Search results for: Q460GJ structural steel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1807

Search results for: Q460GJ structural steel

727 A Review of Test Protocols for Assessing Coating Performance of Water Ballast Tank Coatings

Authors: Emmanuel A. Oriaifo, Noel Perera, Alan Guy, Pak. S. Leung, Kian T. Tan

Abstract:

Concerns on corrosion and effective coating protection of double hull tankers and bulk carriers in service have been raised especially in water ballast tanks (WBTs). Test protocols/methodologies specifically that which is incorporated in the International Maritime Organisation (IMO), Performance Standard for Protective Coatings for Dedicated Sea Water ballast tanks (PSPC) are being used to assess and evaluate the performance of the coatings for type approval prior to their application in WBTs. However, some of the type approved coatings may be applied as very thick films to less than ideally prepared steel substrates in the WBT. As such films experience hygrothermal cycling from operating and environmental conditions, they become embrittled which may ultimately result in cracking. This embrittlement of the coatings is identified as an undesirable feature in the PSPC but is not mentioned in the test protocols within it. There is therefore renewed industrial research aimed at understanding this issue in order to eliminate cracking and achieve the intended coating lifespan of 15 years in good condition. This paper will critically review test protocols currently used for assessing and evaluating coating performance, particularly the IMO PSPC.

Keywords: Corrosion Test, Hygrothermal Cycling, Coating Test Protocols, Water Ballast Tanks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4214
726 Evaluation of Traditional Methods in Construction and Their Effects on Reinforced-Concrete Buildings Behavior

Authors: E. H. N. Gashti, M. Zarrini, M. Irannezhad, J. R. Langroudi

Abstract:

Using ETABS software, this study analyzed 23 buildings to evaluate effects of mistakes during construction phase on buildings structural behavior. For modelling, two different loadings were assumed: 1) design loading and 2) loading due to the effects of mistakes in construction phase. Research results determined that considering traditional construction methods for buildings resulted in a significant increase in dead loads and consequently intensified the displacements and base-shears of buildings under seismic loads.

Keywords: Reinforced-concrete buildings, Construction mistakes, Base-shear, displacements, Failure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2655
725 Numerical Study for Structural Design of Composite Rotor with Crack Initiation

Authors: A. Chellil, A. Nour, S. Lecheb, H. Mechakra, A. Bouderba, H. Kebir

Abstract:

In this paper, a coupled damage effect in the instability of a composite rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor blade are developed. The use of the composite material for the rotor offers a good stability. Numerical calculations on the model developed prove that the damage effect has a negative effect on the stability of the rotor. The study of the composite rotor in transient system allowed determining the vibratory responses due to various excitations.

Keywords: Rotor, composite, damage, finite element, numerical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2242
724 Analysis of Train Passenger Seat Using Ergonomic Function Deployment Method

Authors: Robertoes K. K. Wibowo, Siswoyo Soekarno, Irma Puspitasari

Abstract:

Indonesian people use trains for their transportation, especially they use economy class train transportation because it is cheaper and has a more precise schedule than any other ground transportation. Nevertheless, the economy class passenger seat raises some inconvenience issues for passengers. This is due to the design of the chair on the economic class of trains that did not adjusted to the shape of anthropometry of Indonesian people. Thus, research needs to be conducted on the design of the seats in the economic class of trains. The purpose of this research is to make the design of economy class passenger seats ergonomic. This research method uses questionnaires and anthropometry measurements. The data obtained is processed using House of Quality of Ergonomic Function Development. From the results of analysis and data processing were obtained important changes from the original design. Ergonomic chair design according to the analysis is a stainless steel frame, seat height 390 mm, with a seat width for each passenger of 400 mm and a depth of 400 mm. Design of the backrest has a height of 840 mm, width of 430 mm and length of 300 mm that can move at the angle of 105-115 degrees. The width of the footrest is 42 mm and 400 mm length. The thickness of the seat cushion is 100 mm.

Keywords: Chair, ergonomics, function development, train passenger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
723 Evaluation of the Effect of Rotor Solidity on the Performance of a H-Darrieus Turbine Adopting a Blade Element-Momentum Algorithm

Authors: G. Bedon, M. Raciti Castelli, E. Benini

Abstract:

The present study aims to evaluating the effect of rotor solidity - in terms of chord length for a given rotor diameter - on the performances of a small vertical axis Darrieus wind turbine. The proposed work focuses on both power production and rotor power coefficient, considering also the structural constraints deriving from the centrifugal forces due to rotor angular velocity. Also the smoothness of the resulting power curves have been investigated, in order to evaluate the controllability of the corresponding rotor architectures.

Keywords: Vertical axis wind turbine, Darrieus, solidity, Blade Element-Momentum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5962
722 The Impact of Parent Involvement in Preschool Disabled Children

Authors: Sheng-Min Cheng

Abstract:

The purpose of this study was to investigate the relationship between parent involvement and preschool disabled children’s development. Parents of 3 year old disabled children (N=440) and 5 year old disabled children (N=937) participating in the Special Needs Education Longitudinal Study were interviewed or answered the web design questionnaire about their actions in parenting their disabled children. These children’s developments were also evaluated by their teachers. Data were analyzed using Structural Equation Modeling. Results were showed by tables and figures. Based on the results, the researcher made some suggestions for future studies.

Keywords: Child development, longitudinal data analysis, parent involvement, preschool disabled children.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2231
721 Torsional Rigidities of Reinforced Concrete Beams Subjected to Elastic Lateral Torsional Buckling

Authors: Ilker Kalkan, Saruhan Kartal

Abstract:

Reinforced concrete (RC) beams rarely undergo lateral-torsional buckling (LTB), since these beams possess large lateral bending and torsional rigidities owing to their stocky cross-sections, unlike steel beams. However, the problem of LTB is becoming more and more pronounced in the last decades as the span lengths of concrete beams increase and the cross-sections become more slender with the use of pre-stressed concrete. The buckling moment of a beam mainly depends on its lateral bending rigidity and torsional rigidity. The nonhomogeneous and elastic-inelastic nature of RC complicates estimation of the buckling moments of concrete beams. Furthermore, the lateral bending and torsional rigidities of RC beams and the buckling moments are affected from different forms of concrete cracking, including flexural, torsional and restrained shrinkage cracking. The present study pertains to the effects of concrete cracking on the torsional rigidities of RC beams prone to elastic LTB. A series of tests on rather slender RC beams indicated that torsional cracking does not initiate until buckling in elastic LTB, while flexural cracking associated with lateral bending takes place even at the initial stages of loading. Hence, the present study clearly indicated that the un-cracked torsional rigidity needs to be used for estimating the buckling moments of RC beams liable to elastic LTB.

Keywords: Lateral stability, post-cracking torsional rigidity, uncracked torsional rigidity, critical moment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2308
720 Application of RP Technology with Polycarbonate Material for Wind Tunnel Model Fabrication

Authors: A. Ahmadi Nadooshan, S. Daneshmand, C. Aghanajafi

Abstract:

Traditionally, wind tunnel models are made of metal and are very expensive. In these years, everyone is looking for ways to do more with less. Under the right test conditions, a rapid prototype part could be tested in a wind tunnel. Using rapid prototype manufacturing techniques and materials in this way significantly reduces time and cost of production of wind tunnel models. This study was done of fused deposition modeling (FDM) and their ability to make components for wind tunnel models in a timely and cost effective manner. This paper discusses the application of wind tunnel model configuration constructed using FDM for transonic wind tunnel testing. A study was undertaken comparing a rapid prototyping model constructed of FDM Technologies using polycarbonate to that of a standard machined steel model. Testing covered the Mach range of Mach 0.3 to Mach 0.75 at an angle-ofattack range of - 2° to +12°. Results from this study show relatively good agreement between the two models and rapid prototyping Method reduces time and cost of production of wind tunnel models. It can be concluded from this study that wind tunnel models constructed using rapid prototyping method and materials can be used in wind tunnel testing for initial baseline aerodynamic database development.

Keywords: Polycarbonate, Fabrication, FDM, Model, RapidPrototyping, Wind Tunnel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2441
719 Rheological Modeling for Shape-Memory Thermoplastic Polymers

Authors: H. Hosseini, B. V. Berdyshev, I. Iskopintsev

Abstract:

This paper presents a rheological model for producing shape-memory thermoplastic polymers. Shape-memory occurs as a result of internal rearrangement of the structural elements of a polymer. A non-linear viscoelastic model was developed that allows qualitative and quantitative prediction of the stress-strain behavior of shape-memory polymers during heating. This research was done to develop a technique to determine the maximum possible change in size of shape-memory products during heating. The rheological model used in this work was particularly suitable for defining process parameters and constructive parameters of the processing equipment.

Keywords: Elastic deformation, heating, shape-memory polymers, stress-strain behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
718 Vickers Indentation Simulation of Buffer Layer Thickness Effect for DLC Coated Materials

Authors: Abdul Wasy, Balakrishnan G., Yi Qi Wang, Atta Ur Rehman, Jung Il Song

Abstract:

Vickers indentation is used to measure the hardness of materials. In this study, numerical simulation of Vickers indentation experiment was performed for Diamond like Carbon (DLC) coated materials. DLC coatings were deposited on stainless steel 304 substrates with Chromium buffer layer using RF Magnetron and T-shape Filtered Cathodic Vacuum Arc Dual system The objective of this research is to understand the elastic plastic properties, stress strain distribution, ring and lateral crack growth and propagation, penetration depth of indenter and delamination of coating from substrate with effect of buffer layer thickness. The effect of Poisson-s ratio of DLC coating was also analyzed. Indenter penetration is more in coated materials with thin buffer layer as compared to thicker one, under same conditions. Similarly, the specimens with thinner buffer layer failed quickly due to high residual stress as compared to the coated materials with reasonable thickness of 200nm buffer layer. The simulation results suggested the optimized thickness of 200 nm among the prepared specimens for durable and long service.

Keywords: Thin film, buffer layer. Diamond like Carbon, Vickers indentation, Poisson's ratio, Finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2929
717 A Diagnostic Fuzzy Rule-Based System for Congenital Heart Disease

Authors: Ersin Kaya, Bulent Oran, Ahmet Arslan

Abstract:

In this study, fuzzy rule-based classifier is used for the diagnosis of congenital heart disease. Congenital heart diseases are defined as structural or functional heart disease. Medical data sets were obtained from Pediatric Cardiology Department at Selcuk University, from years 2000 to 2003. Firstly, fuzzy rules were generated by using medical data. Then the weights of fuzzy rules were calculated. Two different reasoning methods as “weighted vote method" and “singles winner method" were used in this study. The results of fuzzy classifiers were compared.

Keywords: Congenital heart disease, Fuzzy rule-basedclassifiers, Classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
716 Cantilever Shoring Piles with Prestressing Strands: An Experimental Approach

Authors: Hani Mekdash, Lina Jaber, Yehia Temsah

Abstract:

Underground space is becoming a necessity nowadays, especially in highly congested urban areas. Retaining underground excavations using shoring systems is essential in order to protect adjoining structures from potential damage or collapse. Reinforced Concrete Piles (RCP) supported by multiple rows of tie-back anchors are commonly used type of shoring systems in deep excavations. However, executing anchors can sometimes be challenging because they might illegally trespass neighboring properties or get obstructed by infrastructure and other underground facilities. A technique is proposed in this paper, and it involves the addition of eccentric high-strength steel strands to the RCP section through ducts without providing the pile with lateral supports. The strands are then vertically stressed externally on the pile cap using a hydraulic jack, creating a compressive strengthening force in the concrete section. An experimental study about the behavior of the shoring wall by pre-stressed piles is presented during the execution of an open excavation in an urban area (Beirut city) followed by numerical analysis using finite element software. Based on the experimental results, this technique is proven to be cost-effective and provides flexible and sustainable construction of shoring works.

Keywords: Excavation, inclinometer, prestressing, shoring system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 506
715 Influence of Microstructural Features on Wear Resistance of Biomedical Titanium Materials

Authors: Mohsin T. Mohammed, Zahid A. Khan, Arshad N. Siddiquee

Abstract:

The field of biomedical materials plays an imperative requisite and a critical role in manufacturing a variety of biological artificial replacements in a modern world. Recently, titanium (Ti) materials are being used as biomaterials because of their superior corrosion resistance and tremendous specific strength, free- allergic problems and the greatest biocompatibility compared to other competing biomaterials such as stainless steel, Co-Cr alloys, ceramics, polymers, and composite materials. However, regardless of these excellent performance properties, Implantable Ti materials have poor shear strength and wear resistance which limited their applications as biomaterials. Even though the wear properties of Ti alloys has revealed some improvements, the crucial effectiveness of biomedical Ti alloys as wear components requires a comprehensive deep understanding of the wear reasons, mechanisms, and techniques that can be used to improve wear behavior. This review examines current information on the effect of thermal and thermomechanical processing of implantable Ti materials on the long-term prosthetic requirement which related with wear behavior. This paper focuses mainly on the evolution, evaluation and development of effective microstructural features that can improve wear properties of bio grade Ti materials using thermal and thermomechanical treatments.

Keywords: Wear Resistance, Heat Treatment, Thermomechanical Processing, Biomedical Titanium Materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3659
714 The Investigations of Water-ethanol Mixture by Monte Carlo Method

Authors: Atamas N. A., Atamas A. A.

Abstract:

Energetic and structural results for ethanol-water mixtures as a function of the mole fraction were calculated using Monte Carlo methodology. Energy partitioning results obtained for equimolar water-ethanol mixture and ether organic liquids are compared. It has been shown that at xet=0.22 the RDFs for waterethanol and ethanol-ethanol interactions indicated strong hydrophobic interactions between ethanol molecules and the local structure of solution is less structured at this concentration as at ether ones. Results obtained for ethanol-water mixture as a function of concentration are in good agreement with the experimental data.

Keywords: Ethanol, molecular liquids, Monte Carlo, water, thermodynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
713 Degree of Bending in Axially Loaded Tubular KT-Joints of Offshore Structures: Parametric Study and Formulation

Authors: Hamid Ahmadi, Shadi Asoodeh

Abstract:

The fatigue life of tubular joints commonly found in offshore industry is not only dependent on the value of hot-spot stress (HSS), but is also significantly influenced by the through-thethickness stress distribution characterized by the degree of bending (DoB). The determination of DoB values in a tubular joint is essential for improving the accuracy of fatigue life estimation using the stresslife (S–N) method and particularly for predicting the fatigue crack growth based on the fracture mechanics (FM) approach. In the present paper, data extracted from finite element (FE) analyses of tubular KT-joints, verified against experimental data and parametric equations, was used to investigate the effects of geometrical parameters on DoB values at the crown 0°, saddle, and crown 180° positions along the weld toe of central brace in tubular KT-joints subjected to axial loading. Parametric study was followed by a set of nonlinear regression analyses to derive DoB parametric formulas for the fatigue analysis of KT-joints under axial loads. The tubular KTjoint is a quite common joint type found in steel offshore structures. However, despite the crucial role of the DoB in evaluating the fatigue performance of tubular joints, this paper is the first attempt to study and formulate the DoB values in KT-joints.

Keywords: Tubular KT-joint, fatigue, degree of bending (DoB), axial loading, parametric formula.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544
712 Investigation on Behavior of Fixed-Ended Reinforced Concrete Deep Beams

Authors: Y. Heyrani Birak, R. Hizaji, J. Shahkarami

Abstract:

Reinforced Concrete (RC) deep beams are special structural elements because of their geometry and behavior under loads. For example, assumption of strain- stress distribution is not linear in the cross section. These types of beams may have simple supports or fixed supports. A lot of research works have been conducted on simply supported deep beams, but little study has been done in the fixed-end RC deep beams behavior. Recently, using of fixed-ended deep beams has been widely increased in structures. In this study, the behavior of fixed-ended deep beams is investigated, and the important parameters in capacity of this type of beams are mentioned.

Keywords: Deep beam, capacity, reinforced concrete, fixed-ended.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814
711 Artificial Intelligence Model to Predict Surface Roughness of Ti-15-3 Alloy in EDM Process

Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama, M.A. Maleque, Rosli A. Bakar

Abstract:

Conventionally the selection of parameters depends intensely on the operator-s experience or conservative technological data provided by the EDM equipment manufacturers that assign inconsistent machining performance. The parameter settings given by the manufacturers are only relevant with common steel grades. A single parameter change influences the process in a complex way. Hence, the present research proposes artificial neural network (ANN) models for the prediction of surface roughness on first commenced Ti-15-3 alloy in electrical discharge machining (EDM) process. The proposed models use peak current, pulse on time, pulse off time and servo voltage as input parameters. Multilayer perceptron (MLP) with three hidden layer feedforward networks are applied. An assessment is carried out with the models of distinct hidden layer. Training of the models is performed with data from an extensive series of experiments utilizing copper electrode as positive polarity. The predictions based on the above developed models have been verified with another set of experiments and are found to be in good agreement with the experimental results. Beside this they can be exercised as precious tools for the process planning for EDM.

Keywords: Ti-15l-3, surface roughness, copper, positive polarity, multi-layered perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
710 Frequency Modulation in Vibro-Acoustic Modulation Method

Authors: D. Liu, D. M. Donskoy

Abstract:

The vibroacoustic modulation method is based on the modulation effect of high-frequency ultrasonic wave (carrier) by low-frequency vibration in the presence of various defects, primarily contact-type such as cracks, delamination, etc. The presence and severity of the defect are measured by the ratio of the spectral sidebands and the carrier in the spectrum of the modulated signal. This approach, however, does not differentiate between amplitude and frequency modulations, AM and FM, respectfully. This paper is an attempt to explain the generation mechanisms of FM and its correlation with the flaw properties. Here we proposed two possible mechanisms leading to FM modulation based on nonlinear local defect resonance and dynamic acoustoelastic models.

Keywords: Non-destructive testing, nonlinear acoustics, structural health monitoring, acoustoelasticity, local defect resonance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 487
709 The Effect of Damping Treatment for Noise Control on Offshore Platforms Using Statistical Energy Analysis

Authors: Ji Xi, Cheng Song Chin, Ehsan Mesbahi

Abstract:

Structure-borne noise is an important aspect of offshore platform sound field. It can be generated either directly by vibrating machineries induced mechanical force, indirectly by the excitation of structure or excitation by incident airborne noise. Therefore, limiting of the transmission of vibration energy throughout the offshore platform is the key to control the structureborne noise. This is usually done by introducing damping treatment to the steel structures. Two types of damping treatment using onboard are presented. By conducting a Statistical Energy Analysis (SEA) simulation on a jack-up rig, the noise level in the source room, the neighboring rooms, and remote living quarter cabins are compared before and after the damping treatments been applied. The results demonstrated that, in the source neighboring room and living quarter area, there is a significant noise reduction with the damping treatment applied, whereas in the source room where air-borne sound predominates that of structure-borne sound, the impact is not obvious. The conclusion on effective damping treatment in the offshore platform is made which enable acoustic professionals to implement noise control during the design stage for offshore crews’ hearing protection and habitant comfortability.

Keywords: Statistical energy analysis, damping treatment, noise control, offshore platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118
708 Entrepreneurs’ Perceptions of the Economic, Social and Physical Impacts of Tourism

Authors: Oktay Emir

Abstract:

The objective of this study is to determine how entrepreneurs perceive the economic, social and physical impacts of tourism. The study was conducted in the city of Afyonkarahisar, Turkey, which is rich in thermal tourism resources and investments. A survey was used as the data collection method, and the questionnaire was applied to 472 entrepreneurs. A simple random sampling method was used to identify the sample. Independent sampling t-tests and ANOVA tests were used to analyse the data obtained. Additionally, some statistically significant differences (p<0.05) were found based on the participants’ demographic characteristics regarding their opinions about the social, economic and physical impacts of tourism activities.

Keywords: Tourism, perception, entrepreneurship, entrepreneurs, structural equation modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1226
707 Knitting Stitches’ Manipulation for Catenary Textile Structures

Authors: Virginia Melnyk

Abstract:

This paper explores the design for catenary structure using knitted textiles. Using the advantages of Grasshopper and Kangaroo parametric software to simulate and pre-design an overall form, the design is then translated to a pattern that can be made with hand manipulated stitches on a knitting machine. The textile takes advantage of the structure of knitted materials and the ability for it to stretch. Using different types of stitches to control the amount of stretch that can occur in portions of the textile generates an overall formal design. The textile is then hardened in an upside-down hanging position and then flipped right-side-up. This then becomes a structural catenary form. The resulting design is used as a small Cat House for a cat to sit inside and climb on top of.

Keywords: Architectural materials, catenary structures, knitting fabrication, textile design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813
706 A Temporary Shelter Proposal for Displaced People

Authors: İ. Yetkin, F. Maden, S. Tosun, Y. Akgün, Ö. Kilit, K. Korkmaz, G. Kiper, M. Gündüzalp

Abstract:

Forced migration, whether caused by conflicts or other factors, frequently places individuals in vulnerable situations, necessitating immediate access to shelter. To promptly address the immediate needs of affected individuals, temporary shelters are often established. These shelters are characterized by their adaptable and functional nature, encompassing lightweight and sustainable structural systems, rapid assembly capabilities, modularity, and transportability. The shelter design is contingent upon demand, resulting in distinct phases for different structural forms. A multi-phased shelter approach covers emergency response, temporary shelter, and permanent reconstruction. Emergency shelters play a critical role in providing immediate life-saving aid. In contrast, temporary and transitional shelters, also called “T-shelters,” offer longer-term living environments during the recovery and rebuilding. Among these, temporary shelters are more extensively covered in the literature due to their diverse inhabiting functions. The roles of emergency shelters and temporary shelters are inherently separate, addressing distinct aspects of sheltering processes. Given their prolonged usage, temporary shelters are built for greater durability compared to emergency shelters. Nonetheless, inadequacies in temporary shelters can lead to challenges in ensuring habitability. Issues like non-expandable structures unsuitable for accommodating large families, short-term shelters that worsen conditions, non-waterproof materials providing insufficient protection against bad weather conditions, and complex installation systems contribute to these problems. Given the aforementioned problems, there arises a need to develop adaptive shelters featuring lightweight components for ease of transport, possess the ability for rapid assembly, and utilize durable materials to withstand adverse weather conditions. In this study, first, the state-of-the-art on temporary shelters is presented. Then, a temporary shelter composed of foldable plates is proposed, which can easily be assembled and transportable. The proposed shelter is deliberated upon its movement capacity, transportability, and flexibility. This study makes a valuable contribution to the literature since it not only offers a systematic analysis of temporary shelters utilizing kinetic systems but also presents a practical solution that meets the necessary design requirements.

Keywords: Deployable structures, disasters, foldable plates, temporary shelters, transformable structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 106
705 A New Direct Updating Method for Undamped Structural Systems

Authors: Yongxin Yuan, Jiashang Jiang

Abstract:

A new numerical method for simultaneously updating mass and stiffness matrices based on incomplete modal measured data is presented. By using the Kronecker product, all the variables that are to be modified can be found out and then can be updated directly. The optimal approximation mass matrix and stiffness matrix which satisfy the required eigenvalue equation and orthogonality condition are found under the Frobenius norm sense. The physical configuration of the analytical model is preserved and the updated model will exactly reproduce the modal measured data. The numerical example seems to indicate that the method is quite accurate and efficient.

Keywords: Finite element model, model updating, modal data, optimal approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
704 Competitiveness of the Baltic States within the International Ratings

Authors: Ilze Stokmane

Abstract:

Baltic competitiveness is quite controversial. In a situation with the rapid structural changes, economy develops in balance very rarely - in different fields will always be more rapid changes in another more stagnation. Analyzing different economic indices developed by international organizations the situation in three Baltic countries are described from a different competitiveness positions highlighting strengths and weaknesses of each country. Exploring the openness of the economy, it is possible to observe certain risks included in the reports describing situation of competitiveness where government policies competing in the tax system, the rates of labour market policies, investment environment, etc. This is a very important factor resulting in competitive advantage. Baltic countries are still at a weak position from a technological perspective, and need to borrow the knowledge and technology from more developed countries.

Keywords: Baltic countries, Baltic region, competitiveness, indices of competitiveness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
703 A Numerical Study on the Seismic Performance of Built-Up Battened Columns

Authors: Sophia C. Alih, Mohammadreza Vafaei, Farnoud Rahimi Mansour, Nur Hajarul Falahi Abdul Halim

Abstract:

Built-up columns have been widely employed by practice engineers in the design and construction of buildings and bridges. However, failures have been observed in this type of columns in previous seismic events. This study analyses the performance of built-up columns with different configurations of battens when it is subjected to seismic loads. Four columns with different size of battens were simulated and subjected to three different intensities of axial load along with a lateral cyclic load. Results indicate that the size of battens influences significantly the seismic behavior of columns. Lower shear capacity of battens results in higher ultimate strength and ductility for built-up columns. It is observed that intensity of axial load has a significant effect on the ultimate strength of columns, but it is less influential on the yield strength. For a given drift value, the stress level in the centroid of smaller size battens is significantly more than that of larger size battens signifying damage concentration in battens rather than chords. It is concluded that design of battens for shear demand lower than code specified values only slightly reduces initial stiffness of columns; however, it improves seismic performance of battened columns.

Keywords: Battened column, built-up column, cyclic behavior, seismic design, steel column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
702 A Fundamental Study for Real-Time Safety Evaluation System of Landing Pier Using FBG Sensor

Authors: Heungsu Lee, Youngseok Kim, Jonghwa Yi, Chul Park

Abstract:

A landing pier is subjected to safety assessment by visual inspection and design data, but it is difficult to check the damage in real-time. In this study, real - time damage detection and safety evaluation methods were studied. As a result of structural analysis of the arbitrary landing pier structure, the inflection point of deformation and moment occurred at 10%, 50%, and 90% of pile length. The critical value of Fiber Bragg Grating (FBG) sensor was set according to the safety factor, and the FBG sensor application method for real - time safety evaluation was derived.

Keywords: FBG sensor, harbor structure, maintenance, safety evaluation system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 930
701 Investigating the Effects of Sociotechnical Changes

Authors: Kee-Young Kwahk

Abstract:

Cognizant of the fact that enterprise systems involve organizational change and their implementation is over shadowed by a high failure rate, it is argued that there is the need to focus attention on employees- perceptions of such organizational change when explaining adoption behavior of enterprise systems. For this purpose, the research incorporates a conceptual constructo fattitude toward change that captures views about the need for organizational change. Centered on this conceptual construct, the research model includes beliefs regarding the system and behavioral intention as its consequences, and the personal characteristics of organizational commitment and perceived personal competence as its antecedents. Structural equation analysis using LISREL provides significant support for the proposed relationships. Theoretical and practical implications are discussed along with limitations.

Keywords: Sociotechnical changes, organizational change, attitude toward change, enterprise information systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
700 Biomechanical Properties of Hen's Eggshell: Experimental Study and Numerical Modeling

Authors: A. Darvizeh, H. Rajabi, S. Fatahtooei Nejad, A. Khaheshi, P. Haghdoust

Abstract:

In this article, biomechanical aspects of hen-s eggshell as a natural ceramic structure are studied. The images, taken by a scanning electron microscope (SEM), are used to investigate the microscopic aspects of the egg. It is observed that eggshell has a three-layered microstructure with different morphological and structural characteristics. Studies on the eggshell membrane (ESM) as a prosperous tissue suggest that it is placed to prevent the penetration of microorganisms into the egg. Finally, numerical models of the egg are presented to study the stress distribution and its deformation under different loading conditions. The effects of two different types of loading (hydrostatic and point loadings) on two different shell models (with constant and variable thicknesses) are investigated in detail.

Keywords: Eggshell, biomechanical properties, Scanning electron microscope, Numerical Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2462
699 The Effect of Directional Search Using Iterated Functional System for Matching Range and Domain Blocks

Authors: Shimal Das, Dibyendu Ghoshal

Abstract:

The effect of directional search using iterated functional system has been studied on four images taken from databases. The images are portioned successively towards smaller dimension. Presented method provides the faster rate of convergence with respect to processing time in the flat region, but the same has been found to be slower at the border of the images and edges. It has also been revealed that the PSNR is lower at the edges and border portions of the image, and it is found to be higher in the uniform gray region, under the same external illumination and external noise environment.

Keywords: Iterated functional system, fractal compression, structural similarity index measure, fractal block coding, affine transformations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 915
698 An Optimization of Machine Parameters for Modified Horizontal Boring Tool Using Taguchi Method

Authors: Thirasak Panyaphirawat, Pairoj Sapsmarnwong, Teeratas Pornyungyuen

Abstract:

This paper presents the findings of an experimental investigation of important machining parameters for the horizontal boring tool modified to mouth with a horizontal lathe machine to bore an overlength workpiece. In order to verify a usability of a modified tool, design of experiment based on Taguchi method is performed. The parameters investigated are spindle speed, feed rate, depth of cut and length of workpiece. Taguchi L9 orthogonal array is selected for four factors three level parameters in order to minimize surface roughness (Ra and Rz) of S45C steel tubes. Signal to noise ratio analysis and analysis of variance (ANOVA) is performed to study an effect of said parameters and to optimize the machine setting for best surface finish. The controlled factors with most effect are depth of cut, spindle speed, length of workpiece, and feed rate in order. The confirmation test is performed to test the optimal setting obtained from Taguchi method and the result is satisfactory.

Keywords: Design of Experiment, Taguchi Design, Optimization, Analysis of Variance, Machining Parameters, Horizontal Boring Tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2702