Search results for: Spatial data
6767 The Comparison of Anchor and Star Schema from a Query Performance Perspective
Authors: Radek Němec
Abstract:
Today's business environment requires that companies have access to highly relevant information in a matter of seconds. Modern Business Intelligence tools rely on data structured mostly in traditional dimensional database schemas, typically represented by star schemas. Dimensional modeling is already recognized as a leading industry standard in the field of data warehousing although several drawbacks and pitfalls were reported. This paper focuses on the analysis of another data warehouse modeling technique - the anchor modeling, and its characteristics in context with the standardized dimensional modeling technique from a query performance perspective. The results of the analysis show information about performance of queries executed on database schemas structured according to principles of each database modeling technique.Keywords: Data warehousing, anchor modeling, star schema, anchor schema, query performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33196766 Data about Loggerhead Sea Turtle (Caretta caretta) and Green Turtle (Chelonia mydas) in Vlora Bay, Albania
Authors: Enerit Saçdanaku, Idriz Haxhiu
Abstract:
This study was conducted in the area of Vlora Bay, Albania. Data about Sea Turtles Caretta caretta and Chelonia mydas, belonging to two periods of time (1984 – 1991; 2008 – 2014) are given. All data gathered were analyzed using recent methodologies. For all turtles captured (as by catch), the Curve Carapace Length (CCL) and Curved Carapace Width (CCW) were measured. These data were statistically analyzed, where the mean was 67.11 cm for CCL and 57.57 cm for CCW of all individuals studied (n=13). All untagged individuals of marine turtles were tagged using metallic tags (Stockbrand’s titanium tag) with an Albanian address. Sex was determined and resulted that 45.4% of individuals were females, 27.3% males and 27.3% juveniles. All turtles were studied for the presence of the epibionts. The area of Vlora Bay is used from marine turtles (Caretta caretta) as a migratory corridor to pass from Mediterranean to the northern part of the Adriatic Sea.
Keywords: Caretta caretta, Chelonia mydas, CCL, CCW, tagging, Vlora Bay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21276765 Video Super-Resolution Using Classification ANN
Authors: Ming-Hui Cheng, Jyh-Horng Jeng
Abstract:
In this study, a classification-based video super-resolution method using artificial neural network (ANN) is proposed to enhance low-resolution (LR) to high-resolution (HR) frames. The proposed method consists of four main steps: classification, motion-trace volume collection, temporal adjustment, and ANN prediction. A classifier is designed based on the edge properties of a pixel in the LR frame to identify the spatial information. To exploit the spatio-temporal information, a motion-trace volume is collected using motion estimation, which can eliminate unfathomable object motion in the LR frames. In addition, temporal lateral process is employed for volume adjustment to reduce unnecessary temporal features. Finally, ANN is applied to each class to learn the complicated spatio-temporal relationship between LR and HR frames. Simulation results show that the proposed method successfully improves both peak signal-to-noise ratio and perceptual quality.
Keywords: Super-resolution, classification, spatio-temporal information, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18056764 Influence of Textured Clusters on the Goss Grains Growth in Silicon Steels Consideration of Energy and Mobility
Authors: H. Afer, N. Rouag, R. Penelle
Abstract:
In the Fe-3%Si sheets, grade Hi-B, with AlN and MnS as inhibitors, the Goss grains which abnormally grow do not have a size greater than the average size of the primary matrix. In this heterogeneous microstructure, the size factor is not a required condition for the secondary recrystallization. The onset of the small Goss grain abnormal growth appears to be related to a particular behavior of their grain boundaries, to the local texture and to the distribution of the inhibitors. The presence and the evolution of oriented clusters ensure to the small Goss grains a favorable neighborhood to grow. The modified Monte-Carlo approach, which is applied, considers the local environment of each grain. The grain growth is dependent of its real spatial position; the matrix heterogeneity is then taken into account. The grain growth conditions are considered in the global matrix and in different matrixes corresponding to A component clusters. The grain growth behaviour is considered with introduction of energy only, energy and mobility, energy and mobility and precipitates.Keywords: Abnormal grain growth, grain boundary energy andmobility, neighbourhood, oriented clusters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13736763 Algorithm for Determining the Parameters of a Two-Layer Soil Model
Authors: Adekitan I. Aderibigbe, Fakolujo A. Olaosebikan
Abstract:
The parameters of a two-layer soil can be determined by processing resistivity data obtained from resistivity measurements carried out on the soil of interest. The processing usually entails applying the resistivity data as inputs to an optimisation function. This paper proposes an algorithm which utilises the square error as an optimisation function. Resistivity data from previous works were applied to test the accuracy of the new algorithm developed and the result obtained conforms significantly to results from previous works.
Keywords: Algorithm, earthing, resistivity, two-layer soil-model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33326762 MRI Reconstruction Using Discrete Fourier Transform: A tutorial
Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb
Abstract:
The use of Inverse Discrete Fourier Transform (IDFT) implemented in the form of Inverse Fourier Transform (IFFT) is one of the standard method of reconstructing Magnetic Resonance Imaging (MRI) from uniformly sampled K-space data. In this tutorial, three of the major problems associated with the use of IFFT in MRI reconstruction are highlighted. The tutorial also gives brief introduction to MRI physics; MRI system from instrumentation point of view; K-space signal and the process of IDFT and IFFT for One and two dimensional (1D and 2D) data.
Keywords: Discrete Fourier Transform (DFT), K-space Data, Magnetic Resonance (MR), Spin, Windows.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51116761 Exploring the Availability and Distribution of Public Green Spaces among Riyadh Residential Neighborhoods
Authors: Abdulwahab Alalyani, Mahbub Rashid
Abstract:
Public green space promotes community health including daily activities, but these resources may not be available enough or may not equitably be distributed. This paper measures and compares the availability of public green spaces (PGS) among low, middle, and high-income neighborhoods in the Riyadh city. Additionally, it compares the total availability of PGS to WHO standard and Dubai availability of PGS per person. All PGS were mapped using geographical information systems, and total area availability of PGS compared to WHO and Dubai standards. To evaluate the significant differences in PGS availability across low, medium, and high-income Riyadh neighborhoods, we used a One-way ANOVA analysis of covariance to test the differences. As a result, by comparing PGS of Riyadh neighborhoods to WHO and Dubai-availability, it was found that Riyadh PGS were lower than the minimum standard of WHO and as well as Dubai. Riyadh has only 1.13 m2 per capita of PGS. The second finding, the availability of PGS, was significantly different among Riyadh neighborhoods based on socioeconomic status. The future development of PGS should be focused on increasing PGS availability and should be given priority to those low-income and unhealthy communities.
Keywords: Spatial equity, green space, healthy city, quality of life, income, built environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6796760 Assessing and Visualizing the Stability of Feature Selectors: A Case Study with Spectral Data
Authors: R.Guzman-Martinez, Oscar Garcia-Olalla, R.Alaiz-Rodriguez
Abstract:
Feature selection plays an important role in applications with high dimensional data. The assessment of the stability of feature selection/ranking algorithms becomes an important issue when the dataset is small and the aim is to gain insight into the underlying process by analyzing the most relevant features. In this work, we propose a graphical approach that enables to analyze the similarity between feature ranking techniques as well as their individual stability. Moreover, it works with whatever stability metric (Canberra distance, Spearman's rank correlation coefficient, Kuncheva's stability index,...). We illustrate this visualization technique evaluating the stability of several feature selection techniques on a spectral binary dataset. Experimental results with a neural-based classifier show that stability and ranking quality may not be linked together and both issues have to be studied jointly in order to offer answers to the domain experts.
Keywords: Feature Selection Stability, Spectral data, Data visualization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15266759 A Video-based Algorithm for Moving Objects Detection at Signalized Intersection
Authors: Juan Li, Chunfu Shao, Chunjiao Dong, Dan Zhao, Yinhong Liu
Abstract:
Mixed-traffic (e.g., pedestrians, bicycles, and vehicles) data at an intersection is one of the essential factors for intersection design and traffic control. However, some data such as pedestrian volume cannot be directly collected by common detectors (e.g. inductive loop, sonar and microwave sensors). In this paper, a video based detection algorithm is proposed for mixed-traffic data collection at intersections using surveillance cameras. The algorithm is derived from Gaussian Mixture Model (GMM), and uses a mergence time adjustment scheme to improve the traditional algorithm. Real-world video data were selected to test the algorithm. The results show that the proposed algorithm has the faster processing speed and more accuracy than the traditional algorithm. This indicates that the improved algorithm can be applied to detect mixed-traffic at signalized intersection, even when conflicts occur.Keywords: detection, intersection, mixed traffic, moving objects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20336758 Governance, Risk Management, and Compliance Factors Influencing the Adoption of Cloud Computing in Australia
Authors: Tim Nedyalkov
Abstract:
A business decision to move to the cloud brings fundamental changes in how an organization develops and delivers its Information Technology solutions. The accelerated pace of digital transformation across businesses and government agencies increases the reliance on cloud-based services. Collecting, managing, and retaining large amounts of data in cloud environments make information security and data privacy protection essential. It becomes even more important to understand what key factors drive successful cloud adoption following the commencement of the Privacy Amendment Notifiable Data Breaches (NDB) Act 2017 in Australia as the regulatory changes impact many organizations and industries. This quantitative correlational research investigated the governance, risk management, and compliance factors contributing to cloud security success. The factors influence the adoption of cloud computing within an organizational context after the commencement of the NDB scheme. The results and findings demonstrated that corporate information security policies, data storage location, management understanding of data governance responsibilities, and regular compliance assessments are the factors influencing cloud computing adoption. The research has implications for organizations, future researchers, practitioners, policymakers, and cloud computing providers to meet the rapidly changing regulatory and compliance requirements.
Keywords: Cloud compliance, cloud security, cloud security governance, data governance, privacy protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9126757 New Findings on the User’s Preferences about Data Visualization of Online Reviews
Authors: Elizabeth Simão Carvalho, Marcirio Silveira Chaves
Abstract:
The information visualization is still a knowledge field that lacks from a solid theory to support it and there is a myriad of existing methodologies and taxonomies that can be combined and adopted as guidelines. In this context, it is necessary to pre-evaluate as much as possible all the assumptions that are considered for its design and development. We present an exploratory study (n = 123) to detect the graphical preferences of travelers using accommodation portals of Web 2.0 (e.g. tripadvisor.com). We took into account some of the most relevant ground rules applied in the field to map visually data and design end-user interaction. Moreover, the evaluation process was completely data visualization oriented. We found out that people tend to refuse more advanced types of visualization and that a hybrid combination between radial graphs and stacked bars should be explored. In sum, this paper introduces new findings about the visual model and the cognitive response of users of accommodation booking websites.
Keywords: Information visualization, Data visualization, Visualization evaluation, Online reviews, Booking portal, Hotel booking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17206756 Rapid Monitoring of Earthquake Damages Using Optical and SAR Data
Authors: Saeid Gharechelou, Ryutaro Tateishi
Abstract:
Earthquake is an inevitable catastrophic natural disaster. The damages of buildings and man-made structures, where most of the human activities occur are the major cause of casualties from earthquakes. A comparison of optical and SAR data is presented in the case of Kathmandu valley which was hardly shaken by 2015-Nepal Earthquake. Though many existing researchers have conducted optical data based estimated or suggested combined use of optical and SAR data for improved accuracy, however finding cloud-free optical images when urgently needed are not assured. Therefore, this research is specializd in developing SAR based technique with the target of rapid and accurate geospatial reporting. Should considers that limited time available in post-disaster situation offering quick computation exclusively based on two pairs of pre-seismic and co-seismic single look complex (SLC) images. The InSAR coherence pre-seismic, co-seismic and post-seismic was used to detect the change in damaged area. In addition, the ground truth data from field applied to optical data by random forest classification for detection of damaged area. The ground truth data collected in the field were used to assess the accuracy of supervised classification approach. Though a higher accuracy obtained from the optical data then integration by optical-SAR data. Limitation of cloud-free images when urgently needed for earthquak evevent are and is not assured, thus further research on improving the SAR based damage detection is suggested. Availability of very accurate damage information is expected for channelling the rescue and emergency operations. It is expected that the quick reporting of the post-disaster damage situation quantified by the rapid earthquake assessment should assist in channeling the rescue and emergency operations, and in informing the public about the scale of damage.
Keywords: Sentinel-1A data, Landsat-8, earthquake damage, InSAR, rapid monitoring, 2015-Nepal earthquake.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10566755 Structural Damage Detection via Incomplete Modal Data Using Output Data Only
Authors: Ahmed Noor Al-Qayyim, Barlas Ozden Caglayan
Abstract:
Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on to obtain very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. The study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using ‘Two Points Condensation (TPC) technique’. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices obtain from optimization the equation of motion using the measured test data. The current stiffness matrices compare with original (undamaged) stiffness matrices. The large percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element, where two cases consider. The method detects the damage and determines its location accurately in both cases. In addition, the results illustrate these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can be used also for big structures.Keywords: Damage detection, two points–condensation, structural health monitoring, signals processing, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26996754 Niksic in the Context of Visual Urban Culture
Authors: Svetlana Perović
Abstract:
Out of all visual arts including: painting, sculpture, graphics, photography, architecture, and others, architecture is by far the most complex one, because the art category is only one of its determinants. Architecture, to some extent includes other arts which can significantly influence the shaping of an urban space (artistic interventions). These arts largely shape the visual culture in combination with other categories: film, TV, Internet, information technologies that are "changing the world" etc. In the area of architecture and urbanism, visual culture is achieved through the aspects of visual spatial effects. In this context, a complex visual deliberation about designing urban areas in order to contribute to the urban visual culture, and with it restore the cultural identity of the city, is becoming almost the primary concept of contemporary urban and architectural practice. Research in this paper relate to the city of Niksic and its place in the visual urban culture. We are looking at the city’s existing visual effects and determining the directions of transformability of its physical structure in order to achieve the visual realization of an urban area and the renewal of cultural identity of a modern city.
Keywords: Nikšić, transformability, visual culture, visual realization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16796753 Broadband PowerLine Communications: Performance Analysis
Authors: Justinian Anatory, Nelson Theethayi, M. M. Kissaka, N. H. Mvungi
Abstract:
Power line channel is proposed as an alternative for broadband data transmission especially in developing countries like Tanzania [1]. However the channel is affected by stochastic attenuation and deep notches which can lead to the limitation of channel capacity and achievable data rate. Various studies have characterized the channel without giving exactly the maximum performance and limitation in data transfer rate may be this is due to complexity of channel modeling being used. In this paper the channel performance of medium voltage, low voltage and indoor power line channel is presented. In the investigations orthogonal frequency division multiplexing (OFDM) with phase shift keying (PSK) as carrier modulation schemes is considered, for indoor, medium and low voltage channels with typical ten branches and also Golay coding is applied for medium voltage channel. From channels, frequency response deep notches are observed in various frequencies which can lead to reduce the achievable data rate. However, is observed that data rate up to 240Mbps is realized for a signal to noise ratio of about 50dB for indoor and low voltage channels, however for medium voltage a typical link with ten branches is affected by strong multipath and coding is required for feasible broadband data transfer.
Keywords: Powerline Communications, branched network, channel model, modulation, channel performance, OFDM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18336752 An Empirical Investigation of Big Data Analytics: The Financial Performance of Users versus Vendors
Authors: Evisa Mitrou, Nicholas Tsitsianis, Supriya Shinde
Abstract:
In the age of digitisation and globalisation, businesses have shifted online and are investing in big data analytics (BDA) to respond to changing market conditions and sustain their performance. Our study shifts the focus from the adoption of BDA to the impact of BDA on financial performance. We explore the financial performance of both BDA-vendors (business-to-business) and BDA-clients (business-to-customer). We distinguish between the five BDA-technologies (big-data-as-a-service (BDaaS), descriptive, diagnostic, predictive, and prescriptive analytics) and discuss them individually. Further, we use four perspectives (internal business process, learning and growth, customer, and finance) and discuss the significance of how each of the five BDA-technologies affect the performance measures of these four perspectives. We also present the analysis of employee engagement, average turnover, average net income, and average net assets for BDA-clients and BDA-vendors. Our study also explores the effect of the COVID-19 pandemic on business continuity for both BDA-vendors and BDA-clients.
Keywords: BDA-clients, BDA-vendors, big data analytics, financial performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6196751 A Comprehensive Review on Different Mixed Data Clustering Ensemble Methods
Authors: S. Sarumathi, N. Shanthi, S. Vidhya, M. Sharmila
Abstract:
An extensive amount of work has been done in data clustering research under the unsupervised learning technique in Data Mining during the past two decades. Moreover, several approaches and methods have been emerged focusing on clustering diverse data types, features of cluster models and similarity rates of clusters. However, none of the single clustering algorithm exemplifies its best nature in extracting efficient clusters. Consequently, in order to rectify this issue, a new challenging technique called Cluster Ensemble method was bloomed. This new approach tends to be the alternative method for the cluster analysis problem. The main objective of the Cluster Ensemble is to aggregate the diverse clustering solutions in such a way to attain accuracy and also to improve the eminence the individual clustering algorithms. Due to the massive and rapid development of new methods in the globe of data mining, it is highly mandatory to scrutinize a vital analysis of existing techniques and the future novelty. This paper shows the comparative analysis of different cluster ensemble methods along with their methodologies and salient features. Henceforth this unambiguous analysis will be very useful for the society of clustering experts and also helps in deciding the most appropriate one to resolve the problem in hand.
Keywords: Clustering, Cluster Ensemble Methods, Coassociation matrix, Consensus Function, Median Partition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21056750 Improved Neutron Leakage Treatment on Nodal Expansion Method for PWR Reactors
Authors: Antonio Carlos Marques Alvim, Fernando Carvalho da Silva, Aquilino Senra Martinez
Abstract:
For a quick and accurate calculation of spatial neutron distribution in nuclear power reactors 3D nodal codes are usually used aiming at solving the neutron diffusion equation for a given reactor core geometry and material composition. These codes use a second order polynomial to represent the transverse leakage term. In this work, a nodal method based on the well known nodal expansion method (NEM), developed at COPPE, making use of this polynomial expansion was modified to treat the transverse leakage term for the external surfaces of peripheral reflector nodes. The proposed method was implemented into a computational system which, besides solving the diffusion equation, also solves the burnup equations governing the gradual changes in material compositions of the core due to fuel depletion. Results confirm the effectiveness of this modified treatment of peripheral nodes for practical purposes in PWR reactors.Keywords: Transverse leakage, nodal expansion method, power density, PWR reactors
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20406749 Burstiness Reduction of a Doubly Stochastic AR-Modeled Uniform Activity VBR Video
Authors: J. P. Dubois
Abstract:
Stochastic modeling of network traffic is an area of significant research activity for current and future broadband communication networks. Multimedia traffic is statistically characterized by a bursty variable bit rate (VBR) profile. In this paper, we develop an improved model for uniform activity level video sources in ATM using a doubly stochastic autoregressive model driven by an underlying spatial point process. We then examine a number of burstiness metrics such as the peak-to-average ratio (PAR), the temporal autocovariance function (ACF) and the traffic measurements histogram. We found that the former measure is most suitable for capturing the burstiness of single scene video traffic. In the last phase of this work, we analyse statistical multiplexing of several constant scene video sources. This proved, expectedly, to be advantageous with respect to reducing the burstiness of the traffic, as long as the sources are statistically independent. We observed that the burstiness was rapidly diminishing, with the largest gain occuring when only around 5 sources are multiplexed. The novel model used in this paper for characterizing uniform activity video was thus found to be an accurate model.Keywords: AR, ATM, burstiness, doubly stochastic, statisticalmultiplexing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14096748 The Trend of Injuries in Building Fire in Tehran from 2002 to 2012
Authors: Mohammadreza Ashouri, Majid Bayatian
Abstract:
Analysis of fire data is a way for the implementation of any plan to improve the level of safety in cities. Such an analysis is able to reveal signs of changes in a given period and can be used as a measure of safety. The information of about 66,341 fires (from 2002 to 2012) released by Tehran Safety Services and Fire-Fighting Organization and data on the population and the number of households provided by Tehran Municipality and the Statistical Yearbook of Iran were extracted. Using the data, the fire changes, the rate of injuries, and mortality rate were determined and analyzed. The rate of injuries and mortality rate of fires per one million population of Tehran were 59.58% and 86.12%, respectively. During the study period, the number of fires and fire stations increased by 104.38% and 102.63%, respectively. Most fires (9.21%) happened in the 4th District of Tehran. The results showed that the recorded fire data have not been systematically planned for fire prevention since one of the ways to reduce injuries caused by fires is to develop a systematic plan for necessary actions in emergency situations. To determine a reliable source for fire prevention, the stages, definitions of working processes and the cause and effect chains should be considered. Therefore, a comprehensive statistical system should be developed for reported and recorded fire data.
Keywords: Fire statistics, fire analysis, accident prevention, Tehran.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7696747 Design and Implementation a Virtualization Platform for Providing Smart Tourism Services
Authors: Nam Don Kim, Jungho Moon, Tae Yun Chung
Abstract:
This paper proposes an Internet of Things (IoT) based virtualization platform for providing smart tourism services. The virtualization platform provides a consistent access interface to various types of data by naming IoT devices and legacy information systems as pathnames in a virtual file system. In the other words, the IoT virtualization platform functions as a middleware which uses the metadata for underlying collected data. The proposed platform makes it easy to provide customized tourism information by using tourist locations collected by IoT devices and additionally enables to create new interactive smart tourism services focused on the tourist locations. The proposed platform is very efficient so that the provided tourism services are isolated from changes in raw data and the services can be modified or expanded without changing the underlying data structure.Keywords: Internet of Things, IoT platform, service platform, virtual file system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10946746 Biological Hotspots in the Galápagos Islands: Exploring Seasonal Trends of Ocean Climate Drivers to Monitor Algal Blooms
Authors: Emily Kislik, Gabriel Mantilla Saltos, Gladys Torres, Mercy Borbor-Córdova
Abstract:
The Galápagos Marine Reserve (GMR) is an internationally-recognized region of consistent upwelling events, high productivity, and rich biodiversity. Despite its high-nutrient, low-chlorophyll condition, the archipelago has experienced phytoplankton blooms, especially in the western section between Isabela and Fernandina Islands. However, little is known about how climate variability will affect future phytoplankton standing stock in the Galápagos, and no consistent protocols currently exist to quantify phytoplankton biomass, identify species, or monitor for potential harmful algal blooms (HABs) within the archipelago. This analysis investigates physical, chemical, and biological oceanic variables that contribute to algal blooms within the GMR, using 4 km Aqua MODIS satellite imagery and 0.125-degree wind stress data from January 2003 to December 2016. Furthermore, this study analyzes chlorophyll-a concentrations at varying spatial scales— within the greater archipelago, as well as within five smaller bioregions based on species biodiversity in the GMR. Seasonal and interannual trend analyses, correlations, and hotspot identification were performed. Results demonstrate that chlorophyll-a is expressed in two seasons throughout the year in the GMR, most frequently in September and March, with a notable hotspot in the Elizabeth Bay bioregion. Interannual chlorophyll-a trend analyses revealed highest peaks in 2003, 2007, 2013, and 2016, and variables that correlate highly with chlorophyll-a include surface temperature and particulate organic carbon. This study recommends future in situ sampling locations for phytoplankton monitoring, including the Elizabeth Bay bioregion. Conclusions from this study contribute to the knowledge of oceanic drivers that catalyze primary productivity and consequently affect species biodiversity within the GMR. Additionally, this research can inform policy and decision-making strategies for species conservation and management within bioregions of the Galápagos.
Keywords: Bioregions, ecological monitoring, phytoplankton, remote sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13856745 Service-Oriented Architecture for Object- Centric Information Fusion
Authors: Jeffrey A. Dunne, Kevin Ligozio
Abstract:
In many applications there is a broad variety of information relevant to a focal “object" of interest, and the fusion of such heterogeneous data types is desirable for classification and categorization. While these various data types can sometimes be treated as orthogonal (such as the hull number, superstructure color, and speed of an oil tanker), there are instances where the inference and the correlation between quantities can provide improved fusion capabilities (such as the height, weight, and gender of a person). A service-oriented architecture has been designed and prototyped to support the fusion of information for such “object-centric" situations. It is modular, scalable, and flexible, and designed to support new data sources, fusion algorithms, and computational resources without affecting existing services. The architecture is designed to simplify the incorporation of legacy systems, support exact and probabilistic entity disambiguation, recognize and utilize multiple types of uncertainties, and minimize network bandwidth requirements.Keywords: Data fusion, distributed computing, service-oriented architecture, SOA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14696744 Application of Data Mining Tools to Predicate Completion Time of a Project
Authors: Seyed Hossein Iranmanesh, Zahra Mokhtari
Abstract:
Estimation time and cost of work completion in a project and follow up them during execution are contributors to success or fail of a project, and is very important for project management team. Delivering on time and within budgeted cost needs to well managing and controlling the projects. To dealing with complex task of controlling and modifying the baseline project schedule during execution, earned value management systems have been set up and widely used to measure and communicate the real physical progress of a project. But it often fails to predict the total duration of the project. In this paper data mining techniques is used predicting the total project duration in term of Time Estimate At Completion-EAC (t). For this purpose, we have used a project with 90 activities, it has updated day by day. Then, it is used regular indexes in literature and applied Earned Duration Method to calculate time estimate at completion and set these as input data for prediction and specifying the major parameters among them using Clem software. By using data mining, the effective parameters on EAC and the relationship between them could be extracted and it is very useful to manage a project with minimum delay risks. As we state, this could be a simple, safe and applicable method in prediction the completion time of a project during execution.Keywords: Data Mining Techniques, Earned Duration Method, Earned Value, Estimate At Completion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18036743 Automated Process Quality Monitoring with Prediction of Fault Condition Using Measurement Data
Authors: Hyun-Woo Cho
Abstract:
Detection of incipient abnormal events is important to improve safety and reliability of machine operations and reduce losses caused by failures. Improper set-ups or aligning of parts often leads to severe problems in many machines. The construction of prediction models for predicting faulty conditions is quite essential in making decisions on when to perform machine maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of machine measurement data. The calibration model is used to predict two faulty conditions from historical reference data. This approach utilizes genetic algorithms (GA) based variable selection, and we evaluate the predictive performance of several prediction methods using real data. The results shows that the calibration model based on supervised probabilistic principal component analysis (SPPCA) yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.Keywords: Prediction, operation monitoring, on-line data, nonlinear statistical methods, empirical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16586742 Soccer Video Edition Using a Multimodal Annotation
Authors: Fendri Emna, Ben-Abdallah Hanêne, Ben-Hamadou Abdelmajid
Abstract:
In this paper, we present an approach for soccer video edition using a multimodal annotation. We propose to associate with each video sequence of a soccer match a textual document to be used for further exploitation like search, browsing and abstract edition. The textual document contains video meta data, match meta data, and match data. This document, generated automatically while the video is analyzed, segmented and classified, can be enriched semi automatically according to the user type and/or a specialized recommendation system.Keywords: XML, Multimodal Annotation, recommendation system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14416741 Using Probe Person Data for Travel Mode Detection
Authors: Muhammad Awais Shafique, Eiji Hato, Hideki Yaginuma
Abstract:
Recently GPS data is used in a lot of studies to automatically reconstruct travel patterns for trip survey. The aim is to minimize the use of questionnaire surveys and travel diaries so as to reduce their negative effects. In this paper data acquired from GPS and accelerometer embedded in smart phones is utilized to predict the mode of transportation used by the phone carrier. For prediction, Support Vector Machine (SVM) and Adaptive boosting (AdaBoost) are employed. Moreover a unique method to improve the prediction results from these algorithms is also proposed. Results suggest that the prediction accuracy of AdaBoost after improvement is relatively better than the rest.
Keywords: Accelerometer, AdaBoost, GPS, Mode Prediction, Support vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24506740 SUPAR: System for User-Centric Profiling of Association Rules in Streaming Data
Authors: Sarabjeet Kaur Kochhar
Abstract:
With a surge of stream processing applications novel techniques are required for generation and analysis of association rules in streams. The traditional rule mining solutions cannot handle streams because they generally require multiple passes over the data and do not guarantee the results in a predictable, small time. Though researchers have been proposing algorithms for generation of rules from streams, there has not been much focus on their analysis. We propose Association rule profiling, a user centric process for analyzing association rules and attaching suitable profiles to them depending on their changing frequency behavior over a previous snapshot of time in a data stream. Association rule profiles provide insights into the changing nature of associations and can be used to characterize the associations. We discuss importance of characteristics such as predictability of linkages present in the data and propose metric to quantify it. We also show how association rule profiles can aid in generation of user specific, more understandable and actionable rules. The framework is implemented as SUPAR: System for Usercentric Profiling of Association Rules in streaming data. The proposed system offers following capabilities: i) Continuous monitoring of frequency of streaming item-sets and detection of significant changes therein for association rule profiling. ii) Computation of metrics for quantifying predictability of associations present in the data. iii) User-centric control of the characterization process: user can control the framework through a) constraint specification and b) non-interesting rule elimination.Keywords: Data Streams, User subjectivity, Change detection, Association rule profiles, Predictability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14586739 Effects of Signaling on the Performance of Directed Diffusion Routing Protocol
Authors: Apidet Booranawong
Abstract:
In an original directed diffusion routing protocol, a sink requests sensing data from a source node by flooding interest messages to the network. Then, the source finds the sink by sending exploratory data messages to all nodes that generate incoming interest messages. This protocol signaling can cause heavy traffic in the network, an interference of the radio signal, collisions, great energy consumption of sensor nodes, etc. According to this research problem, this paper investigates the effect of sending interest and exploratory data messages on the performance of directed diffusion routing protocol. We demonstrate the research problem occurred from employing directed diffusion protocol in mobile wireless environments. For this purpose, we perform a set of experiments by using NS2 (network simulator 2). The radio propagation models; Two-ray ground reflection with and without shadow fading are included to investigate the effect of signaling. The simulation results show that the number of times of sent and received protocol signaling in the case of sending interest and exploratory data messages are larger than the case of sending other protocol signals, especially in the case of shadowing model. Additionally, the number of exploratory data message is largest in one round of the protocol procedure.
Keywords: Directed diffusion, Flooding, Interest message, Exploratory data message, Radio propagation model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17846738 Rethinking the Analysis of Means-End Chain Data in Marketing Research
Authors: P. Puustinen, A. Kanto
Abstract:
This paper proposes a new procedure for analyzing means-end chain data in marketing research. Most commonly the collected data is summarized in the Hierarchical Value Map (HVM) illustrating the main attribute-consequence-value linkages. This paper argues that traditionally constructed HVM may give an erroneous impression of the results of a means-end study. To justify the arguments, an alternative procedure to (1) determine the dominant attribute-consequence-value linkages and (2) construct HVM in a precise manner is presented. The current approach makes a contribution to means-end analysis, allowing marketers to address a set of marketing problems, such as advertising strategy.
Keywords: Means-end chain analysis, Laddering, Hierarchical Value Map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2791