Search results for: Data Center
6695 Understanding Cruise Passengers’ On-board Experience throughout the Customer Decision Journey
Authors: Sabina Akter, Osiris Valdez Banda, Pentti Kujala, Jani Romanoff
Abstract:
This paper examines the relationship between on-board environmental factors and customer overall satisfaction in the context of the cruise on-board experience. The on-board environmental factors considered are ambient, layout/design, social, product/service and on-board enjoyment factors. The study presents a data-driven framework and model for the on-board cruise experience. The data are collected from 893 respondents in an application of a self-administered online questionnaire of their cruise experience. This study reveals the cruise passengers’ on-board experience through the customer decision journey based on the publicly available data. Pearson correlation and regression analysis have been applied, and the results show a positive and a significant relationship between the environmental factors and on-board experience. These data help understand the cruise passengers’ on-board experience, which will be used for the ultimate decision-making process in cruise ship design.
Keywords: Cruise behavior, on-board environmental factors, on-board experience, user or customer satisfaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8746694 The Communication Library DIALOG for iFDAQ of the COMPASS Experiment
Authors: Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius
Abstract:
Modern experiments in high energy physics impose great demands on the reliability, the efficiency, and the data rate of Data Acquisition Systems (DAQ). This contribution focuses on the development and deployment of the new communication library DIALOG for the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. The iFDAQ utilizing a hardware event builder is designed to be able to readout data at the maximum rate of the experiment. The DIALOG library is a communication system both for distributed and mixed environments, it provides a network transparent inter-process communication layer. Using the high-performance and modern C++ framework Qt and its Qt Network API, the DIALOG library presents an alternative to the previously used DIM library. The DIALOG library was fully incorporated to all processes in the iFDAQ during the run 2016. From the software point of view, it might be considered as a significant improvement of iFDAQ in comparison with the previous run. To extend the possibilities of debugging, the online monitoring of communication among processes via DIALOG GUI is a desirable feature. In the paper, we present the DIALOG library from several insights and discuss it in a detailed way. Moreover, the efficiency measurement and comparison with the DIM library with respect to the iFDAQ requirements is provided.Keywords: Data acquisition system, DIALOG library, DIM library, FPGA, Qt framework, TCP/IP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11256693 Linking OpenCourseWares and Open Education Resources: Creating an Effective Search and Recommendation System
Authors: Brett E. Shelton, Joel Duffin, Yuxuan Wang, Justin Ball
Abstract:
With a growing number of digital libraries and other open education repositories being made available throughout the world, effective search and retrieval tools are necessary to access the desired materials that surpass the effectiveness of traditional, allinclusive search engines. This paper discusses the design and use of Folksemantic, a platform that integrates OpenCourseWare search, Open Educational Resource recommendations, and social network functionality into a single open source project. The paper describes how the system was originally envisioned, its goals for users, and data that provides insight into how it is actually being used. Data sources include website click-through data, query logs, web server log files and user account data. Based on a descriptive analysis of its current use, modifications to the platform's design are recommended to better address goals of the system, along with recommendations for additional phases of research.Keywords: Digital libraries, open education, recommendation system, social networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22026692 First Studies of the Influence of Single Gene Perturbations on the Inference of Genetic Networks
Authors: Frank Emmert-Streib, Matthias Dehmer
Abstract:
Inferring the network structure from time series data is a hard problem, especially if the time series is short and noisy. DNA microarray is a technology allowing to monitor the mRNA concentration of thousands of genes simultaneously that produces data of these characteristics. In this study we try to investigate the influence of the experimental design on the quality of the result. More precisely, we investigate the influence of two different types of random single gene perturbations on the inference of genetic networks from time series data. To obtain an objective quality measure for this influence we simulate gene expression values with a biologically plausible model of a known network structure. Within this framework we study the influence of single gene knock-outs in opposite to linearly controlled expression for single genes on the quality of the infered network structure.Keywords: Dynamic Bayesian networks, microarray data, structure learning, Markov chain Monte Carlo.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15506691 Development a New Model of EEVC/WG17 Lower Legform for Pedestrian Safety
Authors: Alireza Noorpoor, Akbar Abvabi, Mehdi Saeed Kiasat
Abstract:
Development, calibration and validation of a threedimensional model of the Legform impactor for pedestrian crash with bumper are presented. Lower limb injury is becoming an increasingly important concern in vehicle safety for both occupants and pedestrians. In order to prevent lower extremity injuries to a pedestrian when struck by a car, it is important to elucidate the loadings from car front structures on the lower extremities and the injury mechanism caused by these loadings. An impact test procedure with a legform addressing lower limb injuries in car pedestrian accidents has been proposed by EEVC/WG17. In this study a modified legform impactor is introduced and validated against EEVC/WG17 criteria. The finite element model of this legform is developed using LS-DYNA software. Total mass of legform impactor is 13.4 kg.Technical specifications including the mass and location of the center of gravity and moment of inertia about a horizontal axis through the respective centre of gravity in femur and tibia are determined. The obtained results of legform impactor static and dynamic tests are as specified in the EEVC/WG17.Keywords: Legform impactor, Pedestrian safety, Finite element model, Knee joint, EEVC/WG17.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30506690 Estimating Shortest Circuit Path Length Complexity
Authors: Azam Beg, P. W. Chandana Prasad, S.M.N.A Senenayake
Abstract:
When binary decision diagrams are formed from uniformly distributed Monte Carlo data for a large number of variables, the complexity of the decision diagrams exhibits a predictable relationship to the number of variables and minterms. In the present work, a neural network model has been used to analyze the pattern of shortest path length for larger number of Monte Carlo data points. The neural model shows a strong descriptive power for the ISCAS benchmark data with an RMS error of 0.102 for the shortest path length complexity. Therefore, the model can be considered as a method of predicting path length complexities; this is expected to lead to minimum time complexity of very large-scale integrated circuitries and related computer-aided design tools that use binary decision diagrams.Keywords: Monte Carlo circuit simulation data, binary decision diagrams, neural network modeling, shortest path length estimation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13786689 Welding Process Selection for Storage Tank by Integrated Data Envelopment Analysis and Fuzzy Credibility Constrained Programming Approach
Authors: Rahmad Wisnu Wardana, Eakachai Warinsiriruk, Sutep Joy-A-Ka
Abstract:
Selecting the most suitable welding process usually depends on experiences or common application in similar companies. However, this approach generally ignores many criteria that can be affecting the suitable welding process selection. Therefore, knowledge automation through knowledge-based systems will significantly improve the decision-making process. The aims of this research propose integrated data envelopment analysis (DEA) and fuzzy credibility constrained programming approach for identifying the best welding process for stainless steel storage tank in the food and beverage industry. The proposed approach uses fuzzy concept and credibility measure to deal with uncertain data from experts' judgment. Furthermore, 12 parameters are used to determine the most appropriate welding processes among six competitive welding processes.
Keywords: Welding process selection, data envelopment analysis, fuzzy credibility constrained programming, storage tank.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7996688 A Grey-Fuzzy Controller for Optimization Technique in Wireless Networks
Authors: Yao-Tien Wang, Hsiang-Fu Yu, Dung Chen Chiou
Abstract:
In wireless and mobile communications, this progress provides opportunities for introducing new standards and improving existing services. Supporting multimedia traffic with wireless networks quality of service (QoS). In this paper, a grey-fuzzy controller for radio resource management (GF-RRM) is presented to maximize the number of the served calls and QoS provision in wireless networks. In a wireless network, the call arrival rate, the call duration and the communication overhead between the base stations and the control center are vague and uncertain. In this paper, we develop a method to predict the cell load and to solve the RRM problem based on the GF-RRM, and support the present facility has been built on the application-level of the wireless networks. The GF-RRM exhibits the better adaptability, fault-tolerant capability and performance than other algorithms. Through simulations, we evaluate the blocking rate, update overhead, and channel acquisition delay time of the proposed method. The results demonstrate our algorithm has the lower blocking rate, less updated overhead, and shorter channel acquisition delay.Keywords: radio resource management, grey prediction, fuzzylogic control, wireless networks, quality of service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17176687 The Application of Queuing Theory in Multi-Stage Production Lines
Authors: Hani Shafeek, Muhammed Marsudi
Abstract:
The purpose of this work is examining the multiproduct multi-stage in a battery production line. To improve the performances of an assembly production line by determine the efficiency of each workstation. Data collected from every workstation. The data are throughput rate, number of operator, and number of parts that arrive and leaves during part processing. Data for the number of parts that arrives and leaves are collected at least at the amount of ten samples to make the data is possible to be analyzed by Chi-Squared Goodness Test and queuing theory. Measures of this model served as the comparison with the standard data available in the company. Validation of the task time value resulted by comparing it with the task time value based on the company database. Some performance factors for the multi-product multi-stage in a battery production line in this work are shown. The efficiency in each workstation was also shown. Total production time to produce each part can be determined by adding the total task time in each workstation. To reduce the queuing time and increase the efficiency based on the analysis any probably improvement should be done. One probably action is by increasing the number of operators how manually operate this workstation.
Keywords: Production line, manufacturing, performance measurement, queuing theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31496686 Robust Digital Cinema Watermarking
Authors: Sadi Vural, Hiromi Tomii, Hironori Yamauchi
Abstract:
With the advent of digital cinema and digital broadcasting, copyright protection of video data has been one of the most important issues. We present a novel method of watermarking for video image data based on the hardware and digital wavelet transform techniques and name it as “traceable watermarking" because the watermarked data is constructed before the transmission process and traced after it has been received by an authorized user. In our method, we embed the watermark to the lowest part of each image frame in decoded video by using a hardware LSI. Digital Cinema is an important application for traceable watermarking since digital cinema system makes use of watermarking technology during content encoding, encryption, transmission, decoding and all the intermediate process to be done in digital cinema systems. The watermark is embedded into the randomly selected movie frames using hash functions. Embedded watermark information can be extracted from the decoded video data. For that, there is no need to access original movie data. Our experimental results show that proposed traceable watermarking method for digital cinema system is much better than the convenient watermarking techniques in terms of robustness, image quality, speed, simplicity and robust structure.Keywords: Decoder, Digital content, JPEG2000 Frame, System-On-Chip, traceable watermark, Hash Function, CRC-32.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16496685 Statistical Analysis of Interferon-γ for the Effectiveness of an Anti-Tuberculous Treatment
Authors: Shishen Xie, Yingda L. Xie
Abstract:
Tuberculosis (TB) is a potentially serious infectious disease that remains a health concern. The Interferon Gamma Release Assay (IGRA) is a blood test to find out if an individual is tuberculous positive or negative. This study applies statistical analysis to the clinical data of interferon-gamma levels of seventy-three subjects who diagnosed pulmonary TB in an anti-tuberculous treatment. Data analysis is performed to determine if there is a significant decline in interferon-gamma levels for the subjects during a period of six months, and to infer if the anti-tuberculous treatment is effective.Keywords: Data analysis, interferon gamma release assay, statistical methods, tuberculosis infection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19566684 Fault Detection of Drinking Water Treatment Process Using PCA and Hotelling's T2 Chart
Authors: Joval P George, Dr. Zheng Chen, Philip Shaw
Abstract:
This paper deals with the application of Principal Component Analysis (PCA) and the Hotelling-s T2 Chart, using data collected from a drinking water treatment process. PCA is applied primarily for the dimensional reduction of the collected data. The Hotelling-s T2 control chart was used for the fault detection of the process. The data was taken from a United Utilities Multistage Water Treatment Works downloaded from an Integrated Program Management (IPM) dashboard system. The analysis of the results show that Multivariate Statistical Process Control (MSPC) techniques such as PCA, and control charts such as Hotelling-s T2, can be effectively applied for the early fault detection of continuous multivariable processes such as Drinking Water Treatment. The software package SIMCA-P was used to develop the MSPC models and Hotelling-s T2 Chart from the collected data.
Keywords: Principal component analysis, hotelling's t2 chart, multivariate statistical process control, drinking water treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27866683 Replicating Data Objects in Large-scale Distributed Computing Systems using Extended Vickrey Auction
Authors: Samee Ullah Khan, Ishfaq Ahmad
Abstract:
This paper proposes a novel game theoretical technique to address the problem of data object replication in largescale distributed computing systems. The proposed technique draws inspiration from computational economic theory and employs the extended Vickrey auction. Specifically, players in a non-cooperative environment compete for server-side scarce memory space to replicate data objects so as to minimize the total network object transfer cost, while maintaining object concurrency. Optimization of such a cost in turn leads to load balancing, fault-tolerance and reduced user access time. The method is experimentally evaluated against four well-known techniques from the literature: branch and bound, greedy, bin-packing and genetic algorithms. The experimental results reveal that the proposed approach outperforms the four techniques in both the execution time and solution quality.Keywords: Auctions, data replication, pricing, static allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14656682 The Effect of the COVID-19 Pandemic on Foreign Students Studying in Hungary
Authors: Anita Kéri
Abstract:
Satisfying foreign student needs has been in the center of research interest in the past several years. Higher education institutions have been exploring factors influencing foreign student satisfaction to stay competitive on the educational market. Even though foreign student satisfaction and loyalty are topics investigated deeply in the literature, the academic years of 2020 and 2021 have revealed challenges never experienced before. With the COVID-19 pandemic, new factors have emerged that might influence foreign student satisfaction and loyalty in higher education. The aim of the current research is to shed lights on what factors influence foreign student satisfaction and loyalty in the post-pandemic educational era, and to reveal if the effects of factors influencing satisfaction and loyalty have changed compared to previous findings. Initial results show that students are less willing to participate in online surveys during and after the pandemic. The return rate of the survey instrument is below 5%. Results also reveal that there is a slight difference in what factors students deem important during pandemic times regarding their satisfaction and loyalty. The results of the current study help us determine what factors higher education institutions need to consider, when planning the future service affordances for their foreign students, that might influence their satisfaction and loyalty.
Keywords: COVID-19, foreign students, loyalty, pandemic, satisfaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3216681 Fast Fourier Transform-Based Steganalysis of Covert Communications over Streaming Media
Authors: Jinghui Peng, Shanyu Tang, Jia Li
Abstract:
Steganalysis seeks to detect the presence of secret data embedded in cover objects, and there is an imminent demand to detect hidden messages in streaming media. This paper shows how a steganalysis algorithm based on Fast Fourier Transform (FFT) can be used to detect the existence of secret data embedded in streaming media. The proposed algorithm uses machine parameter characteristics and a network sniffer to determine whether the Internet traffic contains streaming channels. The detected streaming data is then transferred from the time domain to the frequency domain through FFT. The distributions of power spectra in the frequency domain between original VoIP streams and stego VoIP streams are compared in turn using t-test, achieving the p-value of 7.5686E-176 which is below the threshold. The results indicate that the proposed FFT-based steganalysis algorithm is effective in detecting the secret data embedded in VoIP streaming media.Keywords: Steganalysis, security, fast Fourier transform, streaming media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7836680 Survey Based Data Security Evaluation in Pakistan Financial Institutions against Malicious Attacks
Authors: Naveed Ghani, Samreen Javed
Abstract:
In today’s heterogeneous network environment, there is a growing demand for distrust clients to jointly execute secure network to prevent from malicious attacks as the defining task of propagating malicious code is to locate new targets to attack. Residual risk is always there no matter what solutions are implemented or whet so ever security methodology or standards being adapted. Security is the first and crucial phase in the field of Computer Science. The main aim of the Computer Security is gathering of information with secure network. No one need wonder what all that malware is trying to do: It's trying to steal money through data theft, bank transfers, stolen passwords, or swiped identities. From there, with the help of our survey we learn about the importance of white listing, antimalware programs, security patches, log files, honey pots, and more used in banks for financial data protection but there’s also a need of implementing the IPV6 tunneling with Crypto data transformation according to the requirements of new technology to prevent the organization from new Malware attacks and crafting of its own messages and sending them to the target. In this paper the writer has given the idea of implementing IPV6 Tunneling Secessions on private data transmission from financial organizations whose secrecy needed to be safeguarded.
Keywords: Network worms, malware infection propagating malicious code, virus, security, VPN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28116679 A Prediction-Based Reversible Watermarking for MRI Images
Authors: Nuha Omran Abokhdair, Azizah Bt Abdul Manaf
Abstract:
Reversible watermarking is a special branch of image watermarking, that is able to recover the original image after extracting the watermark from the image. In this paper, an adaptive prediction-based reversible watermarking scheme is presented, in order to increase the payload capacity of MRI medical images. The scheme divides the image into two parts, Region of Interest (ROI) and Region of Non-Interest (RONI). Two bits are embedded in each embeddable pixel of RONI and one bit is embedded in each embeddable pixel of ROI. The experimental results demonstrate that the proposed scheme is able to achieve high embedding capacity. This is mainly caused by two reasons. First, the pixels that were excluded from data embedding due to overflow/underflow are used for data embedding. Second, large location map that need to be added to watermark data as overhead is eliminated and thus lower data embedding capacity is prevented. Moreover, the scheme provides good visual quality to the watermarked image.
Keywords: Medical image watermarking, reversible watermarking, Difference Expansion, Prediction-Error Expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19166678 Using TRACE and SNAP Codes to Establish the Model of Maanshan PWR for SBO Accident
Authors: B. R. Shen, J. R. Wang, J. H. Yang, S. W. Chen, C. Shih, Y. Chiang, Y. F. Chang, Y. H. Huang
Abstract:
In this research, TRACE code with the interface code-SNAP was used to simulate and analyze the SBO (station blackout) accident which occurred in Maanshan PWR (pressurized water reactor) nuclear power plant (NPP). There are four main steps in this research. First, the SBO accident data of Maanshan NPP were collected. Second, the TRACE/SNAP model of Maanshan NPP was established by using these data. Third, this TRACE/SNAP model was used to perform the simulation and analysis of SBO accident. Finally, the simulation and analysis of SBO with mitigation equipments was performed. The analysis results of TRACE are consistent with the data of Maanshan NPP. The mitigation equipments of Maanshan can maintain the safety of Maanshan in the SBO according to the TRACE predictions.
Keywords: PWR, TRACE, SBO, Maanshan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7686677 Salbutamol Sulphate-Ethylcellulose Tabletted Microcapsules: Pharmacokinetic Study using Convolution Approach
Authors: Ghulam Murtaza, Kalsoom Farzana
Abstract:
The aim of this article is to narrate the utility of novel simulation approach i.e. convolution method to predict blood concentration of drug utilizing dissolution data of salbutamol sulphate microparticulate formulations with different release patterns (1:1, 1:2 and 1:3, drug:polymer). Dissolution apparatus II USP 2007 and 900 ml double distilled water stirrd at 50 rpm was employed for dissolution analysis. From dissolution data, blood drug concentration was determined, and in return predicted blood drug concentration data was used to calculate the pharmacokinetic parameters i.e. Cmax, Tmax, and AUC. Convolution is a good biwaiver technique; however its better utility needs it application in the conditions where biorelevant dissolution media are used.
Keywords: Convolution, Dissolution, Pharmacokinetics, Salbutamol sulphate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25946676 High Performance in Parallel Data Integration: An Empirical Evaluation of the Ratio Between Processing Time and Number of Physical Nodes
Authors: Caspar von Seckendorff, Eldar Sultanow
Abstract:
Many studies have shown that parallelization decreases efficiency [1], [2]. There are many reasons for these decrements. This paper investigates those which appear in the context of parallel data integration. Integration processes generally cannot be allocated to packages of identical size (i. e. tasks of identical complexity). The reason for this is unknown heterogeneous input data which result in variable task lengths. Process delay is defined by the slowest processing node. It leads to a detrimental effect on the total processing time. With a real world example, this study will show that while process delay does initially increase with the introduction of more nodes it ultimately decreases again after a certain point. The example will make use of the cloud computing platform Hadoop and be run inside Amazon-s EC2 compute cloud. A stochastic model will be set up which can explain this effect.
Keywords: Process delay, speedup, efficiency, parallel computing, data integration, E-Commerce, Amazon Elastic Compute Cloud (EC2), Hadoop, Nutch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16296675 Improvements in Navy Data Networks and Tactical Communication Systems
Authors: Laurent Enel, Franck Guillem
Abstract:
This paper considers the benefits gained by using an efficient quality of service management such as DiffServ technique to improve the performance of military communications. Low delay and no blockage must be achieved especially for real time tactical data. All traffic flows generated by different applications do not need same bandwidth, same latency, same error ratio and this scalable technique of packet management based on priority levels is analysed. End to end architectures supporting various traffic flows and including lowbandwidth and high-delay HF or SHF military links as well as unprotected Internet sub domains are studied. A tuning of Diffserv parameters is proposed in accordance with different loads of various traffic and different operational situations.Keywords: Military data networks, Quality of service, Tacticalsystems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20696674 Text Mining of Twitter Data Using a Latent Dirichlet Allocation Topic Model and Sentiment Analysis
Authors: Sidi Yang, Haiyi Zhang
Abstract:
Twitter is a microblogging platform, where millions of users daily share their attitudes, views, and opinions. Using a probabilistic Latent Dirichlet Allocation (LDA) topic model to discern the most popular topics in the Twitter data is an effective way to analyze a large set of tweets to find a set of topics in a computationally efficient manner. Sentiment analysis provides an effective method to show the emotions and sentiments found in each tweet and an efficient way to summarize the results in a manner that is clearly understood. The primary goal of this paper is to explore text mining, extract and analyze useful information from unstructured text using two approaches: LDA topic modelling and sentiment analysis by examining Twitter plain text data in English. These two methods allow people to dig data more effectively and efficiently. LDA topic model and sentiment analysis can also be applied to provide insight views in business and scientific fields.
Keywords: Text mining, Twitter, topic model, sentiment analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18096673 Topological Queries on Graph-structured XML Data: Models and Implementations
Authors: Hongzhi Wang, Jianzhong Li, Jizhou Luo
Abstract:
In many applications, data is in graph structure, which can be naturally represented as graph-structured XML. Existing queries defined on tree-structured and graph-structured XML data mainly focus on subgraph matching, which can not cover all the requirements of querying on graph. In this paper, a new kind of queries, topological query on graph-structured XML is presented. This kind of queries consider not only the structure of subgraph but also the topological relationship between subgraphs. With existing subgraph query processing algorithms, efficient algorithms for topological query processing are designed. Experimental results show the efficiency of implementation algorithms.Keywords: XML, Graph Structure, Topological query.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14146672 AI-Based Technologies in International Arbitration: An Exploratory Study on the Practicability of Applying AI Tools on International Arbitration
Authors: Annabelle Ogochukwu Onyefulu-Kingston
Abstract:
One of the major purposes of artificial intelligence (AI) today is to evaluate and analyse millions of micro and macro data in order to determine what is relevant in a particular case and proffer it in an adequate manner. Microdata, as far as it relates to AI in international arbitration, is the millions of key issues specifically mentioned by either one or both parties or by their counsels, arbitrators, or arbitral tribunals in arbitral proceedings. This can be qualifications of expert witness and admissibility of evidence, amongst others. Macro data, on the other hand, refer to data derived from the resolution of the dispute and, consequently, the final and binding award. A notable example of this includes the rationale of the award and specific and general damages awarded, amongst others. This paper aims to critically evaluate and analyses the possibility of technological inclusion in international arbitration. This research will be imploring the qualitative method by evaluating existing literature on the consequence of applying AI to both micro and macro data in international arbitration, and how this can be of assistance to parties, counsels, and arbitrators.
Keywords: AI-based technologies, algorithms, arbitrators, international arbitration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 376671 Validation and Selection between Machine Learning Technique and Traditional Methods to Reduce Bullwhip Effects: a Data Mining Approach
Authors: Hamid R. S. Mojaveri, Seyed S. Mousavi, Mojtaba Heydar, Ahmad Aminian
Abstract:
The aim of this paper is to present a methodology in three steps to forecast supply chain demand. In first step, various data mining techniques are applied in order to prepare data for entering into forecasting models. In second step, the modeling step, an artificial neural network and support vector machine is presented after defining Mean Absolute Percentage Error index for measuring error. The structure of artificial neural network is selected based on previous researchers' results and in this article the accuracy of network is increased by using sensitivity analysis. The best forecast for classical forecasting methods (Moving Average, Exponential Smoothing, and Exponential Smoothing with Trend) is resulted based on prepared data and this forecast is compared with result of support vector machine and proposed artificial neural network. The results show that artificial neural network can forecast more precisely in comparison with other methods. Finally, forecasting methods' stability is analyzed by using raw data and even the effectiveness of clustering analysis is measured.Keywords: Artificial Neural Networks (ANN), bullwhip effect, demand forecasting, Support Vector Machine (SVM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20106670 Characteristics of Neonates and Child Health Outcomes after the Mamuju Earthquake Disaster
Authors: Dimas T. Anantyo, Zsa-Zsa A. Laksmi, Adhie N. Radityo, Arsita E. Rini, Gatot I. Sarosa
Abstract:
A six-point-two-magnitude earthquake rocked Mamuju District, West Sulawesi Province, Indonesia, on 15 January 2021, causing significant health issues for the affected community, particularly among vulnerable populations such as neonates and children. The aim of this study is to examine and describe the diseases diagnosed in the pediatric population in Mamuju 14 days after the earthquake. This study uses a prospective observational study of the pediatric population presenting at West Sulawesi Regional Hospital, Mamuju Regional Public Hospital, and Bhayangkara Hospital for the period of 14 days after the earthquake. Demographic and clinical information was recorded. 153 children were admitted to the health center. Children younger than six years old were the highest proportion (78%). Out of 153 children, 82 of them were male (54%). The most frequently diagnosed disease during the first and second weeks after the earthquake was respiratory problems, followed by gastrointestinal problems that showed an increase in incidence in the second week. This study found that age has a correlation with common disease in children after an earthquake. Respiratory and gastrointestinal problems were found to be the most common diseases among the pediatric population in Mamuju after the earthquake.
Keywords: Health outcomes, pediatric population, earthquake, Mamuju.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206669 Discovery of Sequential Patterns Based On Constraint Patterns
Authors: Shigeaki Sakurai, Youichi Kitahata, Ryohei Orihara
Abstract:
This paper proposes a method that discovers sequential patterns corresponding to user-s interests from sequential data. This method expresses the interests as constraint patterns. The constraint patterns can define relationships among attributes of the items composing the data. The method recursively decomposes the constraint patterns into constraint subpatterns. The method evaluates the constraint subpatterns in order to efficiently discover sequential patterns satisfying the constraint patterns. Also, this paper applies the method to the sequential data composed of stock price indexes and verifies its effectiveness through comparing it with a method without using the constraint patterns.
Keywords: Sequential pattern mining, Constraint pattern, Attribute constraint, Stock price indexes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14236668 The Investigation of Motor Cooling Performance
Authors: Chih-Chung Chang, Sy-Chi Kuo, Chen-Kang Huang, Sih-Li Chen
Abstract:
This study experimentally and numerically investigates motor cooling performance. The motor consists of a centrifugal fan, two axial fans, a shaft, a stator, a rotor and a heat exchanger with 637 cooling tubes. The pressure rise-flow rate (P-Q) performance curves of the cooling fans at 1800 rpm are tested using a test apparatus complying with the Chinese National Standard (CNS) 2726. Compared with the experimental measurements, the numerical analysis results show that the P-Q performance curves of the axial fan and centrifugal fan can be estimated within about 2% and 6%, respectively. By using the simplified model, setting up the heat exchanger and stator as porous media, the flow field in the motor is calculated. By using the results of the flow field near the rotor and stator, and subjecting the heat generation rate as a boundary condition, the temperature distributions of the stator and rotor are also calculated. The simulation results show that the calculated temperature of the stator winding near the axial fans is lower by about 5% than the measured value, and the calculated temperature of the stator core located at the center of the stator is about 1% higher than the measured value. Besides, discussion is made to improve the motor cooling performance.Keywords: Motor cooling, P-Q performance curves, CNS, porous media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16376667 Modeling Prices of Electricity Futures at EEX
Authors: Robest Flasza, Milan Rippel, Jan Solc
Abstract:
The main aim of this paper is to develop and calibrate an econometric model for modeling prices of long term electricity futures contracts. The calibration of our model is performed on data from EEX AG allowing us to capture the specific features of German electricity market. The data sample contains several structural breaks which have to be taken into account for modeling. We model the data with an ARIMAX model which reveals high correlation between the price of electricity futures contracts and prices of LT futures contracts of fuels (namely coal, natural gas and crude oil). Besides this, also a share price index of representative electricity companies traded on Xetra, spread between 10Y and 1Y German bonds and exchange rate between EUR and USD appeared to have significant explanatory power over these futures contracts on EEX.Keywords: electricity futures, EEX, ARIMAX, emissionallowances
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20116666 Data-driven ASIC for Multichannel Sensors
Authors: Eduard Atkin, Alexander Klyuev, Vitaly Shumikhin
Abstract:
An approach and its implementation in 0.18 m CMOS process of the multichannel ASIC for capacitive (up to 30 pF) sensors are described in the paper. The main design aim was to study an analog data-driven architecture. The design was done for an analog derandomizing function of the 128 to 16 structure. That means that the ASIC structure should provide a parallel front-end readout of 128 input analog sensor signals and after the corresponding fast commutation with appropriate arbitration logic their processing by means of 16 output chains, including analog-to-digital conversion. The principal feature of the ASIC is a low power consumption within 2 mW/channel (including a 9-bit 20Ms/s ADC) at a maximum average channel hit rate not less than 150 kHz.
Keywords: Data-driven architecture, derandomizer, multichannel sensor readout
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423