Search results for: general variable neighborhood search algorithm.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5720

Search results for: general variable neighborhood search algorithm.

4640 Optimum Design of an Absorption Heat Pump Integrated with a Kraft Industry using Genetic Algorithm

Authors: B. Jabbari, N. Tahouni, M. H. Panjeshahi

Abstract:

In this study the integration of an absorption heat pump (AHP) with the concentration section of an industrial pulp and paper process is investigated using pinch technology. The optimum design of the proposed water-lithium bromide AHP is then achieved by minimizing the total annual cost. A comprehensive optimization is carried out by relaxation of all stream pressure drops as well as heat exchanger areas involving in AHP structure. It is shown that by applying genetic algorithm optimizer, the total annual cost of the proposed AHP is decreased by 18% compared to one resulted from simulation.

Keywords: Absorption Heat Pump, Genetic Algorithm, Kraft Industry, Pinch Technology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
4639 Two Area Power Systems Economic Dispatch Problem Solving Considering Transmission Capacity Constraints

Authors: M. Zarei, A. Roozegar, R. Kazemzadeh, J.M. Kauffmann

Abstract:

This paper describes an efficient and practical method for economic dispatch problem in one and two area electrical power systems with considering the constraint of the tie transmission line capacity constraint. Direct search method (DSM) is used with some equality and inequality constraints of the production units with any kind of fuel cost function. By this method, it is possible to use several inequality constraints without having difficulty for complex cost functions or in the case of unavailability of the cost function derivative. To minimize the number of total iterations in searching, process multi-level convergence is incorporated in the DSM. Enhanced direct search method (EDSM) for two area power system will be investigated. The initial calculation step size that causes less iterations and then less calculation time is presented. Effect of the transmission tie line capacity, between areas, on economic dispatch problem and on total generation cost will be studied; line compensation and active power with reactive power dispatch are proposed to overcome the high generation costs for this multi-area system.

Keywords: Economic dispatch, Power System Operation, Direct Search Method, Transmission Capacity Constraint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491
4638 Edge Detection Algorithm Based on Wavelet De-nosing Applied tothe X-ray Image Enhancement of the Electric Equipment

Authors: Fei Xue, Hong Yu, Da-da Wang, Wei Zhang, Rong-min Zou, Xiao-lanCai

Abstract:

The X-ray technology has been used in non-destructive evaluation in the Power System, in which a visual non-destructive inspection method for the electrical equipment is provided. However, lots of noise is existed in the images that are got from the X-ray digital images equipment. Therefore, the auto defect detection which based on these images will be very difficult to proceed. A theory on X-ray image de-noising algorithm based on wavelet transform is proposed in this paper. Then the edge detection algorithm is used so that the defect can be pushed out. The result of experiment shows that the method which utilized by this paper is very useful for de-noising on the X-ray images.

Keywords: de-noising, edge detection, wavelet transform, X-ray

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
4637 Identification of Optimum Parameters of Deep Drawing of a Cylindrical Workpiece using Neural Network and Genetic Algorithm

Authors: D. Singh, R. Yousefi, M. Boroushaki

Abstract:

Intelligent deep-drawing is an instrumental research field in sheet metal forming. A set of 28 different experimental data have been employed in this paper, investigating the roles of die radius, punch radius, friction coefficients and drawing ratios for axisymmetric workpieces deep drawing. This paper focuses an evolutionary neural network, specifically, error back propagation in collaboration with genetic algorithm. The neural network encompasses a number of different functional nodes defined through the established principles. The input parameters, i.e., punch radii, die radii, friction coefficients and drawing ratios are set to the network; thereafter, the material outputs at two critical points are accurately calculated. The output of the network is used to establish the best parameters leading to the most uniform thickness in the product via the genetic algorithm. This research achieved satisfactory results based on demonstration of neural networks.

Keywords: Deep-drawing, Neural network, Genetic algorithm, Sheet metal forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2211
4636 Operating Conditions Optimization of Steam Injection in Enhanced Oil Recovery Using Duelist Algorithm

Authors: Totok R. Biyanto, Sonny Irawan, Hiskia J. Ginting, Matradji, Ya’umar, A. I. Fitri

Abstract:

Steam injection is the most suitable of Enhanced Oil Recovery (EOR) methods to recover high viscosity oil. This is due to the capabilities of steam to reduce oil viscosity and increase the sweep capability of oil from the injection well toward the production well. Oil operating conditions in production should be match well with the operating condition target at the bottom of the production well. It is influenced by oil properties and reservoir rock properties. Hence, the operating condition should be optimized. Optimization requires three components i.e., objective function, model, and optimization technique. In this paper, the objective function is to obtain the optimum operating condition at the production well. The model was built using Darcy equation and mass-energy balance. The optimization technique utilizes Duelist Algorithm due to the effectiveness of its algorithm to obtain the desirable optimization results at the optimum operating condition.

Keywords: Enhanced oil recovery, steam injection, operating conditions, modeling, optimization, Duelist algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
4635 System Reduction by Eigen Permutation Algorithm and Improved Pade Approximations

Authors: Jay Singh, Kalyan Chatterjee, C. B. Vishwakarma

Abstract:

A mixed method by combining a Eigen algorithm and improved pade approximations is proposed for reducing the order of the large-scale dynamic systems. The most dominant Eigen value of both original and reduced order systems remain same in this method. The proposed method guarantees stability of the reduced model if the original high-order system is stable and is comparable in quality with the other well known existing order reduction methods. The superiority of the proposed method is shown through examples taken from the literature.

Keywords: Eigen algorithm, Order reduction, improved pade approximations, Stability, Transfer function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
4634 Incremental Algorithm to Cluster the Categorical Data with Frequency Based Similarity Measure

Authors: S.Aranganayagi, K.Thangavel

Abstract:

Clustering categorical data is more complicated than the numerical clustering because of its special properties. Scalability and memory constraint is the challenging problem in clustering large data set. This paper presents an incremental algorithm to cluster the categorical data. Frequencies of attribute values contribute much in clustering similar categorical objects. In this paper we propose new similarity measures based on the frequencies of attribute values and its cardinalities. The proposed measures and the algorithm are experimented with the data sets from UCI data repository. Results prove that the proposed method generates better clusters than the existing one.

Keywords: Clustering, Categorical, Incremental, Frequency, Domain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
4633 Association Rules Mining and NOSQL Oriented Document in Big Data

Authors: Sarra Senhadji, Imene Benzeguimi, Zohra Yagoub

Abstract:

Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.

Keywords: Apriori, Association rules mining, Big Data, data mining, Hadoop, Map Reduce, MongoDB, NoSQL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 706
4632 Automated Inspection Algorithm for Thick Plate Using Dual Light Switching Lighting Method

Authors: Yong-JuJeon, Doo-chul Choi, Jong Pil Yun, Changhyun Park, Homoon Bae, Sang Woo Kim

Abstract:

This paper presents an automated inspection algorithm for a thick plate. Thick plates typically have various types of surface defects, such as scabs, scratches, and roller marks. These defects have individual characteristics including brightness and shape. Therefore, it is not simple to detect all the defects. In order to solve these problems and to detect defects more effectively, we propose a dual light switching lighting method and a defect detection algorithm based on Gabor filters.

Keywords: Thick plate, Defect, Inspection, Gabor filter, Dual Light Switching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
4631 A Cognitive Robot Collaborative Reinforcement Learning Algorithm

Authors: Amit Gil, Helman Stern, Yael Edan

Abstract:

A cognitive collaborative reinforcement learning algorithm (CCRL) that incorporates an advisor into the learning process is developed to improve supervised learning. An autonomous learner is enabled with a self awareness cognitive skill to decide when to solicit instructions from the advisor. The learner can also assess the value of advice, and accept or reject it. The method is evaluated for robotic motion planning using simulation. Tests are conducted for advisors with skill levels from expert to novice. The CCRL algorithm and a combined method integrating its logic with Clouse-s Introspection Approach, outperformed a base-line fully autonomous learner, and demonstrated robust performance when dealing with various advisor skill levels, learning to accept advice received from an expert, while rejecting that of less skilled collaborators. Although the CCRL algorithm is based on RL, it fits other machine learning methods, since advisor-s actions are only added to the outer layer.

Keywords: Robot learning, human-robot collaboration, motion planning, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
4630 Multidisciplinary and Multilevel Design Methodology of Unmanned Aerial Vehicles Using Enhanced Collaborative Optimization

Authors: Pedro F. Albuquerque, Pedro V. Gamboa, Miguel A. Silvestre

Abstract:

The present work describes the implementation of the Enhanced Collaborative Optimization (ECO) multilevel architecture with a gradient-based optimization algorithm with the aim of performing a multidisciplinary design optimization of a generic unmanned aerial vehicle with morphing technologies. The concepts of weighting coefficient and dynamic compatibility parameter are presented for the ECO architecture. A routine that calculates the aircraft performance for the user defined mission profile and vehicle’s performance requirements has been implemented using low fidelity models for the aerodynamics, stability, propulsion, weight, balance and flight performance. A benchmarking case study for evaluating the advantage of using a variable span wing within the optimization methodology developed is presented.

Keywords: Multidisciplinary, Multilevel, Morphing, Enhanced Collaborative Optimization (ECO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2499
4629 BIDENS: Iterative Density Based Biclustering Algorithm With Application to Gene Expression Analysis

Authors: Mohamed A. Mahfouz, M. A. Ismail

Abstract:

Biclustering is a very useful data mining technique for identifying patterns where different genes are co-related based on a subset of conditions in gene expression analysis. Association rules mining is an efficient approach to achieve biclustering as in BIMODULE algorithm but it is sensitive to the value given to its input parameters and the discretization procedure used in the preprocessing step, also when noise is present, classical association rules miners discover multiple small fragments of the true bicluster, but miss the true bicluster itself. This paper formally presents a generalized noise tolerant bicluster model, termed as μBicluster. An iterative algorithm termed as BIDENS based on the proposed model is introduced that can discover a set of k possibly overlapping biclusters simultaneously. Our model uses a more flexible method to partition the dimensions to preserve meaningful and significant biclusters. The proposed algorithm allows discovering biclusters that hard to be discovered by BIMODULE. Experimental study on yeast, human gene expression data and several artificial datasets shows that our algorithm offers substantial improvements over several previously proposed biclustering algorithms.

Keywords: Machine learning, biclustering, bi-dimensional clustering, gene expression analysis, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
4628 Progressive AAM Based Robust Face Alignment

Authors: Daehwan Kim, Jaemin Kim, Seongwon Cho, Yongsuk Jang, Sun-Tae Chung, Boo-Gyoun Kim

Abstract:

AAM has been successfully applied to face alignment, but its performance is very sensitive to initial values. In case the initial values are a little far distant from the global optimum values, there exists a pretty good possibility that AAM-based face alignment may converge to a local minimum. In this paper, we propose a progressive AAM-based face alignment algorithm which first finds the feature parameter vector fitting the inner facial feature points of the face and later localize the feature points of the whole face using the first information. The proposed progressive AAM-based face alignment algorithm utilizes the fact that the feature points of the inner part of the face are less variant and less affected by the background surrounding the face than those of the outer part (like the chin contour). The proposed algorithm consists of two stages: modeling and relation derivation stage and fitting stage. Modeling and relation derivation stage first needs to construct two AAM models: the inner face AAM model and the whole face AAM model and then derive relation matrix between the inner face AAM parameter vector and the whole face AAM model parameter vector. In the fitting stage, the proposed algorithm aligns face progressively through two phases. In the first phase, the proposed algorithm will find the feature parameter vector fitting the inner facial AAM model into a new input face image, and then in the second phase it localizes the whole facial feature points of the new input face image based on the whole face AAM model using the initial parameter vector estimated from using the inner feature parameter vector obtained in the first phase and the relation matrix obtained in the first stage. Through experiments, it is verified that the proposed progressive AAM-based face alignment algorithm is more robust with respect to pose, illumination, and face background than the conventional basic AAM-based face alignment algorithm.

Keywords: Face Alignment, AAM, facial feature detection, model matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
4627 GMDH Modeling Based on Polynomial Spline Estimation and Its Applications

Authors: LI qiu-min, TIAN yi-xiang, ZHANG gao-xun

Abstract:

GMDH algorithm can well describe the internal structure of objects. In the process of modeling, automatic screening of model structure and variables ensure the convergence rate.This paper studied a new GMDH model based on polynomial spline  stimation. The polynomial spline function was used to instead of the transfer function of GMDH to characterize the relationship between the input variables and output variables. It has proved that the algorithm has the optimal convergence rate under some conditions. The empirical results show that the algorithm can well forecast Consumer Price Index (CPI).

Keywords: spline, GMDH, nonparametric, bias, forecast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143
4626 Computational Aspects of Regression Analysis of Interval Data

Authors: Michal Cerny

Abstract:

We consider linear regression models where both input data (the values of independent variables) and output data (the observations of the dependent variable) are interval-censored. We introduce a possibilistic generalization of the least squares estimator, so called OLS-set for the interval model. This set captures the impact of the loss of information on the OLS estimator caused by interval censoring and provides a tool for quantification of this effect. We study complexity-theoretic properties of the OLS-set. We also deal with restricted versions of the general interval linear regression model, in particular the crisp input – interval output model. We give an argument that natural descriptions of the OLS-set in the crisp input – interval output cannot be computed in polynomial time. Then we derive easily computable approximations for the OLS-set which can be used instead of the exact description. We illustrate the approach by an example.

Keywords: Linear regression, interval-censored data, computational complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
4625 On Face Recognition using Gabor Filters

Authors: Al-Amin Bhuiyan, Chang Hong Liu

Abstract:

Gabor-based face representation has achieved enormous success in face recognition. This paper addresses a novel algorithm for face recognition using neural networks trained by Gabor features. The system is commenced on convolving a face image with a series of Gabor filter coefficients at different scales and orientations. Two novel contributions of this paper are: scaling of rms contrast and introduction of fuzzily skewed filter. The neural network employed for face recognition is based on the multilayer perceptron (MLP) architecture with backpropagation algorithm and incorporates the convolution filter response of Gabor jet. The effectiveness of the algorithm has been justified over a face database with images captured at different illumination conditions.

Keywords: Fuzzily skewed filter, Gabor filter, rms contrast, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3110
4624 Identification of Spam Keywords Using Hierarchical Category in C2C E-commerce

Authors: Shao Bo Cheng, Yong-Jin Han, Se Young Park, Seong-Bae Park

Abstract:

Consumer-to-Consumer (C2C) E-commerce has been growing at a very high speed in recent years. Since identical or nearly-same kinds of products compete one another by relying on keyword search in C2C E-commerce, some sellers describe their products with spam keywords that are popular but are not related to their products. Though such products get more chances to be retrieved and selected by consumers than those without spam keywords, the spam keywords mislead the consumers and waste their time. This problem has been reported in many commercial services like ebay and taobao, but there have been little research to solve this problem. As a solution to this problem, this paper proposes a method to classify whether keywords of a product are spam or not. The proposed method assumes that a keyword for a given product is more reliable if the keyword is observed commonly in specifications of products which are the same or the same kind as the given product. This is because that a hierarchical category of a product in general determined precisely by a seller of the product and so is the specification of the product. Since higher layers of the hierarchical category represent more general kinds of products, a reliable degree is differently determined according to the layers. Hence, reliable degrees from different layers of a hierarchical category become features for keywords and they are used together with features only from specifications for classification of the keywords. Support Vector Machines are adopted as a basic classifier using the features, since it is powerful, and widely used in many classification tasks. In the experiments, the proposed method is evaluated with a golden standard dataset from Yi-han-wang, a Chinese C2C E-commerce, and is compared with a baseline method that does not consider the hierarchical category. The experimental results show that the proposed method outperforms the baseline in F1-measure, which proves that spam keywords are effectively identified by a hierarchical category in C2C E-commerce.

Keywords: Spam Keyword, E-commerce, keyword features, spam filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2514
4623 Principal Component Analysis-Ranking as a Variable Selection Method for the Simultaneous Spectrophotometric Determination of Phenol, Resorcinol and Catechol in Real Samples

Authors: Nahid Ghasemi, Mohammad Goodarzi, Morteza Khosravi

Abstract:

Simultaneous determination of multicomponents of phenol, resorcinol and catechol with a chemometric technique a PCranking artificial neural network (PCranking-ANN) algorithm is reported in this study. Based on the data correlation coefficient method, 3 representative PCs are selected from the scores of original UV spectral data (35 PCs) as the original input patterns for ANN to build a neural network model. The results obtained by iterating 8000 .The RMSEP for phenol, resorcinol and catechol with PCranking- ANN were 0.6680, 0.0766 and 0.1033, respectively. Calibration matrices were 0.50-21.0, 0.50-15.1 and 0.50-20.0 μg ml-1 for phenol, resorcinol and catechol, respectively. The proposed method was successfully applied for the determination of phenol, resorcinol and catechol in synthetic and water samples.

Keywords: Phenol, Resorcinol, Catechol, Principal componentrankingArtificial Neural Network, Chemometrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
4622 Reducing Power in Error Correcting Code using Genetic Algorithm

Authors: Heesung Lee, Joonkyung Sung, Euntai Kim

Abstract:

This paper proposes a method which reduces power consumption in single-error correcting, double error-detecting checker circuits that perform memory error correction code. Power is minimized with little or no impact on area and delay, using the degrees of freedom in selecting the parity check matrix of the error correcting codes. The genetic algorithm is employed to solve the non linear power optimization problem. The method is applied to two commonly used SEC-DED codes: standard Hamming and odd column weight Hsiao codes. Experiments were performed to show the performance of the proposed method.

Keywords: Error correcting codes, genetic algorithm, non-linearpower optimization, Hamming code, Hsiao code.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192
4621 An Edge Detection and Filtering Mechanism of Two Dimensional Digital Objects Based on Fuzzy Inference

Authors: Ayman A. Aly, Abdallah A. Alshnnaway

Abstract:

The general idea behind the filter is to average a pixel using other pixel values from its neighborhood, but simultaneously to take care of important image structures such as edges. The main concern of the proposed filter is to distinguish between any variations of the captured digital image due to noise and due to image structure. The edges give the image the appearance depth and sharpness. A loss of edges makes the image appear blurred or unfocused. However, noise smoothing and edge enhancement are traditionally conflicting tasks. Since most noise filtering behaves like a low pass filter, the blurring of edges and loss of detail seems a natural consequence. Techniques to remedy this inherent conflict often encompass generation of new noise due to enhancement. In this work a new fuzzy filter is presented for the noise reduction of images corrupted with additive noise. The filter consists of three stages. (1) Define fuzzy sets in the input space to computes a fuzzy derivative for eight different directions (2) construct a set of IFTHEN rules by to perform fuzzy smoothing according to contributions of neighboring pixel values and (3) define fuzzy sets in the output space to get the filtered and edged image. Experimental results are obtained to show the feasibility of the proposed approach with two dimensional objects.

Keywords: Additive noise, edge preserving filtering, fuzzy image filtering, noise reduction, two dimensional mechanical images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
4620 Meaningful General Education Reform: Integrating Core Curricula and Institutional Values

Authors: Michael W. Markowitz

Abstract:

A central element of higher education today is the “core” or “general education” curriculum: that configuration of courses that often encompasses the essence of liberal arts education. Ensuring that such offerings reflect the mission and values of the institution is a challenge faced by most college and universities, often more than once. This paper presents an action model of program planning designed to structure the processes of developing, implementing and revising core curricula in a manner consistent with key institutional goals and objectives. Through presentation of a case study from a university in the United States, the elements of needs assessment, stakeholder investment and collaborative compromise are shown as key components of a planning strategy that can produce a general education program that is comprehensive, academically rigorous, assessable, and mission consistent. The paper concludes with recommendations for both the implementation and evaluation of such programs in practice.

Keywords: Academic assessment, academic program planning, curriculum development, general education reform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
4619 The New AIMD Congestion Control Algorithm

Authors: Hayder Natiq Jasem, Zuriati Ahmad Zukarnain, Mohamed Othman, Shamala Subramaniam

Abstract:

Congestion control is one of the fundamental issues in computer networks. Without proper congestion control mechanisms there is the possibility of inefficient utilization of resources, ultimately leading to network collapse. Hence congestion control is an effort to adapt the performance of a network to changes in the traffic load without adversely affecting users perceived utilities. AIMD (Additive Increase Multiplicative Decrease) is the best algorithm among the set of liner algorithms because it reflects good efficiency as well as good fairness. Our control model is based on the assumption of the original AIMD algorithm; we show that both efficiency and fairness of AIMD can be improved. We call our approach is New AIMD. We present experimental results with TCP that match the expectation of our theoretical analysis.

Keywords: Congestion control, Efficiency, Fairness, TCP, AIMD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2428
4618 Energy Efficient Clustering Algorithm with Global and Local Re-clustering for Wireless Sensor Networks

Authors: Ashanie Guanathillake, Kithsiri Samarasinghe

Abstract:

Wireless Sensor Networks consist of inexpensive, low power sensor nodes deployed to monitor the environment and collect data. Gathering information in an energy efficient manner is a critical aspect to prolong the network lifetime. Clustering  algorithms have an advantage of enhancing the network lifetime. Current clustering algorithms usually focus on global re-clustering and local re-clustering separately. This paper, proposed a combination of those two reclustering methods to reduce the energy consumption of the network. Furthermore, the proposed algorithm can apply to homogeneous as well as heterogeneous wireless sensor networks. In addition, the cluster head rotation happens, only when its energy drops below a dynamic threshold value computed by the algorithm. The simulation result shows that the proposed algorithm prolong the network lifetime compared to existing algorithms.

Keywords: Energy efficient, Global re-clustering, Local re-clustering, Wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2376
4617 Estimation of Relative Self-Localization Based On Natural Landmark and an Improved SURF

Authors: Xing Xiong, Byung-Jae Choi

Abstract:

It is important for an autonomous mobile robot to know where it is in any time in an indoor environment. In this paper, we design a relative self-localization algorithm. The algorithm compare the interest point in two images and compute the relative displacement and orientation to determent the posture. Firstly, we use the SURF algorithm to extract the interest points of the ceiling. Second, in order to reduce amount of calculation, a replacement SURF is used to extract orientation and description of the interest points. At last, according to the transformation of the interest points in two images, the relative self-localization of the mobile robot will be estimated greatly.

Keywords: Relative Self-Localization Posture, SURF, Natural Landmark, Interest Point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
4616 Robot Path Planning in 3D Space Using Binary Integer Programming

Authors: Ellips Masehian, Golnaz Habibi

Abstract:

This paper presents a novel algorithm for path planning of mobile robots in known 3D environments using Binary Integer Programming (BIP). In this approach the problem of path planning is formulated as a BIP with variables taken from 3D Delaunay Triangulation of the Free Configuration Space and solved to obtain an optimal channel made of connected tetrahedrons. The 3D channel is then partitioned into convex fragments which are used to build safe and short paths within from Start to Goal. The algorithm is simple, complete, does not suffer from local minima, and is applicable to different workspaces with convex and concave polyhedral obstacles. The noticeable feature of this algorithm is that it is simply extendable to n-D Configuration spaces.

Keywords: 3D C-space, Binary Integer Programming (BIP), Delaunay Tessellation, Robot Motion Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2483
4615 Anomaly Detection and Characterization to Classify Traffic Anomalies Case Study: TOT Public Company Limited Network

Authors: O. Siriporn, S. Benjawan

Abstract:

This paper represents four unsupervised clustering algorithms namely sIB, RandomFlatClustering, FarthestFirst, and FilteredClusterer that previously works have not been used for network traffic classification. The methodology, the result, the products of the cluster and evaluation of these algorithms with efficiency of each algorithm from accuracy are shown. Otherwise, the efficiency of these algorithms considering form the time that it use to generate the cluster quickly and correctly. Our work study and test the best algorithm by using classify traffic anomaly in network traffic with different attribute that have not been used before. We analyses the algorithm that have the best efficiency or the best learning and compare it to the previously used (K-Means). Our research will be use to develop anomaly detection system to more efficiency and more require in the future.

Keywords: Unsupervised, clustering, anomaly, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120
4614 Percolation Transition with Hidden Variables in Complex Networks

Authors: Zhanli Zhang, Wei Chen, Xin Jiang, Lili Ma, Shaoting Tang, Zhiming Zheng

Abstract:

A new class of percolation model in complex networks, in which nodes are characterized by hidden variables reflecting the properties of nodes and the occupied probability of each link is determined by the hidden variables of the end nodes, is studied in this paper. By the mean field theory, the analytical expressions for the phase of percolation transition is deduced. It is determined by the distribution of the hidden variables for the nodes and the occupied probability between pairs of them. Moreover, the analytical expressions obtained are checked by means of numerical simulations on a particular model. Besides, the general model can be applied to describe and control practical diffusion models, such as disease diffusion model, scientists cooperation networks, and so on.

Keywords: complex networks, percolation transition, hidden variable, occupied probability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
4613 Energy Savings in Pumps

Authors: N. Dizadji, P. Entezar, A. Shabani

Abstract:

This study presents energy saving in general-purpose pumps widely used in industrial applications. Such pumps are normally driven by a constant-speed electrical motor which in most applications must support varying load conditions. This is equivalent to saying the loading conditions mismatch the designed optimal energy consumption requirements of the intended application thus resulting in substantial energy losses. In the held experiments it was indicated that combination of mechanical and electrical speed drives can contribute to lower energy consumption in the pump without negatively distorting the required performance indices of a typical centrifugal pump at substantially lower energy consumption. The registered energy savings were recorded to be within the 15-40% margin. It was also indicated that although VSDs are installed at a cost, the financial burden is balanced against the earnings resulting from the associated energy savings.

Keywords: Industrial motors, Pumps, Energy consumption, Energy savings, Variable speed drive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
4612 A Fast Sensor Relocation Algorithm in Wireless Sensor Networks

Authors: Yu-Chen Kuo, Shih-Chieh Lin

Abstract:

Sensor relocation is to repair coverage holes caused by node failures. One way to repair coverage holes is to find redundant nodes to replace faulty nodes. Most researches took a long time to find redundant nodes since they randomly scattered redundant nodes around the sensing field. To record the precise position of sensor nodes, most researches assumed that GPS was installed in sensor nodes. However, high costs and power-consumptions of GPS are heavy burdens for sensor nodes. Thus, we propose a fast sensor relocation algorithm to arrange redundant nodes to form redundant walls without GPS. Redundant walls are constructed in the position where the average distance to each sensor node is the shortest. Redundant walls can guide sensor nodes to find redundant nodes in the minimum time. Simulation results show that our algorithm can find the proper redundant node in the minimum time and reduce the relocation time with low message complexity.

Keywords: Coverage, distributed algorithm, sensor relocation, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
4611 Computational Method for Annotation of Protein Sequence According to Gene Ontology Terms

Authors: Razib M. Othman, Safaai Deris, Rosli M. Illias

Abstract:

Annotation of a protein sequence is pivotal for the understanding of its function. Accuracy of manual annotation provided by curators is still questionable by having lesser evidence strength and yet a hard task and time consuming. A number of computational methods including tools have been developed to tackle this challenging task. However, they require high-cost hardware, are difficult to be setup by the bioscientists, or depend on time intensive and blind sequence similarity search like Basic Local Alignment Search Tool. This paper introduces a new method of assigning highly correlated Gene Ontology terms of annotated protein sequences to partially annotated or newly discovered protein sequences. This method is fully based on Gene Ontology data and annotations. Two problems had been identified to achieve this method. The first problem relates to splitting the single monolithic Gene Ontology RDF/XML file into a set of smaller files that can be easy to assess and process. Thus, these files can be enriched with protein sequences and Inferred from Electronic Annotation evidence associations. The second problem involves searching for a set of semantically similar Gene Ontology terms to a given query. The details of macro and micro problems involved and their solutions including objective of this study are described. This paper also describes the protein sequence annotation and the Gene Ontology. The methodology of this study and Gene Ontology based protein sequence annotation tool namely extended UTMGO is presented. Furthermore, its basic version which is a Gene Ontology browser that is based on semantic similarity search is also introduced.

Keywords: automatic clustering, bioinformatics tool, gene ontology, protein sequence annotation, semantic similarity search

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3133