Search results for: Continued Fraction Expansions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 440

Search results for: Continued Fraction Expansions

350 Evaluation of Newly Developed Dot-ELISA Test for Identification of Naja-naja sumantrana and Calloselasma rhodostoma Venom Antigens

Authors: A.S. Sikarwar, S. Ambu, T .H. Wong

Abstract:

Snake bite cases in Malaysia most often involve the species Naja-naja and Calloselasma rhodostoma. In keeping with the need for a rapid snake venom detection kit in a clinical setting, plate and dot-ELISA test for the venoms of Naja-naja sumatrana, Calloselasma rhodostoma and the cobra venom fraction V antigen was developed. Polyclonal antibodies were raised and further used to prepare the reagents for the dot-ELISA test kit which was tested in mice, rabbit and virtual human models. The newly developed dot- ELISA kit was able to detect a minimum venom concentration of 244ng/ml with cross reactivity of one antibody type. The dot-ELISA system was sensitive and specific for all three snake venom types in all tested animal models. The lowest minimum venom concentration detectable was in the rabbit model, 244ng/ml of the cobra venom fraction V antigen. The highest minimum venom concentration was in mice, 1953ng/ml against a multitude of venoms. The developed dot-ELISA system for the detection of three snake venom types was successful with a sensitivity of 95.8% and specificity of 97.9%.

Keywords: ELISA, Venom, SVDK, Naja-naja sumatrana , Calloselasma rhodostoma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
349 Laminar Free Convection of Nanofluid Flow in Horizontal Porous Annulus

Authors: Manal H. Saleh

Abstract:

A numerical study has been carried out to investigate the heat transfer by natural convection of nanofluid taking Cu as nanoparticles and the water as based fluid in a three dimensional annulus enclosure filled with porous media (silica sand) between two horizontal concentric cylinders with 12 annular fins of 2.4mm thickness attached to the inner cylinder under steady state conditions. The governing equations which used are continuity, momentum and energy equations under an assumptions used Darcy law and Boussinesq-s approximation which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7. The parameters affected on the system are modified Rayleigh number (10 ≤Ra*≤ 1000), fin length Hf (3, 7 and 11mm), radius ratio Rr (0.293, 0.365 and 0.435) and the volume fraction(0 ≤ ¤ò ≤ 0 .35). It was found that the average Nusselt number depends on (Ra*, Hf, Rr and φ). The results show that, increasing of fin length decreases the heat transfer rate and for low values of Ra*, decreasing Rr cause to decrease Nu while for Ra* greater than 100, decreasing Rr cause to increase Nu and adding Cu nanoparticles with 0.35 volume fraction cause 27.9% enhancement in heat transfer. A correlation for Nu in terms of Ra*, Hf and φ, has been developed for inner hot cylinder.

Keywords: Annular fins, laminar free convection, nanofluid, porous media, three dimensions horizontal annulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2490
348 Prediction of Metals Available to Maize Seedlings in Crude Oil Contaminated Soil

Authors: Stella O. Olubodun, George E. Eriyamremu

Abstract:

The study assessed the effect of crude oil applied at rates, 0, 2, 5, and 10% on the fractional chemical forms and availability of some metals in soils from Usen, Edo State, with no known crude oil contamination and soil from a crude oil spill site in Ubeji, Delta State, Nigeria. Three methods were used to determine the bioavailability of metals in the soils: maize (Zea mays) plant, EDTA and BCR sequential extraction. The sequential extract acid soluble fraction of the BCR extraction (most labile fraction of the soils, normally associated with bioavailability) were compared with total metal concentration in maize seedlings as a means to compare the chemical and biological measures of bioavailability. Total Fe was higher in comparison to other metals for the crude oil contaminated soils. The metal concentrations were below the limits of 4.7% Fe, 190mg/kg Cu and 720mg/kg Zn intervention values and 36mg/kg Cu and 140mg/kg Zn target values for soils provided by the Department of Petroleum Resources (DPR) guidelines. The concentration of the metals in maize seedlings increased with increasing rates of crude oil contamination. Comparison of the metal concentrations in maize seedlings with EDTA extractable concentrations showed that EDTA extracted more metals than maize plant.

Keywords: Availability, crude oil contamination, EDTA, maize, metals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380
347 Free Convection in an Infinite Porous Dusty Medium Induced by Pulsating Point Heat Source

Authors: K. Kannan, V. Venkataraman

Abstract:

Free convection effects and heat transfer due to a pulsating point heat source embedded in an infinite, fluid saturated, porous dusty medium are studied analytically. Both velocity and temperature fields are discussed in the form of series expansions in the Rayleigh number, for both the fluid and particle phases based on the mean heat generation rate from source and on the permeability of the porous dusty medium. This study is carried out by assuming the Rayleigh number small and the validity of Darcy-s law. Analytical expressions for both phases are obtained for second order mean in both velocity and temperature fields and evolution of different wave patterns are observed in the fluctuating part. It has been observed that, at the vicinity of the origin, the second order mean flow is influenced only by relaxation time of dust particles and not by dust concentration.

Keywords: Pulsating point heat source, azimuthal velocity, porous dusty medium, Darcy's law.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363
346 Ultrasonic Investigation of Molecular Interaction in Binary Liquid Mixture of Polyethylene Glycol with Ethanol

Authors: S. Grace Sahaya Sheba, R. Omegala Priakumari

Abstract:

Polyethylene glycol (PEG) is a condensation polymer of ethylene oxide and water. It is soluble in water and in many organic solvents. PEG is used to make emulsifying agents, detergents, soaps, plasticizers, ointments etc. Ethanol (C2H5OH) also known as ethyl alcohol is a well-known organic compound and has wide applications in chemical industry as it is used as a solvent for paint, varnish, in preserving biological specimens, used as a fuel mixed with petrol etc. Though their chemical and physical properties are already studied, still because of their uses in day to day life the authors thought it is better to study some more of their physical properties like ultrasonic velocity and hence adiabatic compressibility, free length, etc. A detailed study of such properties and some excess parameters like excess adiabatic compressibility, excess free volume and few more in the liquid mixtures of these two compounds with PEG as a solute and Ethanol as a solvent at various mole fractions may throw some light on deeper understanding of molecular interaction between the solute and the solvent supported by NMR, IR etc. Hence the present research work is on ultrasonics/allied studies on these two liquid mixtures. Ultrasonic velocity (U), density (ρ) and viscosity (η) at room temperature and at different mole fraction from 0 to 0.055 of ethanol in PEG have been experimentally carried out by the authors. Acoustical parameters such as adiabatic compressibility (β), free volume (Vf), acoustic impedance (Z), internal pressure (πi), intermolecular free length (Lf) and relaxation time (τ) were calculated from the experimental data. We have calculated excess parameters like excess adiabatic compressibility (βE), excess internal pressure (πiE) free length (LfE) and excess acoustic impedance (ZE) etc for these two chosen liquid mixtures. The excess compressibility is positive and maximum around a mole fraction 0.007 and excess internal pressure is negative and maximum at the same mole fraction and longer free length. The results are analyzed and it may be concluded that the molecular interactions between the solute and the solvent is not strong and it may be weak. Appropriate graphs are drawn.

Keywords: Adiabatic Compressibility, Binary mixture, Induce dipole, Polarizability, Ultrasonic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2784
345 Electric Field Impact on the Biomass Gasification and Combustion Dynamics

Authors: M. Zake, I. Barmina, A. Kolmickovs, R. Valdmanis

Abstract:

Experimental investigations of the DC electric field effect on thermal decomposition of biomass, formation of the axial flow of volatiles (CO, H2, CxHy), mixing of volatiles with swirling airflow at low swirl intensity (S ≈ 0.2-0.35), their ignition and on formation of combustion dynamics are carried out with the aim to understand the mechanism of electric field influence on biomass gasification, combustion of volatiles and heat energy production. The DC electric field effect on combustion dynamics was studied by varying the positive bias voltage of the central electrode from 0.6 kV to 3 kV, whereas the ion current was limited to 2 mA. The results of experimental investigations confirm the field-enhanced biomass gasification with enhanced release of volatiles and the development of endothermic processes at the primary stage of thermochemical conversion of biomass determining the field-enhanced heat energy consumption with the correlating decrease of the flame temperature and heat energy production at this stage of flame formation. Further, the field-enhanced radial expansion of the flame reaction zone correlates with a more complete combustion of volatiles increasing the combustion efficiency by 3% and decreasing the mass fraction of CO, H2 and CxHy in the products, whereas by 10% increases the average volume fraction of CO2 and the heat energy production downstream the combustor increases by 5-10% 

Keywords: Biomass, combustion, electrodynamic control, gasification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
344 A Multiple Beam LTE Base Station Antenna with Simultaneous Vertical and Horizontal Sectorization

Authors: Mohamed Sanad, Noha Hassan

Abstract:

A low wind-load light-weight broad-band multi-beam base station antenna has been developed. It can generate any required number of beams with the required beamwidths. It can have horizontal and vertical sectorization at the same time. Vertical sectorization doubles the overall number of beams. It will be very valuable in LTE-A and 5G. It can be used to serve vertically split inner and outer cells, which improves system performance. The intersection between the beams of the proposed multi-beam antenna can be controlled by optimizing the design parameters of the antenna. The gain at the points of intersection between the beams, the null filling and the overlap between the beams can all be modified. The proposed multi-beam base station antenna can cover an unlimited number of wireless applications, regardless of their frequency bands. It can simultaneously cover all, current and future, wireless technology generations such as 2G, 3G, 4G (LTE), --- etc. For example, in LTE, it covers the bands 450-470 MHz, 690-960 MHz, 1.4-2.7 GHz and 3.3-3.8 GHz. It has at least 2 ports for each band in each beam for ±45° polarizations. It can include up to 72 ports or even more, which could facilitate any further needed capacity expansions.

Keywords: Base station antenna, multi-beam antenna, smart antenna, vertical sectorization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
343 Influence of Valve Lift Timing on Producer Gas Combustion and Its Modeling Using Two-Stage Wiebe Function

Authors: M. Sreedhar Babu, Vishal Garg, S. B. Akella, Shibu Clement, N. K. S Rajan

Abstract:

Producer gas is a biomass derived gaseous fuel which is extensively used in internal combustion engines for power generation application. Unlike the conventional hydrocarbon fuels (Gasoline and Natural gas), the combustion properties of producer gas fuel are much different. Therefore, setting of optimal spark time for efficient engine operation is required. Owing to the fluctuating tendency of producer gas composition during gasification process, the heat release patterns (dictating the power output and emissions) obtained are quite different from conventional fuels. It was found that, valve lift timing is yet another factor which influences the burn rate of producer gas fuel, and thus, the heat release rate of the engine. Therefore, the present study was motivated to estimate the influence of valve lift timing analytically (Wiebe model) on the burn rate of producer gas through curve fitting against experimentally obtained mass fraction burn curves of several producer gas compositions. Furthermore, Wiebe models are widely used in zero-dimensional codes for engine parametric studies and are quite popular. This study also addresses the influence of hydrogen and methane concentration of producer gas on combustion trends, which are known to cause dynamics in engine combustion.

Keywords: Combustion Duration, crank angle, mass fraction burnt, producer gas, wiebe combustion model, wide open throttle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970
342 Investigation of Cytotoxic Compounds in Ethyl Acetate and Chloroform Extracts of Nigella sativa by Sulforhodamine-B Assay-Guided Fractionation

Authors: Harshani Uggallage, Kapila D. Dissanayaka

Abstract:

A Sulforhodamine-B assay-guided fractionation on Nigella sativa seeds was conducted to determine the presence of cytotoxic compounds against human hepatoma (HepG2) cells. Initially, a freeze-dried sample of Nigella sativa seeds was sequentially extracted into solvents of increasing polarities. Crude extracts from the sequential extraction of Nigella sativa seeds in chloroform and ethyl acetate showed the highest cytotoxicity. The combined mixture of these two extracts was subjected to bioassay guided fractionation using a modified Kupchan method of partitioning, followed by Sephadex® LH-20 chromatography. This chromatographic separation process resulted in a column fraction with a convincing IC50 (half-maximal inhibitory concentration) value of 13.07 µg/ml, which is considerable for developing therapeutic drug leads against human hepatoma. Reversed phase High-Performance Liquid Chromatography (HPLC) was finally conducted for the same column fraction and the result indicates the presence of one or several main cytotoxic compounds against human HepG2 cells.

Keywords: Cytotoxic compounds, half-maximal inhibitory concentration, high-performance liquid chromatography, human HepG2 cells, Nigella sativa seeds, Sulforhodamine-B assay-guided fractionation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 446
341 The Urban Expansion Characterization of the Bir El Djir Municipality Using Remote Sensing and GIS

Authors: Zakaria Smahi, Khadidja Remaoun, Fatima Achouri

Abstract:

Bir El Djir is an important coastal township in Oran department, located at 450 Km far away from Algiers on northwest of Algeria. In this coastal area, the urban sprawl is one of the main problems that reduce the limited highly fertile land. So, using the remote sensing and GIS technologies have shown their great capabilities to solve many earth resources issues. The aim of this study is to produce land use and cover map for the studied area at varied periods to monitor possible changes that may occurred, particularly in the urban areas and subsequently predict likely changes. For this, two spatial images SPOT and Landsat satellites from 1987 and 2014 respectively were used to assess the changes of urban expansion and encroachment during this period with photo-interpretation and GIS approach. The results revealed that the town of Bir El Djir has shown a highest growth rate in the period 1987-2014 which is 1201.5 hectares in terms of area. These expansions largely concern the new real estate constructions falling within the social and promotional housing programs launched by the government. The most urban expansion is characterized by the new construction in the form of spontaneous or peripheral precarious habitat, but also unstructured slums settled especially in the southeastern part of town.

Keywords: Urban expansion, Remote Sensing, Photointerpretation, Spatial dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
340 Blackout on Outdoor Light

Authors: A. Castillo, A. Gutiérrez, J.M. Gutiérrez, J.M. Gómez, E. García-López

Abstract:

The continued growth of the cities is causing an increase of the amount of surface to illuminate. However, this rise into lighting brings some unintended consequences such as increased of energy consumption or the light pollution. To make these effects less intrusive as possible some councils have chosen to perform a part-night lighting in some areas. Nonetheless, this kind of shutdown may cause serious problems which we intend to highlight in this paper.

Keywords: Energy saving, part-night lighting, switch off, vial security

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
339 Estimation and Removal of Chlorophenolic Compounds from Paper Mill Waste Water by Electrochemical Treatment

Authors: R. Sharma, S. Kumar, C. Sharma

Abstract:

A number of toxic chlorophenolic compounds are formed during pulp bleaching. The nature and concentration of these chlorophenolic compounds largely depends upon the amount and nature of bleaching chemicals used. These compounds are highly recalcitrant and difficult to remove but are partially removed by the biochemical treatment processes adopted by the paper industry. Identification and estimation of these chlorophenolic compounds has been carried out in the primary and secondary clarified effluents from the paper mill by GCMS. Twenty-six chorophenolic compounds have been identified and estimated in paper mill waste waters. Electrochemical treatment is an efficient method for oxidation of pollutants and has successfully been used to treat textile and oil waste water. Electrochemical treatment using less expensive anode material, stainless steel electrodes has been tried to study their removal. The electrochemical assembly comprised a DC power supply, a magnetic stirrer and stainless steel (316 L) electrode. The optimization of operating conditions has been carried out and treatment has been performed under optimized treatment conditions. Results indicate that 68.7% and 83.8% of cholorphenolic compounds are removed during 2 h of electrochemical treatment from primary and secondary clarified effluent respectively. Further, there is a reduction of 65.1, 60 and 92.6% of COD, AOX and color, respectively for primary clarified and 83.8%, 75.9% and 96.8% of COD, AOX and color, respectively for secondary clarified effluent. EC treatment has also been found to increase significantly the biodegradability index of wastewater because of conversion of non- biodegradable fraction into biodegradable fraction. Thus, electrochemical treatment is an efficient method for the degradation of cholorophenolic compounds, removal of color, AOX and other recalcitrant organic matter present in paper mill waste water.

Keywords: Chlorophenolics, effluent, electrochemical treatment, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
338 Antimicrobial, Antiplasmid and Cytotoxicity Potentials of Marine Algae Halimeda opuntia and Sarconema filiforme Collected from Red Sea Coast

Authors: Samy A. Selim

Abstract:

The antimicrobial, antiplasmid and cytotoxic activities of marine algae Halimeda opuntia and Sarconema filiforme were investigated. Antimicrobial bioassay against some human pathogenic bacteria and yeast were conducted using disc diffusion method. Halimeda extract exhibited antibacterial activity against six species of microrganisms, with significant inhibition against Staphylococcus aureus. While Sarconema extract was better potent as antifungal against Candida albicans. Comparative antibacterial studies showed that Halimeda extract showed equivalent or better activity as compared with commercial antibiotic when tested against Staphylococcus aureus. Further tests conducted using dilution method showed both extracts as having bacteriostatic mode of action against the tested microorganisms. Methanol extract of two species showed significant cytotoxicity (LC50 <500μg) on brine shrimp. Halimeda opuntia showed highest cytotoxic activity (LC50 =192.3μg). Also, the present investigation was undertaken to investigate the ability of methanolic extract of the algal extracts to cure R-plasmids from certain clinical E. coli isolates. The active fraction of Halimeda and Sarconema could cure plasmids from E. coli at curing efficiencies of approximately 78%. The active fraction mediated plasmid curing resulted in the subsequent loss of antibiotic resistance encoded in the plasmids as revealed by antibiotic resistance profile of cured strains. The screening results confirm the possible use of marine algae Halimeda opuntia and Sarconema filiforme as a source of pharmacological benefits.

Keywords: Antimicrobial, antiplasmid Cytotoxicity, Marine Algae.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3080
337 Application of GA Optimization in Analysis of Variable Stiffness Composites

Authors: Nasim Fallahi, Erasmo Carrera, Alfonso Pagani

Abstract:

Variable angle tow describes the fibres which are curvilinearly steered in a composite lamina. Significantly, stiffness tailoring freedom of VAT composite laminate can be enlarged and enabled. Composite structures with curvilinear fibres have been shown to improve the buckling load carrying capability in contrast with the straight laminate composites. However, the optimal design and analysis of VAT are faced with high computational efforts due to the increasing number of variables. In this article, an efficient optimum solution has been used in combination with 1D Carrera’s Unified Formulation (CUF) to investigate the optimum fibre orientation angles for buckling analysis. The particular emphasis is on the LE-based CUF models, which provide a Lagrange Expansions to address a layerwise description of the problem unknowns. The first critical buckling load has been considered under simply supported boundary conditions. Special attention is lead to the sensitivity of buckling load corresponding to the fibre orientation angle in comparison with the results which obtain through the Genetic Algorithm (GA) optimization frame and then Artificial Neural Network (ANN) is applied to investigate the accuracy of the optimized model. As a result, numerical CUF approach with an optimal solution demonstrates the robustness and computational efficiency of proposed optimum methodology.

Keywords: Beam structures, layerwise, optimization, variable angle tow, neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 652
336 Evaluation of the Discoloration of Methyl Orange Using Black Sand as Semiconductor through Photocatalytic Oxidation and Reduction

Authors: P. Acosta-Santamaría, A. Ibatá-Soto, A. López-Vásquez

Abstract:

Organic compounds in wastewaters coming from textile and pharmaceutical industry generated multiple harmful effects on the environment and the human health. One of them is the methyl orange (MeO), an azoic dye considered to be a recalcitrant compound. The heterogeneous photocatalysis emerges as an alternative for treating this type of hazardous compounds, through the generation of OH radicals using radiation and a semiconductor oxide. According to the author’s knowledge, catalysts such as TiO2 doped with metals show high efficiency in degrading MeO; however, this presents economic limitations on industrial scale. Black sand can be considered as a naturally doped catalyst because in its structure is common to find compounds such as titanium, iron and aluminum oxides, also elements such as zircon, cadmium, manganese, etc. This study reports the photocatalytic activity of the mineral black sand used as semiconductor in the discoloration of MeO by oxidation and reduction photocatalytic techniques. For this, magnetic composites from the mineral were prepared (RM, M1, M2 and NM) and their activity were tested through MeO discoloration while TiO2 was used as reference. For the fractions, chemical, morphological and structural characterizations were performed using Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM-EDX), X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) analysis. M2 fraction showed higher MeO discoloration (93%) in oxidation conditions at pH 2 and it could be due to the presence of ferric oxides. However, the best result to reduction process was using M1 fraction (20%) at pH 2, which contains a higher titanium percentage. In the first process, hydrogen peroxide (H2O2) was used as electron donor agent. According to the results, black sand mineral can be used as natural semiconductor in photocatalytic process. It could be considered as a photocatalyst precursor in such processes, due to its low cost and easy access.

Keywords: Black sand mineral, methyl orange, oxidation, photocatalysis, reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
335 Modeling of Radiative Heat Transfer in 2D Complex Heat Recuperator of Biomass Pyrolysis Furnace: A Study of Baffles Shadow and Soot Volume Fraction Effects

Authors: Mohamed Ammar Abbassi, Kamel Guedri, Mohamed Naceur Borjini, Kamel Halouani, Belkacem Zeghmati

Abstract:

The radiative heat transfer problem is investigated numerically for 2D complex geometry biomass pyrolysis reactor composed of two pyrolysis chambers and a heat recuperator. The fumes are a mixture of carbon dioxide and water vapor charged with absorbing and scattering particles and soot. In order to increase gases residence time and heat transfer, the heat recuperator is provided with many inclined, vertical, horizontal, diffuse and grey baffles of finite thickness and has a complex geometry. The Finite Volume Method (FVM) is applied to study radiative heat transfer. The blocked-off region procedure is used to treat the geometrical irregularities. Eight cases are considered in order to demonstrate the effect of adding baffles on the walls of the heat recuperator and on the walls of the pyrolysis rooms then choose the best case giving the maximum heat flux transferred to the biomass in the pyrolysis chambers. Ray effect due to the presence of baffles is studied and demonstrated to have a crucial effect on radiative heat flux on the walls of the pyrolysis rooms. Shadow effect caused by the presence of the baffles is also studied. The non grey radiative heat transfer is studied for the real existent configuration. The Weighted Sum of The Grey Gases (WSGG) Model of Kim and Song is used as non grey model. The effect of soot volumetric fraction on the non grey radiative heat flux is investigated and discussed.

Keywords: Baffles, Blocked-off region procedure, FVM, Heat recuperation, Radiative heat transfer, Shadow effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2248
334 An Investigation to Effective Parameters on the Damage of Dual Phase Steels by Acoustic Emission Using Energy Ratio

Authors: A. Fallahi, R. Khamedi

Abstract:

Dual phase steels (DPS)s have a microstructure consisting of a hard second phase called Martensite in the soft Ferrite matrix. In recent years, there has been interest in dual-phase steels, because the application of these materials has made significant usage; particularly in the automotive sector Composite microstructure of (DPS)s exhibit interesting characteristic mechanical properties such as continuous yielding, low yield stress to tensile strength ratios(YS/UTS), and relatively high formability; which offer advantages compared with conventional high strength low alloy steels(HSLAS). The research dealt with the characterization of damage in (DPS)s. In this study by review the mechanisms of failure due to volume fraction of martensite second phase; a new method is introduced to identifying the mechanisms of failure in the various phases of these types of steels. In this method the acoustic emission (AE) technique was used to detect damage progression. These failure mechanisms consist of Ferrite-Martensite interface decohesion and/or martensite phase fracture. For this aim, dual phase steels with different volume fraction of martensite second phase has provided by various heat treatment methods on a low carbon steel (0.1% C), and then AE monitoring is used during tensile test of these DPSs. From AE measurements and an energy ratio curve elaborated from the value of AE energy (it was obtained as the ratio between the strain energy to the acoustic energy), that allows detecting important events, corresponding to the sudden drops. These AE signals events associated with various failure mechanisms are classified for ferrite and (DPS)s with various amount of Vm and different martensite morphology. It is found that AE energy increase with increasing Vm. This increasing of AE energy is because of more contribution of martensite fracture in the failure of samples with higher Vm. Final results show a good relationship between the AE signals and the mechanisms of failure.

Keywords: Dual phase steel (DPS)s, Failure mechanisms, Acoustic Emission, Fracture strain energy to the acoustic energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889
333 The Study of the Desulfurization Process of Oil and Oil Products of “Zhanazhol” Oil Field Using the Approaches of Green Chemistry

Authors: Zhaksyntay K. Kairbekov, Zhannur K. Myltykbaeva, Nazym T. Smagulova, Dariya K. Kanseitova

Abstract:

In this paper we studied sono catalytic oxidative desulfurization of oil and diesel fraction from “Zhanazhol” oil deposits. We have established that the combined effect of the ultrasonic field and oxidant (ozone-air mixture) in the presence of the catalyst on the oil is potentially very effective method of desulfurization of oil and oil products. This method allows increasing the degree of desulfurization of oil by 62%.

Keywords: Desulfurization, diesel, oil, oil products, sonication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
332 Oil-Water Two-Phase Flow Characteristics in Horizontal Pipeline – A Comprehensive CFD Study

Authors: Anand B. Desamala, Ashok Kumar Dasamahapatra, Tapas K. Mandal

Abstract:

In the present work, detailed analysis on flow characteristics of a pair of immiscible liquids through horizontal pipeline is simulated by using ANSYS FLUENT 6.2. Moderately viscous oil and water (viscosity ratio = 107, density ratio = 0.89 and interfacial tension = 0.024 N/m) have been taken as system fluids for the study. Volume of Fluid (VOF) method has been employed by assuming unsteady flow, immiscible liquid pair, constant liquid properties, and co-axial flow. Meshing has been done using GAMBIT. Quadrilateral mesh type has been chosen to account for the surface tension effect more accurately. From the grid independent study, we have selected 47037 number of mesh elements for the entire geometry. Simulation successfully predicts slug, stratified wavy, stratified mixed and annular flow, except dispersion of oil in water, and dispersion of water in oil. Simulation results are validated with horizontal literature data and good conformity is observed. Subsequently, we have simulated the hydrodynamics (viz., velocity profile, area average pressure across a cross section and volume fraction profile along the radius) of stratified wavy and annular flow at different phase velocities. The simulation results show that in the annular flow, total pressure of the mixture decreases with increase in oil velocity due to the fact that pipe cross section is completely wetted with water. Simulated oil volume fraction shows maximum at the centre in core annular flow, whereas, in stratified flow, maximum value appears at upper side of the pipeline. These results are in accord with the actual flow configuration. Our findings could be useful in designing pipeline for transportation of crude oil.

Keywords: CFD, Horizontal pipeline, Oil-water flow, VOF technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5711
331 Assessment of Wastewater Reuse Potential for an Enamel Coating Industry

Authors: Guclu Insel, Efe Gumuslu, Gulten Yuksek, Nilay Sayi Ucar, Emine Ubay Cokgor, Tugba Olmez Hanci, Didem Okutman Tas, Fatos Germirli Babuna, Derya Firat Ertem, Okmen Yildirim, Ozge Erturan, Betul Kirci

Abstract:

In order to eliminate water scarcity problems, effective precautions must be taken. Growing competition for water is increasingly forcing facilities to tackle their own water scarcity problems. At this point, application of wastewater reclamation and reuse results in considerable economic advantageous. In this study, an enamel coating facility, which is one of the high water consumed facilities, is evaluated in terms of its wastewater reuse potential. Wastewater reclamation and reuse can be defined as one of the best available techniques for this sector. Hence, process and pollution profiles together with detailed characterization of segregated wastewater sources are appraised in a way to find out the recoverable effluent streams arising from enamel coating operations. Daily, 170 m3 of process water is required and 160 m3 of wastewater is generated. The segregated streams generated by two enamel coating processes are characterized in terms of conventional parameters. Relatively clean segregated wastewater streams (reusable wastewaters) are separately collected and experimental treatability studies are conducted on it. The results reflected that the reusable wastewater fraction has an approximate amount of 110 m3/day that accounts for 68% of the total wastewaters. The need for treatment applicable on reusable wastewaters is determined by considering water quality requirements of various operations and characterization of reusable wastewater streams. Ultra-filtration (UF), Nano-filtration (NF) and Reverse Osmosis (RO) membranes are subsequently applied on reusable effluent fraction. Adequate organic matter removal is not obtained with the mentioned treatment sequence.

Keywords: enamel coating, membrane, reuse, wastewater

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
330 Analysis of Poverty Reduction Strategies as Mechanism for Development in Nigeria from 1999-2014

Authors: Ahmed Usman Egye, Hamza Muhammad

Abstract:

Poverty alleviation is one of the most difficult challenges facing third world countries in their development efforts. Evidences in Nigeria showed that the number of those in poverty has continued to increase. This paper is aimed at analyzing the performance of poverty alleviation measures undertaken by successive administrations in Nigeria with a view to addressing the quagmire. The study identified the whole gamut of factors that served as stumbling blocks to the implementation of each of the strategies and recommended the involvement of local people in the identification and design of projects so that sufficient participation could be achieved.

Keywords: Poverty, development, strategies, Nigeria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2773
329 Bi-lingual Handwritten Character and Numeral Recognition using Multi-Dimensional Recurrent Neural Networks (MDRNN)

Authors: Kandarpa Kumar Sarma

Abstract:

The key to the continued success of ANN depends, considerably, on the use of hybrid structures implemented on cooperative frame-works. Hybrid architectures provide the ability to the ANN to validate heterogeneous learning paradigms. This work describes the implementation of a set of Distributed and Hybrid ANN models for Character Recognition applied to Anglo-Assamese scripts. The objective is to describe the effectiveness of Hybrid ANN setups as innovative means of neural learning for an application like multilingual handwritten character and numeral recognition.

Keywords: Assamese, Feature, Recurrent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
328 Modeling Decentralized Source-Separation Systems for Urban Waste Management

Authors: Bernard J.H. Ng, Apostolos Giannis, Victor Chang, Rainer Stegmann, Jing-Yuan Wang

Abstract:

Decentralized eco-sanitation system is a promising and sustainable mode comparing to the century-old centralized conventional sanitation system. The decentralized concept relies on an environmentally and economically sound management of water, nutrient and energy fluxes. Source-separation systems for urban waste management collect different solid waste and wastewater streams separately to facilitate the recovery of valuable resources from wastewater (energy, nutrients). A resource recovery centre constituted for 20,000 people will act as the functional unit for the treatment of urban waste of a high-density population community, like Singapore. The decentralized system includes urine treatment, faeces and food waste co-digestion, and horticultural waste and organic fraction of municipal solid waste treatment in composting plants. A design model is developed to estimate the input and output in terms of materials and energy. The inputs of urine (yellow water, YW) and faeces (brown water, BW) are calculated by considering the daily mean production of urine and faeces by humans and the water consumption of no-mix vacuum toilet (0.2 and 1 L flushing water for urine and faeces, respectively). The food waste (FW) production is estimated to be 150 g wet weight/person/day. The YW is collected and discharged by gravity into tank. It was found that two days are required for urine hydrolysis and struvite precipitation. The maximum nitrogen (N) and phosphorus (P) recovery are 150-266 kg/day and 20-70 kg/day, respectively. In contrast, BW and FW are mixed for co-digestion in a thermophilic acidification tank and later a decentralized/centralized methanogenic reactor is used for biogas production. It is determined that 6.16-15.67 m3/h methane is produced which is equivalent to 0.07-0.19 kWh/ca/day. The digestion residues are treated with horticultural waste and organic fraction of municipal waste in co-composting plants.

Keywords: Decentralization, ecological sanitation, material flow analysis, source-separation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2925
327 Hydrodynamics of Bubbly Flow in a Modified Reactor

Authors: M. Sivaiah, R. Parmar, S. K. Majumder

Abstract:

This article reports on hydrodynamic, mass transfer performances of fine bubble in a modified reactor. The quality of mixing in the modified reactor is discussed in the paper. Mass transfer efficiency based on quality of mixing is enunciated. To interpret the gas phase volume fraction and the quality of mixing is the empirical models for the modified system are developed.

Keywords: Downflow, bubble, hydrodynamics, gas-liquid, mixing, mass transfer, gas holdup

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
326 Energy Loss Reduction in Oil Refineries through Flare Gas Recovery Approaches

Authors: Majid Amidpour, Parisa Karimi, Marzieh Joda

Abstract:

For the last few years, release of burned undesirable by-products has become a challenging issue in oil industries. Flaring, as one of the main sources of air contamination, involves detrimental and long-lasting effects on human health and is considered a substantial reason for energy losses worldwide. This research involves studying the implications of two main flare gas recovery methods at three oil refineries, all in Iran as the case I, case II, and case III in which the production capacities are increasing respectively. In the proposed methods, flare gases are converted into more valuable products, before combustion by the flare networks. The first approach involves collecting, compressing and converting the flare gas to smokeless fuel which can be used in the fuel gas system of the refineries. The other scenario includes utilizing the flare gas as a feed into liquefied petroleum gas (LPG) production unit already established in the refineries. The processes of these scenarios are simulated, and the capital investment is calculated for each procedure. The cumulative profits of the scenarios are evaluated using Net Present Value method. Furthermore, the sensitivity analysis based on total propane and butane mole fraction is carried out to make a rational comparison for LPG production approach, and the results are illustrated for different mole fractions of propane and butane. As the mole fraction of propane and butane contained in LPG differs in summer and winter seasons, the results corresponding to LPG scenario are demonstrated for each season. The results of the simulations show that cumulative profit in fuel gas production scenario and LPG production rate increase with the capacity of the refineries. Moreover, the investment return time in LPG production method experiences a decline, followed by a rising trend with an increase in C3 and C4 content. The minimum value of time return occurs at propane and butane sum concentration values of 0.7, 0.6, and 0.7 in case I, II, and III, respectively. Based on comparison of the time of investment return and cumulative profit, fuel gas production is the superior scenario for three case studies.

Keywords: Flare gas reduction, liquefied petroleum gas, fuel gas, net present value method, sensitivity analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771
325 Expansion of A Finit Size Partially Ionized Laser-Plasma

Authors: Mohamed Fawzi Mahboub, Mourad Djebli

Abstract:

The expansion mechanism of a partially ionized plasma produced by laser interaction with solid target (copper) is studied. For this purpose we use a hydrodynamical model which includes a source term combined with Saha's equation. The obtained self-similar solution in the limit of quasi-neutrality shows that the expansion, at the earlier stage, is driven by the combination of thermal pressure and electrostatic potential. They are of the same magnitude. The initial ionized fraction and the temperature are the leading parameters of the expanding profiles,

Keywords: expansion, quasi-neutral, laser-ablated plasma, self- similar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
324 Modelling the Sublimation-Desublimation Processes for Production of Ultrafine Powders

Authors: V. Golubev, A. Dosmakanbetova, A. Brener

Abstract:

The purpose of this work is to establish the theoretical foundations for calculating and designing the sublimationcondensation processes in chemical apparatuses which are intended for production of ultrafine powders of crystalline and amorphous materials with controlled fractional composition. Theoretic analysis of the primary processes of nucleation and growth kinetics of the clusters according to the degree of super-saturation and the homogeneous or heterogeneous nature of nucleation has been carried out. The engineering design procedures of desublimation processes have been offered and tested for modification of the Claus process.

Keywords: Desublimation, controlled fraction composition, nucleation, ultrafine powders.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2280
323 Characteristics of Aluminum Hybrid Composites

Authors: S. O. Adeosun, L. O. Osoba, O. O. Taiwo

Abstract:

Aluminum hybrid reinforcement technology is a response to the dynamic ever increasing service requirements of such industries as transportation, aerospace, automobile, marine, etc. It is unique in that it offers a platform of almost unending combinations of materials to produce various hybrid composites. This article reviews the studies carried out on various combinations of aluminum hybrid composite and the effects on mechanical, physical and chemical properties. It is observed that the extent of enhancement of these properties of hybrid composites is strongly dependent on the nature of the reinforcement, its hardness, particle size, volume fraction, uniformity of dispersion within the matrix and the method of hybrid production.

Keywords: Aluminum alloy, hybrid composites, properties, reinforcements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5119
322 Durability Properties of Foamed Concrete with Fiber Inclusion

Authors: Hanizam Awang, Muhammad Hafiz Ahmad

Abstract:

An experimental study was conducted on foamed concrete with synthetic and natural fibres consisting of AR-glas, polypropylene, steel, kenaf and oil palm fibre. The foamed concrete mixtures produced had a target density of 1000kg/m3 and a mix ratio of (1:1.5:0.45). The fibres were used as additives. The inclusion of fibre was maintained at a volumetric fraction of 0.25 and 0.4%. The water absorption, thermal and shrinkage were determined to study the effect of the fibre on the durability properties of foamed concrete. The results showed that AR-glass fibre has the lowest percentage value of drying shrinkage compared to others.

Keywords: Foamed concrete, Fibres, Durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4738
321 A Numerical Study on the Influence of CO2 Dilution on Combustion Characteristics of a Turbulent Diffusion Flame

Authors: Yasaman Tohidi, Rouzbeh Riazi, Shidvash Vakilipour, Masoud Mohammadi

Abstract:

The objective of the present study is to numerically investigate the effect of CO2 replacement of N2 in air stream on the flame characteristics of the CH4 turbulent diffusion flame. The Open source Field Operation and Manipulation (OpenFOAM) has been used as the computational tool. In this regard, laminar flamelet and modified k-ε models have been utilized as combustion and turbulence models, respectively. Results reveal that the presence of CO2 in air stream changes the flame shape and maximum flame temperature. Also, CO2 dilution causes an increment in CO mass fraction.

Keywords: CH4 diffusion flame, CO2 dilution, OpenFOAM, turbulent flame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771