Search results for: Hybrid Fuzzy Controller
1105 Sampled-Data Model Predictive Tracking Control for Mobile Robot
Authors: Wookyong Kwon, Sangmoon Lee
Abstract:
In this paper, a sampled-data model predictive tracking control method is presented for mobile robots which is modeled as constrained continuous-time linear parameter varying (LPV) systems. The presented sampled-data predictive controller is designed by linear matrix inequality approach. Based on the input delay approach, a controller design condition is derived by constructing a new Lyapunov function. Finally, a numerical example is given to demonstrate the effectiveness of the presented method.Keywords: Model predictive control, sampled-data control, linear parameter varying systems, LPV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12781104 Hybrid Heat Pump for Micro Heat Network
Authors: J. M. Counsell, Y. Khalid, M. J. Stewart
Abstract:
Achieving nearly zero carbon heating continues to be identified by UK government analysis as an important feature of any lowest cost pathway to reducing greenhouse gas emissions. Heat currently accounts for 48% of UK energy consumption and approximately one third of UK’s greenhouse gas emissions. Heat Networks are being promoted by UK investment policies as one means of supporting hybrid heat pump based solutions. To this effect the RISE (Renewable Integrated and Sustainable Electric) heating system project is investigating how an all-electric heating sourceshybrid configuration could play a key role in long-term decarbonisation of heat. For the purposes of this study, hybrid systems are defined as systems combining the technologies of an electric driven air source heat pump, electric powered thermal storage, a thermal vessel and micro-heat network as an integrated system. This hybrid strategy allows for the system to store up energy during periods of low electricity demand from the national grid, turning it into a dynamic supply of low cost heat which is utilized only when required. Currently a prototype of such a system is being tested in a modern house integrated with advanced controls and sensors. This paper presents the virtual performance analysis of the system and its design for a micro heat network with multiple dwelling units. The results show that the RISE system is controllable and can reduce carbon emissions whilst being competitive in running costs with a conventional gas boiler heating system.
Keywords: Gas boilers, heat pumps, hybrid heating and thermal storage, renewable integrated& sustainable electric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13131103 Analyzing Artificial Emotion in Game Characters Using Soft Computing
Authors: Musbah M. Aqel, P. K. Mahanti, Soumya Banerjee
Abstract:
This paper describes a simulation model for analyzing artificial emotion injected to design the game characters. Most of the game storyboard is interactive in nature and the virtual characters of the game are equipped with an individual personality and dynamic emotion value which is similar to real life emotion and behavior. The uncertainty in real expression, mood and behavior is also exhibited in game paradigm and this is focused in the present paper through a fuzzy logic based agent and storyboard. Subsequently, a pheromone distribution or labeling is presented mimicking the behavior of social insects.
Keywords: Artificial Emotion, Fuzzy logic, Game character, Pheromone label
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13121102 Performance of Hybrid-MIMO Receiver Scheme in Cognitive Radio Network
Authors: Tanapong Khomyat, Peerapong Uthansakul, Monthippa Uthansakul
Abstract:
In this paper, we evaluate the performance of the Hybrid-MIMO Receiver Scheme (HMRS) in Cognitive Radio network (CR-network). We investigate the efficiency of the proposed scheme which the energy level and user number of primary user are varied according to the characteristic of CR-network. HMRS can allow users to transmit either Space-Time Block Code (STBC) or Spatial-Multiplexing (SM) streams simultaneously by using Successive Interference Cancellation (SIC) and Maximum Likelihood Detection (MLD). From simulation, the results indicate that the interference level effects to the performance of HMRS. Moreover, the exact closed-form capacity of the proposed scheme is derived and compared with STBC scheme.Keywords: Hybrid-MIMO, Cognitive radio network (CRnetwork), Symbol Error Rate (SER), Successive interference cancellation (SIC), Maximum likelihood detection (MLD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16371101 Multi-Agent System for Irrigation Using Fuzzy Logic Algorithm and Open Platform Communication Data Access
Authors: T. Wanyama, B. Far
Abstract:
Automatic irrigation systems usually conveniently protect landscape investment. While conventional irrigation systems are known to be inefficient, automated ones have the potential to optimize water usage. In fact, there is a new generation of irrigation systems that are smart in the sense that they monitor the weather, soil conditions, evaporation and plant water use, and automatically adjust the irrigation schedule. In this paper, we present an agent based smart irrigation system. The agents are built using a mix of commercial off the shelf software, including MATLAB, Microsoft Excel and KEPServer Ex5 OPC server, and custom written code. The Irrigation Scheduler Agent uses fuzzy logic to integrate the information that affect the irrigation schedule. In addition, the Multi-Agent system uses Open Platform Connectivity (OPC) technology to share data. OPC technology enables the Irrigation Scheduler Agent to communicate over the Internet, making the system scalable to a municipal or regional agent based water monitoring, management, and optimization system. Finally, this paper presents simulation and pilot installation test result that show the operational effectiveness of our system.
Keywords: Community water usage, fuzzy logic, irrigation, multi-agent system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13381100 A Hybrid Genetic Algorithm for the Sequence Dependent Flow-Shop Scheduling Problem
Authors: Mohammad Mirabi
Abstract:
Flow-shop scheduling problem (FSP) deals with the scheduling of a set of jobs that visit a set of machines in the same order. The FSP is NP-hard, which means that an efficient algorithm for solving the problem to optimality is unavailable. To meet the requirements on time and to minimize the make-span performance of large permutation flow-shop scheduling problems in which there are sequence dependent setup times on each machine, this paper develops one hybrid genetic algorithms (HGA). Proposed HGA apply a modified approach to generate population of initial chromosomes and also use an improved heuristic called the iterated swap procedure to improve initial solutions. Also the author uses three genetic operators to make good new offspring. The results are compared to some recently developed heuristics and computational experimental results show that the proposed HGA performs very competitively with respect to accuracy and efficiency of solution.Keywords: Hybrid genetic algorithm, Scheduling, Permutationflow-shop, Sequence dependent
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18811099 Auto-Parking System via Intelligent Computation Intelligence
Authors: Y. J. Huang, C. H. Chang
Abstract:
In this paper, an intelligent automatic parking control method is proposed. First, the dynamical equation of the rear parking control is derived. Then a fuzzy logic control is proposed to perform the parking planning process. Further, a rear neural network is proposed for the steering control. Through the simulations and experiments, the intelligent auto-parking mode controllers have been shown to achieve the demanded goals with satisfactory control performance and to guarantee the system robustness under parametric variations and external disturbances. To improve some shortcomings and limitations in conventional parking mode control and further to reduce consumption time and prime cost.
Keywords: Auto-parking system, Fuzzy control, Neural network, Robust
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18601098 A Fuzzy TOPSIS Based Model for Safety Risk Assessment of Operational Flight Data
Authors: N. Borjalilu, P. Rabiei, A. Enjoo
Abstract:
Flight Data Monitoring (FDM) program assists an operator in aviation industries to identify, quantify, assess and address operational safety risks, in order to improve safety of flight operations. FDM is a powerful tool for an aircraft operator integrated into the operator’s Safety Management System (SMS), allowing to detect, confirm, and assess safety issues and to check the effectiveness of corrective actions, associated with human errors. This article proposes a model for safety risk assessment level of flight data in a different aspect of event focus based on fuzzy set values. It permits to evaluate the operational safety level from the point of view of flight activities. The main advantages of this method are proposed qualitative safety analysis of flight data. This research applies the opinions of the aviation experts through a number of questionnaires Related to flight data in four categories of occurrence that can take place during an accident or an incident such as: Runway Excursions (RE), Controlled Flight Into Terrain (CFIT), Mid-Air Collision (MAC), Loss of Control in Flight (LOC-I). By weighting each one (by F-TOPSIS) and applying it to the number of risks of the event, the safety risk of each related events can be obtained.Keywords: F-TOPSIS, fuzzy set, FDM, flight safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8871097 Optimization of Strategies and Models Review for Optimal Technologies - Based On Fuzzy Schemes for Green Architecture
Authors: Ghada Elshafei, Abdelazim Negm
Abstract:
Recently, the green architecture becomes a significant way to a sustainable future. Green building designs involve finding the balance between comfortable homebuilding and sustainable environment. Moreover, the utilization of the new technologies such as artificial intelligence techniques are used to complement current practices in creating greener structures to keep the built environment more sustainable. The most common objectives in green buildings should be designed to minimize the overall impact of the built environment that effect on ecosystems in general and in particularly human health and natural environment. This will lead to protecting occupant health, improving employee productivity, reducing pollution and sustaining the environmental. In green building design, multiple parameters which may be interrelated, contradicting, vague and of qualitative/quantitative nature are broaden to use. This paper presents a comprehensive critical state- ofart- review of current practices based on fuzzy and its combination techniques. Also, presented how green architecture/building can be improved using the technologies that been used for analysis to seek optimal green solutions strategies and models to assist in making the best possible decision out of different alternatives.
Keywords: Green architecture/building, technologies, optimization, strategies, fuzzy techniques and models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25231096 Operational Modal Analysis Implementation on a Hybrid Composite Plate
Authors: Z. A. C. Saffry, D. L. Majid, N. H. M. Haidzir
Abstract:
In aerospace applications, interactions of airflow with aircraft structures can result in undesirable structural deformations. This structural deformation in turn, can be predicted if the natural modes of the structure are known. This can be achieved through conventional modal testing that requires a known excitation force in order to extract these dynamic properties. This technique can be experimentally complex because of the need for artificial excitation and it is also does not represent actual operational condition. The current work presents part of research work that address the practical implementation of operational modal analysis (OMA) applied to a cantilevered hybrid composite plate employing single contactless sensing system via laser vibrometer. OMA technique extracts the modal parameters based only on the measurements of the dynamic response. The OMA results were verified with impact hammer modal testing and good agreement was obtained.Keywords: Hybrid Kevlar composite, Laser Vibrometer, modal parameters, Operational Modal Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21681095 Settlement Prediction for Tehran Subway Line-3 via FLAC3D and ANFIS
Authors: S. A. Naeini, A. Khalili
Abstract:
Nowadays, tunnels with different applications are developed, and most of them are related to subway tunnels. The excavation of shallow tunnels that pass under municipal utilities is very important, and the surface settlement control is an important factor in the design. The study sought to analyze the settlement and also to find an appropriate model in order to predict the behavior of the tunnel in Tehran subway line-3. The displacement in these sections is also determined by using numerical analyses and numerical modeling. In addition, the Adaptive Neuro-Fuzzy Inference System (ANFIS) method is utilized by Hybrid training algorithm. The database pertinent to the optimum network was obtained from 46 subway tunnels in Iran and Turkey which have been constructed by the new Austrian tunneling method (NATM) with similar parameters based on type of their soil. The surface settlement was measured, and the acquired results were compared to the predicted values. The results disclosed that computing intelligence is a good substitute for numerical modeling.
Keywords: Settlement, subway line, FLAC3D, ANFIS method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10971094 Application of Adaptive Neuro-Fuzzy Inference Systems Technique for Modeling of Postweld Heat Treatment Process of Pressure Vessel Steel ASTM A516 Grade 70
Authors: Omar Al Denali, Abdelaziz Badi
Abstract:
The ASTM A516 Grade 70 steel is a suitable material used for the fabrication of boiler pressure vessels working in moderate and lower temperature services, and it has good weldability and excellent notch toughness. The post-weld heat treatment (PWHT) or stress-relieving heat treatment has significant effects on avoiding the martensite transformation and resulting in high hardness, which can lead to cracking in the heat-affected zone (HAZ). An adaptive neuro-fuzzy inference system (ANFIS) was implemented to predict the material tensile strength of PWHT experiments. The ANFIS models presented excellent predictions, and the comparison was carried out based on the mean absolute percentage error between the predicted values and the experimental values. The ANFIS model gave a Mean Absolute Percentage Error of 0.556%, which confirms the high accuracy of the model.
Keywords: Prediction, post-weld heat treatment, adaptive neuro-fuzzy inference system, ANFIS, mean absolute percentage error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3991093 Trajectory Tracking of a Redundant Hybrid Manipulator Using a Switching Control Method
Authors: Atilla Bayram
Abstract:
This paper presents the trajectory tracking control of a spatial redundant hybrid manipulator. This manipulator consists of two parallel manipulators which are a variable geometry truss (VGT) module. In fact, each VGT module with 3-degress of freedom (DOF) is a planar parallel manipulator and their operational planes of these VGT modules are arranged to be orthogonal to each other. Also, the manipulator contains a twist motion part attached to the top of the second VGT module to supply the missing orientation of the endeffector. These three modules constitute totally 7-DOF hybrid (parallel-parallel) redundant spatial manipulator. The forward kinematics equations of this manipulator are obtained, then, according to these equations, the inverse kinematics is solved based on an optimization with the joint limit avoidance. The dynamic equations are formed by using virtual work method. In order to test the performance of the redundant manipulator and the controllers presented, two different desired trajectories are followed by using the computed force control method and a switching control method. The switching control method is combined with the computed force control method and genetic algorithm. In the switching control method, the genetic algorithm is only used for fine tuning in the compensation of the trajectory tracking errors.Keywords: Computed force control method, genetic algorithm, hybrid manipulator, inverse kinematics of redundant manipulators, variable geometry truss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15731092 Comparison of ANFIS and ANN for Estimation of Biochemical Oxygen Demand Parameter in Surface Water
Authors: S. Areerachakul
Abstract:
Nowadays, several techniques such as; Fuzzy Inference System (FIS) and Neural Network (NN) are employed for developing of the predictive models to estimate parameters of water quality. The main objective of this study is to compare between the predictive ability of the Adaptive Neuro-Fuzzy Inference System (ANFIS) model and Artificial Neural Network (ANN) model to estimate the Biochemical Oxygen Demand (BOD) on data from 11 sampling sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage, Bangkok Metropolitan Administration, during 2004-2011. The five parameters of water quality namely Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), Ammonia Nitrogen (NH3N), Nitrate Nitrogen (NO3N), and Total Coliform bacteria (T-coliform) are used as the input of the models. These water quality indices affect the biochemical oxygen demand. The experimental results indicate that the ANN model provides a higher correlation coefficient (R=0.73) and a lower root mean square error (RMSE=4.53) than the corresponding ANFIS model.Keywords: adaptive neuro-fuzzy inference system, artificial neural network, biochemical oxygen demand, surface water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25271091 Structural Parsing of Natural Language Text in Tamil Using Phrase Structure Hybrid Language Model
Authors: Selvam M, Natarajan. A M, Thangarajan R
Abstract:
Parsing is important in Linguistics and Natural Language Processing to understand the syntax and semantics of a natural language grammar. Parsing natural language text is challenging because of the problems like ambiguity and inefficiency. Also the interpretation of natural language text depends on context based techniques. A probabilistic component is essential to resolve ambiguity in both syntax and semantics thereby increasing accuracy and efficiency of the parser. Tamil language has some inherent features which are more challenging. In order to obtain the solutions, lexicalized and statistical approach is to be applied in the parsing with the aid of a language model. Statistical models mainly focus on semantics of the language which are suitable for large vocabulary tasks where as structural methods focus on syntax which models small vocabulary tasks. A statistical language model based on Trigram for Tamil language with medium vocabulary of 5000 words has been built. Though statistical parsing gives better performance through tri-gram probabilities and large vocabulary size, it has some disadvantages like focus on semantics rather than syntax, lack of support in free ordering of words and long term relationship. To overcome the disadvantages a structural component is to be incorporated in statistical language models which leads to the implementation of hybrid language models. This paper has attempted to build phrase structured hybrid language model which resolves above mentioned disadvantages. In the development of hybrid language model, new part of speech tag set for Tamil language has been developed with more than 500 tags which have the wider coverage. A phrase structured Treebank has been developed with 326 Tamil sentences which covers more than 5000 words. A hybrid language model has been trained with the phrase structured Treebank using immediate head parsing technique. Lexicalized and statistical parser which employs this hybrid language model and immediate head parsing technique gives better results than pure grammar and trigram based model.Keywords: Hybrid Language Model, Immediate Head Parsing, Lexicalized and Statistical Parsing, Natural Language Processing, Parts of Speech, Probabilistic Context Free Grammar, Tamil Language, Tree Bank.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36431090 A Hybrid Recommendation System Based On Association Rules
Authors: Ahmed Mohammed K. Alsalama
Abstract:
Recommendation systems are widely used in e-commerce applications. The engine of a current recommendation system recommends items to a particular user based on user preferences and previous high ratings. Various recommendation schemes such as collaborative filtering and content-based approaches are used to build a recommendation system. Most of current recommendation systems were developed to fit a certain domain such as books, articles, and movies. We propose1 a hybrid framework recommendation system to be applied on two dimensional spaces (User × Item) with a large number of Users and a small number of Items. Moreover, our proposed framework makes use of both favorite and non-favorite items of a particular user. The proposed framework is built upon the integration of association rules mining and the content-based approach. The results of experiments show that our proposed framework can provide accurate recommendations to users.
Keywords: Data Mining, Association Rules, Recommendation Systems, Hybrid Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39891089 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis
Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel
Abstract:
Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.
Keywords: Artificial Immune System, Breast Cancer Diagnosis, Euclidean Function, Gaussian Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21221088 Power System Stability Improvement by Simultaneous Tuning of PSS and SVC Based Damping Controllers Employing Differential Evolution Algorithm
Authors: Sangram Keshori Mohapatra, Sidhartha Panda, Prasant Kumar Satpathy
Abstract:
Power-system stability improvement by simultaneous tuning of power system stabilizer (PSS) and a Static Var Compensator (SVC) based damping controller is thoroughly investigated in this paper. Both local and remote signals with associated time delays are considered in the present study. The design problem of the proposed controller is formulated as an optimization problem, and differential evolution (DE) algorithm is employed to search for the optimal controller parameters. The performances of the proposed controllers are evaluated under different disturbances for both single-machine infinite bus power system and multi-machine power system. The performance of the proposed controllers with variations in the signal transmission delays has also been investigated. The proposed stabilizers are tested on a weakly connected power system subjected to different disturbances. Nonlinear simulation results are presented to show the effectiveness and robustness of the proposed control schemes over a wide range of loading conditions and disturbances. Further, the proposed design approach is found to be robust and improves stability effectively even under small disturbance conditions.
Keywords: Differential Evolution Algorithm, Power System Stability, Power System Stabilizer, Static Var Compensator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23391087 Nonlinear Control of a Continuous Bioreactor Based on Cell Population Model
Authors: Mahdi Sharifian, Mohammad Ali Fanaei
Abstract:
Saccharomyces cerevisiae (baker-s yeast) can exhibit sustained oscillations during the operation in a continuous bioreactor that adversely affects its stability and productivity. Because of heterogeneous nature of cell populations, the cell population balance models can be used to capture the dynamic behavior of such cultures. In this paper an unstructured, segregated model is used which is based on population balance equation(PBE) and then in order to simulation, the 4th order Rung-Kutta is used for time dimension and three methods, finite difference, orthogonal collocation on finite elements and Galerkin finite element are used for discretization of the cell mass domain. The results indicate that the orthogonal collocation on finite element not only is able to predict the oscillating behavior of the cell culture but also needs much little time for calculations. Therefore this method is preferred in comparison with other methods. In the next step two controllers, a globally linearizing control (GLC) and a conventional proportional-integral (PI) controller are designed for controlling the total cell mass per unit volume, and performances of these controllers are compared through simulation. The results show that although the PI controller has simpler structure, the GLC has better performance.Keywords: Bioreactor, cell population balance, finite difference, orthogonal collocation on finite elements, Galerkin finite element, feedback linearization, PI controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18831086 Variable Guard Channels for Efficient Traffic Management
Authors: G. M. Mir, N. A. Shah, Moinuddin
Abstract:
Guard channels improve the probability of successful handoffs by reserving a number of channels exclusively for handoffs. This concept has the risk of underutilization of radio spectrum due to the fact that fewer channels are granted to originating calls even if these guard channels are not always used, when originating calls are starving for the want of channels. The penalty is the reduction of total carried traffic. The optimum number of guard channels can help reduce this problem. This paper presents fuzzy logic based guard channel scheme wherein guard channels are reorganized on the basis of traffic density, so that guard channels are provided on need basis. This will help in incorporating more originating calls and hence high throughput of the radio spectrumKeywords: Free channels, fuzzy logic, guard channels, Handoff
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13101085 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems
Authors: P.-W. Tsai, W.-L. Hong, C.-W. Chen, C.-Y. Chen
Abstract:
In this paper, we present a neural-network (NN) based approach to represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.
Keywords: Lyapunov Stability, Parallel Particle Swarm Optimization, Linear Differential Inclusion, Artificial Intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18651084 Hybrid Methods for Optimisation of Weights in Spatial Multi-Criteria Evaluation Decision for Fire Risk and Hazard
Authors: I. Yakubu, D. Mireku-Gyimah, D. Asafo-Adjei
Abstract:
The challenge for everyone involved in preserving the ecosystem is to find creative ways to protect and restore the remaining ecosystems while accommodating and enhancing the country social and economic well-being. Frequent fires of anthropogenic origin have been affecting the ecosystems in many countries adversely. Hence adopting ways of decision making such as Multicriteria Decision Making (MCDM) is appropriate since it will enhance the evaluation and analysis of fire risk and hazard of the ecosystem. In this paper, fire risk and hazard data from the West Gonja area of Ghana were used in some of the methods (Analytical Hierarchy Process, Compromise Programming, and Grey Relational Analysis (GRA) for MCDM evaluation and analysis to determine the optimal weight method for fire risk and hazard. Ranking of the land cover types was carried out using; Fire Hazard, Fire Fighting Capacity and Response Risk Criteria. Pairwise comparison under Analytic Hierarchy Process (AHP) was used to determine the weight of the various criteria. Weights for sub-criteria were also obtained by the pairwise comparison method. The results were optimised using GRA and Compromise Programming (CP). The results from each method, hybrid GRA and CP, were compared and it was established that all methods were satisfactory in terms of optimisation of weight. The most optimal method for spatial multicriteria evaluation was the hybrid GRA method. Thus, a hybrid AHP and GRA method is more effective method for ranking alternatives in MCDM than the hybrid AHP and CP method.
Keywords: Compromise programming, grey relational analysis, spatial multi-criteria, weight optimisation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6561083 An Efficient Cache Replacement Strategy for the Hybrid Cache Consistency Approach
Authors: Aline Zeitunlian, Ramzi A. Haraty
Abstract:
Caching was suggested as a solution for reducing bandwidth utilization and minimizing query latency in mobile environments. Over the years, different caching approaches have been proposed, some relying on the server to broadcast reports periodically informing of the updated data while others allowed the clients to request for the data whenever needed. Until recently a hybrid cache consistency scheme Scalable Asynchronous Cache Consistency Scheme SACCS was proposed, which combined the two different approaches benefits- and is proved to be more efficient and scalable. Nevertheless, caching has its limitations too, due to the limited cache size and the limited bandwidth, which makes the implementation of cache replacement strategy an important aspect for improving the cache consistency algorithms. In this thesis, we proposed a new cache replacement strategy, the Least Unified Value strategy (LUV) to replace the Least Recently Used (LRU) that SACCS was based on. This paper studies the advantages and the drawbacks of the new proposed strategy, comparing it with different categories of cache replacement strategies.
Keywords: Cache consistency, hybrid algorithm, and mobileenvironments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22021082 Multiple Targets Classification and Fuzzy Logic Decision Fusion in Wireless Sensor Networks
Authors: Ahmad Aljaafreh
Abstract:
This paper proposes a hierarchical hidden Markov model (HHMM) to model the detection of M vehicles in a wireless sensor network (WSN). The HHMM model contains an extra level of hidden Markov model to model the temporal transitions of each state of the first HMM. By modeling the temporal transitions, only those hypothesis with nonzero transition probabilities needs to be tested. Thus, this method efficiently reduces the computation load, which is preferable in WSN applications.This paper integrates several techniques to optimize the detection performance. The output of the states of the first HMM is modeled as Gaussian Mixture Model (GMM), where the number of states and the number of Gaussians are experimentally determined, while the other parameters are estimated using Expectation Maximization (EM). HHMM is used to model the sequence of the local decisions which are based on multiple hypothesis testing with maximum likelihood approach. The states in the HHMM represent various combinations of vehicles of different types. Due to the statistical advantages of multisensor data fusion, we propose a heuristic based on fuzzy weighted majority voting to enhance cooperative classification of moving vehicles within a region that is monitored by a wireless sensor network. A fuzzy inference system weighs each local decision based on the signal to noise ratio of the acoustic signal for target detection and the signal to noise ratio of the radio signal for sensor communication. The spatial correlation among the observations of neighboring sensor nodes is efficiently utilized as well as the temporal correlation. Simulation results demonstrate the efficiency of this scheme.
Keywords: Classification, decision fusion, fuzzy logic, hidden Markov model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62491081 Fuzzy Modeling for Micro EDM Parameters Optimization in Drilling of Biomedical Implants Ti-6Al-4V Alloy for Higher Machining Performance
Authors: Ahmed A.D. Sarhan, Lim Siew Fen, Mum Wai Yip, M. Sayuti
Abstract:
Ti6Al4V alloy is highly used in the automotive and aerospace industry due to its good machining characteristics. Micro EDM drilling is commonly used to drill micro hole on extremely hard material with very high depth to diameter ratio. In this study, the parameters of micro-electrical discharge machining (EDM) in drilling of Ti6Al4V alloy is optimized for higher machining accuracy with less hole-dilation and hole taper ratio. The micro-EDM machining parameters includes, peak current and pulse on time. Fuzzy analysis was developed to evaluate the machining accuracy. The analysis shows that hole-dilation and hole-taper ratio are increased with the increasing of peak current and pulse on time. However, the surface quality deteriorates as the peak current and pulse on time increase. The combination that gives the optimum result for hole dilation is medium peak current and short pulse on time. Meanwhile, the optimum result for hole taper ratio is low peak current and short pulse on time.
Keywords: Micro EDM, Ti-6Al-4V alloy, fuzzy logic based analysis, optimization, machining accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27421080 Variation of CONWIP Systems
Authors: Joshua Prakash, Chin Jeng Feng
Abstract:
The paper describes the workings for four models of CONWIP systems used till date; the basic CONWIP system, the hybrid CONWIP system, the multi-product CONWIP system, and the parallel CONWIP system. The final novel model is introduced in this paper in a general form. These models may be adopted for analysis for both simulation studies and implementation on the shop floor. For each model, input parameters of interest are highlighted and their impacts on several system performance measures are addressed.Keywords: CONWIP, hybrid CONWIP, mixed CONWIP, multi-product CONWIP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23271079 Hybrid Algorithm for Frequency Channel Selection in Wi-Fi Networks
Authors: Cesar Hernández, Diego Giral, Ingrid Páez
Abstract:
This article proposes a hybrid algorithm for spectrum allocation in cognitive radio networks based on the algorithms Analytical Hierarchical Process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to improve the performance of the spectrum mobility of secondary users in cognitive radio networks. To calculate the level of performance of the proposed algorithm a comparative analysis between the proposed AHP-TOPSIS, Grey Relational Analysis (GRA) and Multiplicative Exponent Weighting (MEW) algorithm is performed. Four evaluation metrics are used. These metrics are accumulative average of failed handoffs, accumulative average of handoffs performed, accumulative average of transmission bandwidth, and accumulative average of the transmission delay. The results of the comparison show that AHP-TOPSIS Algorithm provides 2.4 times better performance compared to a GRA Algorithm and, 1.5 times better than the MEW Algorithm.Keywords: Cognitive radio, decision making, hybrid algorithm, spectrum handoff, wireless networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21611078 Self-Tuning Robot Control Based on Subspace Identification
Authors: Mathias Marquardt, Peter Dünow, Sandra Baßler
Abstract:
The paper describes the use of subspace based identification methods for auto tuning of a state space control system. The plant is an unstable but self balancing transport robot. Because of the unstable character of the process it has to be identified from closed loop input-output data. Based on the identified model a state space controller combined with an observer is calculated. The subspace identification algorithm and the controller design procedure is combined to a auto tuning method. The capability of the approach was verified in a simulation experiments under different process conditions.Keywords: Auto tuning, balanced robot, closed loop identification, subspace identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11321077 Adaptive Integral Backstepping Motion Control for Inverted Pendulum
Authors: Ö. Tolga Altınöz
Abstract:
The adaptive backstepping controller for inverted pendulum is designed by using the general motion control model. Backstepping is a novel nonlinear control technique based on the Lyapunov design approach, used when higher derivatives of parameter estimation appear. For easy parameter adaptation, the mathematical model of the inverted pendulum converted into the motion control model. This conversion is performed by taking functions of unknown parameters and dynamics of the system. By using motion control model equations, inverted pendulum is simulated without any information about not only parameters but also measurable dynamics. Also these results are compare with the adaptive backstepping controller which extended with integral action that given from [1].
Keywords: Adaptive backstepping, inverted pendulum, nonlinear adaptive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34921076 Adaptive Impedance Control for Unknown Non-Flat Environment
Authors: Norsinnira Zainul Azlan, Hiroshi Yamaura
Abstract:
This paper presents a new adaptive impedance control strategy, based on Function Approximation Technique (FAT) to compensate for unknown non-flat environment shape or time-varying environment location. The target impedance in the force controllable direction is modified by incorporating adaptive compensators and the uncertainties are represented by FAT, allowing the update law to be derived easily. The force error feedback is utilized in the estimation and the accurate knowledge of the environment parameters are not required by the algorithm. It is shown mathematically that the stability of the controller is guaranteed based on Lyapunov theory. Simulation results presented to demonstrate the validity of the proposed controller.Keywords: Adaptive impedance control, Function Approximation Technique (FAT), impedance control, unknown environment position.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582