
An Efficient Cache Replacement Strategy for the
Hybrid Cache Consistency Approach

Aline Zeitunlian and Ramzi A. Haraty

 Abstract—Caching was suggested as a solution for reducing
bandwidth utilization and minimizing query latency in mobile
environments. Over the years, different caching approaches have
been proposed, some relying on the server to broadcast reports
periodically informing of the updated data while others allowed the
clients to request for the data whenever needed. Until recently a
hybrid cache consistency scheme Scalable Asynchronous Cache
Consistency Scheme SACCS was proposed, which combined the two
different approaches benefits’ and is proved to be more efficient and
scalable. Nevertheless, caching has its limitations too, due to the
limited cache size and the limited bandwidth, which makes the
implementation of cache replacement strategy an important aspect for
improving the cache consistency algorithms. In this thesis, we
proposed a new cache replacement strategy, the Least Unified Value
strategy (LUV) to replace the Least Recently Used (LRU) that
SACCS was based on. This paper studies the advantages and the
drawbacks of the new proposed strategy, comparing it with different
categories of cache replacement strategies.

 Keywords—Cache consistency, hybrid algorithm, and mobile
environments

I. INTRODUCTION

N mobile computing environments, where low powered devices
are used to access and query databases over relatively low-
bandwidth wireless channels, caching frequently accessed data

objects will reduce bandwidth usage and delays perceived by users.
 In mobile environments, caching is more challenging due to the
mobility of the users and the disconnected modes, which arise due to
the battery power saving measures or the unpredictable disconnection
of wireless networks. However, having a copy of the data in the
cache is not sufficient; the cache should also provide the users a fresh
data on each hit.
 Broadcasting was assumed to be an effective method for data
dissemination, which consumes little bandwidth. Several methods for
data distribution had been suggested to guarantee the cache
consistency in mobile environments. Some used stateless servers to
maintain the mobile environment [1][2][3], others stateful servers [4].
Combining each approaches positive features, the Scalable
Asynchronous Cache Consistency Scheme (SACCS) maintenance
scheme was proposed. It was based on the Least-Recently-Used
(LRU) cache replacement strategy [5][6].

 Aline Zeitunlian is with the Department of Computer Science and
Mathematics at the Lebanese American University, P.O. Box 13-5053
Chouran, Beirut, Lebanon 1102 2801. Email: aline.zeitunlian@lau.edu.lb
 Ramzi A. Haraty is with the Department of Computer Science and
Mathematics at the Lebanese American University, P.O. Box 13-5053
Chouran, Beirut, Lebanon 1102 2801. Phone: 961 1 867620, Fax: 961 1
867098, Email: rharaty@lau.edu.lb.

 To support the cache consistency maintenance algorithms, it is
important to have an efficient cache replacement policy, for after all
mobile units have limited disk storage and not all data objects can be
cached. In this work, we propose the least-unified value algorithm
(LUV) [7] to be used with the SACCS cache consistency
maintenance scheme and compare it with the other four cache
replacement strategy categories. LUV is a cache replacement
technique that associates a value to each object in the cache and when
needed replaces it with the object with the smallest value. This policy
considers the reference potential and the retrieval cost of the data
object per unit size.
 This work is organized into six sections. Section 2 provides a
literature review of the approaches proposed for cache consistency,
invalidation strategies, and replacement policies of mobile
environments. Section 3 describes the SACCS maintenance
approach. In section 4 we present SACCS and LUV and the other
cache replacement techniques. Section 5 presents the experimental
results of the LUV cache strategy with SACCS as compared to the
four different class strategies. Finally, in section 6 we provide a
conclusion and discuss the future work.

II. LITERATURE REVIEW
 With the development of wireless communications a new model of
distributed computing was introduced. It is more challenging and
difficult than the other client/server based environments, since users
can connect from different access points and may stay connected
while on the move, at the same time its performance relies on the
wireless bandwidth communication and the battery power.
 A mobile unit (MU) communicates via an MSS (Mobile Support
Stations) over a wireless channel. The wireless channel has upload
channel and download channel. MUs use the upload channel to
submit queries to the server, while the MSSs disseminate information
or respond to the MU via the download channel. Each MSS is
responsible for the MUs within a given geographical or logical area,
known as a cell. Therefore, when an MU leaves a cell serviced by an
MSS, a handoff protocol transfers the responsibility to the MSS of
the new cell. This is shown in Figure 1.

Fig. 1 Wireless data communication system architecture [6].

 A mobile unit may move through the cells and may disconnect
from the network. After an unknown time of disconnection an MU
can reconnect to a different MSS.

I

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:3, 2010

412International Scholarly and Scientific Research & Innovation 4(3) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

3,
 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

21
29

.p
df

 For delivering data there exist two different systems; push-based
and pull-based [8]. In push-based systems, the server decides to send
information either periodically or sporadically to the clients without
waiting for their requests. In pull-based systems, clients send
messages to the server to request for data. Broadcasting minimizes
the number of uplink requests. By broadcasting invalidation reports
(IR)s clients are notified about the cached items changes’. Yet a
client may miss IRs when disconnected during broadcast and this has
its drawbacks.
 To maintain cache consistency three different types of algorithms
were suggested. In stateless approaches, an MSS has no knowledge
of MUs cache contents. The MSS periodically sends invalidation
reports to the MUs. While at an MU, a data object request cannot be
served until the next IR. The advantage for stateless approaches is
that they are easy to manage. Their drawbacks are: they are not
scalable to large database; their access latency on average is always
longer than half of the broadcast period and finally at reconnection
after a long disconnection all cache entries are deleted, even the valid
data objects. The stateful approaches were suggested by Barbara and
Imielinski [1][3][9][10][11][12][13][14]. In stateful approaches, an
MSS keeps the state of each object for every MU cache and
broadcasts their IRs only. Kahol et al. proposed a scheme that
minimizes the overhead for MUs to validate their caches when
reconnected, using stateless servers and asynchronous invalidation
messages [4].
 As for the hybrid approach Scalable Asynchronous Cache
Consistency Scheme (SACCS), the MSS identifies only the data
objects that might be valid in MU caches. It does not broadcast IRs
periodically. The uncertain and ID-only states of an MU allow
handling of sleep-wakeup patterns and mobility. All these improve
the broadcast channel efficiency [5][6][15].
 A cache replacement strategy decides which object to evict from
the cache when no space is available to store additional objects. It is
based on several factors: recency, frequency, cost for fetching and
size. To determine the effectiveness of a replacement strategy, certain
metrics are measured such as the cache hit ratio, byte hit ratio,
delays. Xu and Hu’s proposed the (Min_SAUD) [16], Yin et al.
presented a generalized target-driven cache replacement policy for
mobile environments [17]. [15][18][19] suggested cache consistency
algorithms that integrated cache replacement and prefetching
algorithms to efficiently maintain the read-only transactions data
requirements for mobile hybrid data delivery environments. The first
presented the Greedy Dual Utility cache replacement policy and the
second Multi-version integrated caching and prefetching policy. A
different replacement strategy than the conventional ones was
suggested by Santhosh et al. which was based on semantic [20].
 Web caching, like mobile data caching, aims to reduce network
traffic, server load, access delays and is again impacted by the
replacement strategy. Rabinovich and Spatscheck presented an
overview of web caching and replications [21]. The first
classification of replacement strategies for web caching was given by
Aggarwal et al. who proposed three categories: direct extensions of
traditional strategies, key-based and function-based [22]. Later,
Podlipnig and Boszormenyi classified them as follows: recency-
based, frequency-based, recency/frequency-based, function-based
and randomized strategies [23]. Certainly, each class of strategies has
its own advantages and disadvantages.

III. SCALABLE ASYNCHORONOUS CACHE CONSISTENCY
SCHEME (SACCS)

 In SACCS, the MSS is only responsible for identifying the data
objects of the database that might be valid in the MU caches. To save
downlink bandwidth usage, SACCS also reduces the periodic IR
messages broadcasted. In addition to these two features, SACCS
added two different states for data objects in MU caches, they are

uncertain and ID-only, that allow handling of random sleep-wakeup
patterns and mobility.
 In SACCS, they used the LRU replacement algorithm [5][6] and it
was for systems with read-only transactions.

A. The SACCS Cache Management
 In the server, each data object has a flag bit, which changes when
the data is retrieved to indicate that a valid copy is available in the
cache. Consequently, when this data object is updated, the server
immediately broadcasts its IR and resets the flag bit to indicate that
the cached data object is not valid anymore. Therefore, until the flag
is reset no update requires broadcast of IR.
 At an IR broadcast, an MU is either in an awake or in a sleep state.
If the MU is awake then the state is changed from valid to ID-only. If
the MU is disconnected, then the IRs are ignored and data are
unaffected. However, when an MU wakes up after a disconnection,
all valid state cached data objects are changed to uncertain state.
 In SACCS using the LRU, every time a data is cached or is already
found in the cache, it is moved to the head of the cache list. In case
the cache is full and a new data needs to be cached, to accommodate
it and make enough space data entries are deleted from the tail of the
cache list. In case the cache needs to be refreshed, to validate the data
of the cache, all data with uncertain or ID-only state are allocated
their original places and if there is not enough space, then data entries
found at the tail are removed.

IV. SACCS AND THE CACHE REPLACEMENT POLICIES
 In general, cache replacement strategies affect hit rates; however,
they are not the limiting factor for caching. Each strategy has certain
targets and defines its metric.
 While SACCS is based on (LRU), in this work; we examine the
SACCS using a value-based function, the LUV, which emphasizes
the reference information of the object as well as considering the
fetch cost of the object and its size.

A. A Value-based Function: Least-Unified Value
 The LUV replacement algorithm is based on time of all past
references and the number of references [7]. It uses the complete
reference history. The only weakness of this strategy is in how to
consider the parameter tuning. The LUV replacement strategy is
being a value-based strategy, calculates for every data object i a value
V(i), defined by the following formula
 V(i) = W(i).p(i)
where W(i) is the relative cost to fetch the object from its original
server, calculated as the ratio of fetching cost of object i from the
server (c(i)) and its size (s(i)).
 W(i) = c(i)/s(i)
while p(i) is the “probability” that object i is referenced in the future
and is calculated as

 p(i) = ∑
=

−
fi

k
kc tt

1
)(

tc being the current time and tk the oldest request time in a window of
k request times. To give more weight to more recent references F(x)
should be a decreasing factor. A possibility for the function is F(x) =

xλ

2
1

 (0 ≤ λ ≤ 1). Note that λ converging to 1 reduces it to LRU

where only the last reference time is considered, while λ converging
to 0 reduces it to a weighted LFU, counting the number of previous
references.

B. The New Algorithm for SACCS and its Description
 The algorithm first checks if the data is available in the cache and
in valid state then the time of the last reference is updated and the

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:3, 2010

413International Scholarly and Scientific Research & Innovation 4(3) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

3,
 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

21
29

.p
df

new value calculated. Adding this new value to the heap, it restores
the heap property. If the data is available in cache with uncertain
state, it calculates the new value at the new referenced time, and then
sends a message to check the validity of the data. In case the data is
in ID-only state or not available in the cache it fetches the data and its
value from the server, adds the time of the last reference and
calculates the new value, inserting it to the heap, it adjusts the heap.
If there is not enough space to download the data then it finds the
data object with the lowest value and replaces it with the new data
object, adds the value of the newly introduced data object and
restores the heap. The algorithm for the new proposed cache
replacement strategy is shown in Figure 2.

Fig. 2 New SACCS Algorithm

 LUV uses the heap structure to maintain the ordering of data
according to their LUV values. The root of the heap has the lowest
value. Therefore, the object found at the root of the heap is the object
to be deleted. This is repeated until we get enough space for the
incoming data object. Every deletion and insertion operation has a
complexity of O(log2N). For every object’s updated value, the heap is
adjusted. The time complexity for every adjustment operation is
O(log2N).

C. The Other Cache Replacement Strategies
 To examine the efficiency of the proposed strategy LUV, we
compared it with four different cache replacement algorithms, each
belonging to a different classification of cache replacement strategies.

A Recency-Based Strategy: Least Recently Used (LRU)
 This class’ strategies in general replace objects that were used least
recently. Their implementation is fairly easy. The LRU was already
used for SACCS.

A Frequency-Based Strategy: Least Frequently Used (LFU)
 This class’ strategies replace data objects that were used least
frequently. They are popular and easy to be implemented. In the LFU
cache replacement policy, the frequency of references for each data
entry in the mobile user cache list is counted. The tail of the list
contains the data with the minimum number of accesses.

A Recency/Frequency Based Strategy: Least Recently/Frequently
Used (LRFU)
 The LRFU policy combines the two policies (LRU and LFU) and
results in a policy that is better than both. To each data object it
assigns a value. Every time the data object is referenced a weighing
function F(x) is calculated which considers the data objects reference
time span from the past to the current [24].

A Randomized Strategy: Random
 It is different from the previous strategies, a nondeterministic
approach. The random strategy uses randomized decisions to remove
and replace an object from the cache [23]. It does not need special
data structure for inserting or deleting object and is simple to
implement. Its disadvantage is that it cannot be evaluated and
different simulation runs will give different results.

V. PERFORMANCE EVALUATION
A. Environment
 We tested the performance of our model by means of a simulated
environment in C++. For our simulation we considered a single cell
environment with 100 MUs as clients and each MU with identical
cache size 300. We had also considered 1000 data objects of five
types of access of random object sizes (bytes) and variable average
update interval (sec).
 The sleep wakeup process is modeled as two-state Markov chain
with MUs alternating between sleep and awake states. Each MU has
a sleep-wakeup period randomly picked from the set of values (500,
1000, 1500, 2000, 2500) sec. The sleep ratio is picked from (0.1, 0.3,
0.5, 0.7, 0.9) and the request arrival rate from (1/10, 1/60, 1/110,
1/160, 1/210). When an MU is in the sleep state, all requests are
ignored. The query delay is counted as 0, when a requested data
object is available at the MU. Otherwise, the query delay is counted
as the time interval between the query response and query initiation.
An uplink is counted when a query is retrieved from the original
station through an uplink channel. A zipf-like distribution for MU
access pattern is used in the simulation with z equal to 1. The update
process for a data object and the arrival requests follow a Poisson
distribution. The channel is used for downlink and uplink data
transmission with a bandwidth 1250 bps. Uplink message size is
assumed 64 bytes and downlink message size as 64 bytes. As for the
function parameters used for the LUV, we considered λ to be equal to
0.5 and considered variable and random fetching cost and size ratios.

B. Simulation Results
 The performance of SACCs based on LUV value-based cache
replacement policy is evaluated and compared to SACCS based on
LRU, LFU, LRFU and Random representative cache replacement
policies of the remaining other four categories of strategies.

 When an MU receives a query, if the queried data object is valid in
the cache, a cache hit is counted, and no uplink is needed for the
query. The higher the hit ratio is the fewer the uplink per query.

Fig. 3 Total Hit for Simulation

dx = data object,
Mx = message for the data object,
dy = data object that will be replaced, LUV= value calculated
for the data object,
L is the minimum value.
Case 1: dx is in cache and valid

then calculate the LUV value
return dx to the application.

Case 2: dx is in cache and uncertain
then calculate the new LUV value

send uncertain message to the server.
Case 3: dx is not cached or ID-only
 Send cache missing message to the server.
Wait for message Mx to appear at downlink channel
If Mx is confirmation then set the state of dx as valid

Return dx to the application,
If Mx is the data item dx then

While there is not enough space for dx
Find min value L = Minimum LUV value for data
object y belonging to the cache
Evict the dy such that LUV Value of y = L;
Keep value of the evicted data object
End while

Bring Mx into cache
Calculate its LUV value
Return Mx to the application.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:3, 2010

414International Scholarly and Scientific Research & Innovation 4(3) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

3,
 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

21
29

.p
df

TABLE I TOTAL QUERY, TOTAL HIT, TOTAL MISS

TOTAL
QUERY

TOTAL
HIT

TOTAL
MISS

LRU 16751 5086 11666
LFU 16688 4172 12519
LRFU 16695 4491 12206
LUV 16726 5126 11599
Random 16567 4695 11871

 As it is shown in Table 1, the total hit for LUV is the highest.
Figure 4. shows that the LUV cache replacement policy improves
performance since the data requested is available in the cache, it will
reduce the IR message broadcasts, avoiding the unnecessary traffic
and retaining the valid data objects of the MU.

Fig. 4 Number of Hits vs. Time

Fig. 5 Number of Misses vs. Time

 The results of the number of misses and number of hits (Figure 4.
and Figure 5) and the miss and hit ratios (Figure 6. and Figure 7) are
depicted for the five cache replacement strategies, over eight
simulation time units with an interval of 50000 of simulation time.
The miss (hit) ratio is the ratio of the number of unfound (found) data
items in the cache over the number of all requested data. The worst

hit ratios performance is for LFU, while LRU and LUV have the best
hit ratio performances interchangeably. However, on an average the
LUV outperforms the LRU.

Fig. 6 Miss Ratio vs. Time

Fig. 7 Hit Ratio vs. Time

 A delay is the period of time between the time a request is issued
and the time the result is received by the mobile application user. The
average access delay is an important measurement of system
performance. A shorter delay implies better performance. The total
delay results of our simulation are presented in Figure 8. and the
average delay results in Figure 9.

 It is obvious that the tradeoff between energy cost and access
latency is a hard one, we can decrease the uplink and download
messages or improve the access latency to decrease the energy cost.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:3, 2010

415International Scholarly and Scientific Research & Innovation 4(3) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

3,
 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

21
29

.p
df

Fig. 8 Total Delay vs. Time

Fig. 9 Average Delay Vs. Time

 In Figure 10. based on the Table 2. results show that LUV results in
less bytes/query, outperforming the other four cache replacement
strategies. This is due to the fact that LUV not only considers the
most recent data information but also future references according to
their fetch cost. The decision of evicting data objects with low
fetching costs is a smart way to save power consumption at a later
stage.

Fig. 10 Bytes per Query

TABLE II BYTES PER QUERY
 BYTES/QUERY
LRU 793.541
LFU 978.204
LRFU 920.849
LUV 791.037
Random 859.57

 In Figure 11. based on the results in the Table 3. LUV has the
lowest ratio for data download/query. This means the value-based
cache replacement strategy LUV is quite efficient and its selection of
the victims set had saved unnecessary downloads. Since the
algorithm favors the data objects that have low fetch cost values, it
has saved fetching costs, which implies that it is less power
consuming.

Fig. 11 Data Download per Query

TABLE III DATA DOWNLOAD PER QUERY

DATA

DOWNLOAD/QUERY
LRU 0.541938
LFU 0.647951
LRFU 0.609404
LUV 0.534617
Random 0.585622

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:3, 2010

416International Scholarly and Scientific Research & Innovation 4(3) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

3,
 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

21
29

.p
df

VI. CONCLUSION
 Caching is a good solution for mobile environments that are
characterized with several constraints such as low bandwidth for
uplink, irregular connections, and limited client resources. However,
caching has some limitations too. Several approaches had been
suggested to maintain cache consistency. In the stateful approaches
the server knows what data was cached in which mobile unit while in
stateless approaches the server is unaware of the information. Both
approaches having drawbacks, an efficient and scalable hybrid
caching maintenance approach SACCS has been suggested, which is
based on LRU. A cache being limited in size, a cache replacement
strategy plays a central role. In this work, we proposed the value-
based function LUV for cache replacement algorithm to be
implemented with SACCS. Based on the complete history, LUV
selected the set of victims considering the potential of objects that
can be referenced in the near future and at the same time the cost of
fetching the data strategy, and it was shown to be an efficient
strategy. A good replacement policy is one that is used as
infrequently as possible to generate the same hit rates. The proposed
strategy was compared with other strategies which belong to different
categories of cache replacement strategies. Since in our simulation
we used a fixed parameter λ to calculate the function value for a data
object, for the future we propose to find an adaptive function for the λ
parameter that adjusts according to the query rate and client
disconnection. Also, in the function, we need to consider the update
frequency of the data object.

REFERENCES
[1] Barbara, D. and Imielinski, T. (1994). Sleepers and Workaholics:

Caching Strategies in Mobile Environments. ACM, SIGMOD.
[2] Cao, G. (2002, June). Proactive Power-Aware Cache Management for

Mobile Computing Systems. IEEE. Transactions on Computers. Volume
51. No. 6. pp. 608-621.

[3] Jing, J. Elmagarmid, A. Helal, A. and Alonso, R. (1997). Bit-Sequences:
An Adaptive Cache Invalidation Method in Mobile Client/Server
Environments. ACM. Mobile Networks and Application 2. pp. 115-127.
1997.

[4] Kahol, A. Khurana, S. Gupta, S.K.S. and Srimani, P.K. (2001, July). A
Strategy to Manage Cache Consistency in a Disconnected Distributed
Environment. IEEE. Transactions on Parallel and Distributed Systems.
Vol. 12. No.7. pp. 686-700.

[5] Wang, Z. Das, S. Che, H and Kumar. M (2003). SACCS: Scalable
Asynchronous Cache Consistency Scheme for Mobile Environments.
IEEE, Proceedings of the 23rd International Conference on Distributed
Computing Systems Workshops (ICDCSW’03). pp.1-6.

[6] Wang, Z. Das, S.K. Che, H and Kumar, M. (2004, November). A
Scalable Asynchronous Cache Consistency Scheme (SACCS) for
Mobile Environments. IEEE Transactions on Parallel and Distributed
Systems. Vol. 155, no. 11, pp. 983-995.

[7] Bahn, H. Koh, K. Sam, N. and Min, S. L. (2002). Efficient Replacement
of Nonuniform Objects in Web Caches. IEEE. June, 2002. pp.65-73.

[8] Barbara, D. (1999). Mobile Computing and Databases - A Survey. IEEE.
Transactions on Knowledge and Data Engineering, Volume 11, No.1,
January/February 1999, pp. 108-117.

[9] Wu, K.L. Yu, P.S. and Chen, M.S. (1996). Energy-Efficient Caching for
Wireless Mobile Computing. IEEE. pp. 336-343.

[10] Hu, Q. and Lee, D.K. (1998) Cache Algorithms Based on Adaptive
Invalidation Reports for Mobile Environments. ACM. Cluster
Computing. Volume 1. pp. 39-50.

[11] [Cao, G. (2002). Adaptive Power-Aware Cache Management for Mobile
Computing Systems. http://www2002.org/CDROM/poster/88.pdf.

[12] Cao, G. (2002) On Improving the Performance of Cache Invalidation in
Mobile Environments. Mobile Networks and Application, 7, pp. 291-
303. Kluwer Academic Publishers. Netherlands.

[13] Cao, G. (2003, September/October). A Scalable Low-latency Cache
Invalidation Strategy for Mobile Environments. IEEE. Transactions on
Knowledge and Data Engineering. Volume 15, No. 5. pp. 1251-1265.

[14] Madhukar, A. and Alhajj, R. (2006, April 23-27). An Adaptive Energy
Efficient Cache Invalidation Scheme for Mobile Databases. ACM. SAC
2006. April 23-27, 2006, Dijon, France. pp. 1122-1126.

[15] Shen, H. Kumar, M. Das, S.K. and Wang, Z. (2005). Energy-Efficient
Data Caching and Prefetching for Mobile Devices Base on Utility.
Mobile Networks and Applications 10, pp. 475-486.

[16] Xu, J. and Hu, Q. (2001). An Optimal Cache Replacement Policy for
Wireless Data Dissemination Under Cache Consistency. IEEE. pp.267-
274.

[17] Yin, L. and Cai, Y. (2003) A Generalized Target-Driven Cache
Replacement Policy for Mobile Environments. Proceedings of
Symposium on Applications and the Internet, 2003. pp. 14-21. 27-31
January 2003.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.9274

[18] Shen, H. Kumar, M. Das, S.K. and Wang, Z. (2004). Energy-Efficient
Caching and Prefetching with Data Consistency in Mobile Distributed
Systems. IEEE. Proceedings of the 18th International Parallel and
Distributed Processing Symposium (IPDPS’04).

[19] Seifert, A. and Scholl, M. H. (2002). A Multi-Version Cache
Replacement and Prefetching Policy for Hybrid Data Delivery
Environments. ACM. Proceedings of the 28th VLDB Conference, Honk
Kong, China, 2002.

[20] Santhosh, S. and Shi, W. (2005) A Semantic-Based Cache Replacement
Algorithm for Mobile File Access.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.9274.

[21] Rabinovich, M. and Spatscheck, O. (2002). Web Caching and
Replication (2nd ed.) Boston: Addison-Wesley.

[22] Aggarwal, C. Wolf, J.L. and Yu, P.S. (1999, January-February). Caching
on the World Wide Web. IEEE. Transaction on Knowledge and Data
Engineering, Volume 11, No. 1, January/February 1999. pp. 94-107.

[23] Podlipnig. S and Boszormenyi, L. (2003, December). A Survey of Web
Cache Replacement Strategies. ACM Computing Surveys. Volume. 35.
No. 4. pp.374-398.

[24] Lee, D. Choi, J. Kim, J.H. (1999). On the Existence of a Spectrum of
Policies that Subsumes the Least recently Used (LRU) and Least
Frequently Used (LFU) Policies. ACM. SIGMETRICS ’99 5/99 Atlanta,
Georgia, USA. pp. 134-143.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:3, 2010

417International Scholarly and Scientific Research & Innovation 4(3) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

3,
 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

21
29

.p
df

