Ko Ko, A. N. Temnov
Abstract:
The problem of nonlinear oscillations of a two-layer liquid completely filling a limited volume is considered. Using two basic asymmetric harmonics excited in two mutually perpendicular planes, ordinary differential equations of nonlinear oscillations of the interface of a two-layer liquid are investigated. In this paper, hydrodynamic coefficients of linear and nonlinear problems in integral relations were determined. As a result, the instability regions of forced oscillations of a two-layered liquid in a cylindrical tank occurring in the plane of action of the disturbing force are constructed, as well as the dynamic instability regions of the parametric resonance for different ratios of densities of the upper and lower liquids depending on the amplitudes of liquids from the excitations frequencies. Steady-state regimes of fluid motion were found in the regions of dynamic instability of the initial oscillation form. The Bubnov-Galerkin method is used to construct instability regions for approximate solution of nonlinear differential equations.
Keywords: Hydrodynamic coefficients, instability region, nonlinear oscillations, resonance frequency, two-layered liquid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5651499 An Iterative Method for Quaternionic Linear Equations
Authors: Bin Yu, Minghui Wang, Juntao Zhang
Abstract:
By the real representation of the quaternionic matrix, an iterative method for quaternionic linear equations Ax = b is proposed. Then the convergence conditions are obtained. At last, a numerical example is given to illustrate the efficiency of this method.
Keywords: Quaternionic linear equations, Real representation, Iterative algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17691498 Oil Debris Signal Detection Based on Integral Transform and Empirical Mode Decomposition
Authors: Chuan Li, Ming Liang
Abstract:
Oil debris signal generated from the inductive oil debris monitor (ODM) is useful information for machine condition monitoring but is often spoiled by background noise. To improve the reliability in machine condition monitoring, the high-fidelity signal has to be recovered from the noisy raw data. Considering that the noise components with large amplitude often have higher frequency than that of the oil debris signal, the integral transform is proposed to enhance the detectability of the oil debris signal. To cancel out the baseline wander resulting from the integral transform, the empirical mode decomposition (EMD) method is employed to identify the trend components. An optimal reconstruction strategy including both de-trending and de-noising is presented to detect the oil debris signal with less distortion. The proposed approach is applied to detect the oil debris signal in the raw data collected from an experimental setup. The result demonstrates that this approach is able to detect the weak oil debris signal with acceptable distortion from noisy raw data.Keywords: Integral transform, empirical mode decomposition, oil debris, signal processing, detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17171497 Improved Triple Integral Inequalities of Hermite-Hadamard Type
Authors: Leila Nasiri
Abstract:
In this paper, we present the concept of preinvex functions on the co-ordinates on an invex set and establish some triple integral inequalities of Hermite-Hadamard type for functions whose third order partial derivatives in absolute value are preinvex on the co-ordinates. The results presented here generalize the obtained results in earlier works for functions whose triple order partial derivatives in absolute value are convex on the co-ordinates on a rectangular box in R3.
Keywords: Co-ordinated preinvex functions, Hermite-Hadamard type inequalities, partial derivatives, triple integral.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191496 Existence and Uniqueness of Positive Solution for Nonlinear Fractional Differential Equation with Integral Boundary Conditions
Authors: Chuanyun Gu
Abstract:
By using fixed point theorems for a class of generalized concave and convex operators, the positive solution of nonlinear fractional differential equation with integral boundary conditions is studied, where n ≥ 3 is an integer, μ is a parameter and 0 ≤ μ < α. Its existence and uniqueness is proved, and an iterative scheme is constructed to approximate it. Finally, two examples are given to illustrate our results.Keywords: Fractional differential equation, positive solution, existence and uniqueness, fixed point theorem, generalized concave and convex operator, integral boundary conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11221495 Numerical Approximation to the Performance of CUSUM Charts for EMA (1) Process
Authors: K. Petcharat, Y. Areepong, S. Sukparungsri, G. Mititelu
Abstract:
These paper, we approximate the average run length (ARL) for CUSUM chart when observation are an exponential first order moving average sequence (EMA1). We used Gauss-Legendre numerical scheme for integral equations (IE) method for approximate ARL0 and ARL1, where ARL in control and out of control, respectively. We compared the results from IE method and exact solution such that the two methods perform good agreement.Keywords: Cumulative Sum Chart, Moving Average Observation, Average Run Length, Numerical Approximations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21641494 Automatic Generation Control of an Interconnected Power System with Capacitive Energy Storage
Authors: Rajesh Joseph Abraham, D. Das, Amit Patra
Abstract:
This paper is concerned with the application of small rating Capacitive Energy Storage units for the improvement of Automatic Generation Control of a multiunit multiarea power system. Generation Rate Constraints are also considered in the investigations. Integral Squared Error technique is used to obtain the optimal integral gain settings by minimizing a quadratic performance index. Simulation studies reveal that with CES units, the deviations in area frequencies and inter-area tie-power are considerably improved in terms of peak deviations and settling time as compared to that obtained without CES units.Keywords: Automatic Generation Control, Capacitive EnergyStorage, Integral Squared Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27981493 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation
Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu
Abstract:
This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.
Keywords: machine learning, neural network, pressurized water reactor, supervisory controller
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5151492 Basket Option Pricing under Jump Diffusion Models
Authors: Ali Safdari-Vaighani
Abstract:
Pricing financial contracts on several underlying assets received more and more interest as a demand for complex derivatives. The option pricing under asset price involving jump diffusion processes leads to the partial integral differential equation (PIDEs), which is an extension of the Black-Scholes PDE with a new integral term. The aim of this paper is to show how basket option prices in the jump diffusion models, mainly on the Merton model, can be computed using RBF based approximation methods. For a test problem, the RBF-PU method is applied for numerical solution of partial integral differential equation arising from the two-asset European vanilla put options. The numerical result shows the accuracy and efficiency of the presented method.Keywords: Radial basis function, basket option, jump diffusion, RBF-PUM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12081491 Comparison of Conventional Control and Robust Control on Double-Pipe Heat Exchanger
Authors: Hanan Rizk
Abstract:
Heat exchanger is a device used to mix liquids having different temperatures. In this case, the temperature control becomes a critical objective. This research work presents the temperature control of the double-pipe heat exchanger (multi-input multi-output (MIMO) system), which is modeled as first-order coupled hyperbolic partial differential equations (PDEs), using conventional and advanced control techniques, and develops appropriate robust control strategy to meet stability requirements and performance objectives. We designed the proportional–integral–derivative (PID) controller and H-infinity controller for a heat exchanger (HE) system. Frequency characteristics of sensitivity functions and open-loop and closed-loop time responses are simulated using MATLAB software and the stability of the system is analyzed using Kalman's test. The simulation results have demonstrated that the H-infinity controller is more efficient than PID in terms of robustness and performance.
Keywords: heat exchanger, multi-input multi-output system, MATLAB simulation, partial differential equations, PID controller, robust control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6961490 A New Splitting H1-Galerkin Mixed Method for Pseudo-hyperbolic Equations
Authors: Yang Liu, Jinfeng Wang, Hong Li, Wei Gao, Siriguleng He
Abstract:
A new numerical scheme based on the H1-Galerkin mixed finite element method for a class of second-order pseudohyperbolic equations is constructed. The proposed procedures can be split into three independent differential sub-schemes and does not need to solve a coupled system of equations. Optimal error estimates are derived for both semidiscrete and fully discrete schemes for problems in one space dimension. And the proposed method dose not requires the LBB consistency condition. Finally, some numerical results are provided to illustrate the efficacy of our method.
Keywords: Pseudo-hyperbolic equations, splitting system, H1-Galerkin mixed method, error estimates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15031489 Numerical Investigation of Two-dimensional Boundary Layer Flow Over a Moving Surface
Authors: Mahmoud Zarrini, R.N. Pralhad
Abstract:
In this chapter, we have studied Variation of velocity in incompressible fluid over a moving surface. The boundary layer equations are on a fixed or continuously moving flat plate in the same or opposite direction to the free stream with suction and injection. The boundary layer equations are transferred from partial differential equations to ordinary differential equations. Numerical solutions are obtained by using Runge-Kutta and Shooting methods. We have found numerical solution to velocity and skin friction coefficient.
Keywords: Boundary layer, continuously moving surface, shooting method, skin friction coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15761488 Constructing Approximate and Exact Solutions for Boussinesq Equations using Homotopy Perturbation Padé Technique
Authors: Mohamed M. Mousa, Aidarkhan Kaltayev
Abstract:
Based on the homotopy perturbation method (HPM) and Padé approximants (PA), approximate and exact solutions are obtained for cubic Boussinesq and modified Boussinesq equations. The obtained solutions contain solitary waves, rational solutions. HPM is used for analytic treatment to those equations and PA for increasing the convergence region of the HPM analytical solution. The results reveal that the HPM with the enhancement of PA is a very effective, convenient and quite accurate to such types of partial differential equations.Keywords: Homotopy perturbation method, Padé approximants, cubic Boussinesq equation, modified Boussinesq equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45781487 Ziegler Nichols Based Integral Proportional Controller for Superheated Steam Temperature Control System
Authors: Amil Daraz, Suheel Abdullah Malik, Tahir Saleem, Sajid Ali Bhati
Abstract:
In this paper, Integral Proportional (I-P) controller is employed for superheated steam temperature control system. The Ziegler-Nichols (Z-N) method is used for the tuning of I-P controller. The performance analysis of Z-N based I-P controller is assessed on superheated steam system of 500-MW boiler. The comparison of transient response parameters such as rise time, settling time, and overshoot is made with Z-N based Proportional Integral (PI) controller. It is observed from the results that Z-N based I-P controller completely eliminates the overshoot in the output response.Keywords: Superheated steam, process reaction curve, PI and I-P controller, Ziegler-Nichols tuning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14211486 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (III)
Authors: Li Ge
Abstract:
In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using Leray-Schauder theory:Keywords: impulsive differential equations, impulsive integraldifferential equation, boundary value problems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11691485 Certain Subordination Results For A Class Of Analytic Functions Defined By The Generalized Integral Operator
Authors: C. Selvaraj, K. R. Karthikeyan
Abstract:
We obtain several interesting subordination results for a class of analytic functions defined by using a generalized integral operator.Keywords: Analytic functions, Hadamard product, Subordinating factor sequence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15621484 Analytical Solution of the Boundary Value Problem of Delaminated Doubly-Curved Composite Shells
Authors: András Szekrényes
Abstract:
Delamination is one of the major failure modes in laminated composite structures. Delamination tips are mostly captured by spatial numerical models in order to predict crack growth. This paper presents some mechanical models of delaminated composite shells based on shallow shell theories. The mechanical fields are based on a third-order displacement field in terms of the through-thickness coordinate of the laminated shell. The undelaminated and delaminated parts are captured by separate models and the continuity and boundary conditions are also formulated in a general way providing a large size boundary value problem. The system of differential equations is solved by the state space method for an elliptic delaminated shell having simply supported edges. The comparison of the proposed and a numerical model indicates that the primary indicator of the model is the deflection, the secondary is the widthwise distribution of the energy release rate. The model is promising and suitable to determine accurately the J-integral distribution along the delamination front. Based on the proposed model it is also possible to develop finite elements which are able to replace the computationally expensive spatial models of delaminated structures.
Keywords: J-integral, Lévy method, third-order shell theory, state space solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6001483 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (I)
Authors: Li Ge
Abstract:
In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using leray-Schauder theory:Keywords: impulsive differential equations, impulsive integraldifferentialequation, boundary value problems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11961482 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (II)
Authors: Li Ge
Abstract:
In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using leray-Schauder theory:Keywords: impulsive differential equations, impulsive integraldifferentialequation, boundary value problems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11001481 Monotonic and Cyclic J-integral Estimation for Through-Wall Cracked Straight Pipes
Authors: Rohit, S. Vishnuvardhan, P. Gandhi, Nagesh R. Iyer
Abstract:
The evaluation of energy release rate and centre Crack Opening Displacement (COD) for circumferential Through-Wall Cracked (TWC) pipes is an important issue in the assessment of critical crack length for unstable fracture. The ability to predict crack growth continues to be an important component of research for several structural materials. Crack growth predictions can aid the understanding of the useful life of a structural component and the determination of inspection intervals and criteria. In this context, studies were carried out at CSIR-SERC on Nuclear Power Plant (NPP) piping components subjected to monotonic as well as cyclic loading to assess the damage for crack growth due to low-cycle fatigue in circumferentially TWC pipes.Keywords: 304LN stainless steel, cyclic J-integral, Elastic- Plastic Fracture Mechanics, J-integral, Through-wall crack
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2588