Search results for: GPS based household surveys
688 Phytoremediation of Wastewater Using Some of Aquatic Macrophytes as Biological Purifiers for Irrigation Purposes
Authors: Dilshad G.A. Ganjo, Ahmed I. Khwakaram
Abstract:
An attempt was made for availability of wastewater reuse/reclamation for irrigation purposes using phytoremediation “the low cost and less technology", using six local aquatic macrophytes “e.g. T. angustifolia, B. maritimus, Ph. australis, A. donax, A. plantago-aquatica and M. longifolia (Linn)" as biological waste purifiers. Outdoor experiments/designs were conducted from May 03, 2007 till October 15, 2008, close to one of the main sewage channels of Sulaimani City/Iraq*. All processes were mainly based on conventional wastewater treatment processes, besides two further modifications were tested, the first was sand filtration pots, implanted by individual species of experimental macrophytes and the second was constructed wetlands implanted by experimental macrophytes all together. Untreated and treated wastewater samples were analyzed for their key physico-chemical properties (only heavy metals Fe, Mn, Zn and Cu with particular reference to removal efficiency by experimental macrophytes are highlighted in this paper). On the other hand, vertical contents of heavy metals were also evaluated from both pots and the cells of constructed wetland. After 135 days, macrophytes were harvested and heavy metals were analyzed in their biomass (roots/shoots) for removal efficiency assessment (i.e. uptake/ bioaccumulation rate). Results showed that; removal efficiency of all studied heavy metals was much higher in T. angustifolia followed by Ph. Australis, B. maritimus and A. donax in triple experiment sand pots. Constructed wetland experiments have revealed that; the more replicated constructed wetland cells the highest heavy metal removal efficiency was indicated.
Keywords: Aquatic Macrophytes, Heavy Metals (Fe, Mn, Zn and Cu), Phytoremediation and Removal Efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3347687 Increasing Sustainability Using the Potential of Urban Rivers in Developing Countries with a Biophilic Design Approach
Authors: Mohammad Reza Mohammadian, Dariush Sattarzadeh, Mir Mohammad Javad Poor Hadi Hosseini
Abstract:
Population growth, urban development and urban buildup have disturbed the balance between the nature and the city, and so leading to the loss of quality of sustainability of proximity to rivers. While in the past, the sides of urban rivers were considered as urban green space. Urban rivers and their sides that have environmental, social and economic values are important to achieve sustainable development. So far, efforts have been made at various scales in various cities around the world to revitalize these areas. On the other hand, biophilic design is an innovative design approach in which attention to natural details and relation to nature is a fundamental concept. The purpose of this study is to provide an integrated framework of urban design using the potential of urban rivers (in order to increase sustainability) with a biophilic design approach to be used in cities in developing countries. The methodology of the research is based on the collection of data and information from research and projects including a study on biophilic design, investigations and projects related to the urban rivers, and a review of the literature on sustainable urban development. Then studying the boundary of urban rivers is completed by examining case samples. Eventually, integrated framework of urban design, to design the boundaries of urban rivers in the cities of developing countries is presented regarding the factors affecting the design of these areas. The result shows that according to this framework, the potential of the river banks is utilized to increase not only the environmental sustainability but also social, economic and physical stability with regard to water, light, and the usage of indigenous materials, etc.
Keywords: Urban rivers, biophilic design, urban sustainability, nature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273686 Early Depression Detection for Young Adults with a Psychiatric and AI Interdisciplinary Multimodal Framework
Authors: Raymond Xu, Ashley Hua, Andrew Wang, Yuru Lin
Abstract:
During COVID-19, the depression rate has increased dramatically. Young adults are most vulnerable to the mental health effects of the pandemic. Lower-income families have a higher ratio to be diagnosed with depression than the general population, but less access to clinics. This research aims to achieve early depression detection at low cost, large scale, and high accuracy with an interdisciplinary approach by incorporating clinical practices defined by American Psychiatric Association (APA) as well as multimodal AI framework. The proposed approach detected the nine depression symptoms with Natural Language Processing sentiment analysis and a symptom-based Lexicon uniquely designed for young adults. The experiments were conducted on the multimedia survey results from adolescents and young adults and unbiased Twitter communications. The result was further aggregated with the facial emotional cues analyzed by the Convolutional Neural Network on the multimedia survey videos. Five experiments each conducted on 10k data entries reached consistent results with an average accuracy of 88.31%, higher than the existing natural language analysis models. This approach can reach 300+ million daily active Twitter users and is highly accessible by low-income populations to promote early depression detection to raise awareness in adolescents and young adults and reveal complementary cues to assist clinical depression diagnosis.
Keywords: Artificial intelligence, depression detection, facial emotion recognition, natural language processing, mental disorder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1179685 Implementation of the Quality Management System and Development of Organizational Learning: Case of Three Small and Medium-Sized Enterprises in Morocco
Authors: Abdelghani Boudiaf
Abstract:
The profusion of studies relating to the concept of organizational learning shows the importance that has been given to this concept in the management sciences. A few years ago, companies leaned towards ISO 9001 certification; this requires the implementation of the quality management system (QMS). In order for this objective to be achieved, companies must have a set of skills, which pushes them to develop learning through continuous training. The results of empirical research have shown that implementation of the QMS in the company promotes the development of learning. It should also be noted that several types of learning are developed in this sense. Given the nature of skills development is normative in the context of the quality demarche, companies are obliged to qualify and improve the skills of their human resources. Continuous training is the keystone to develop the necessary learning. To carry out continuous training, companies need to be able to identify their real needs by developing training plans based on well-defined engineering. The training process goes obviously through several stages. Initially, training has a general aspect, that is to say, it focuses on topics and actions of a general nature. Subsequently, this is done in a more targeted and more precise way to accompany the evolution of the QMS and also to make the changes decided each time (change of working method, change of practices, change of objectives, change of mentality, etc.). To answer our problematic we opted for the method of qualitative research. It should be noted that the case study method crosses several data collection techniques to explain and understand a phenomenon. Three cases of companies were studied as part of this research work using different data collection techniques related to this method.
Keywords: Changing mentalities, continuous training, organizational learning, quality management system, skills development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 727684 Methodology of the Turkey’s National Geographic Information System Integration Project
Authors: Buse A. Ataç, Doğan K. Cenan, Arda Çetinkaya, Naz D. Şahin, Köksal Sanlı, Zeynep Koç, Akın Kısa
Abstract:
With its spatial data reliability, interpretation and questioning capabilities, Geographical Information Systems make significant contributions to scientists, planners and practitioners. Geographic information systems have received great attention in today's digital world, growing rapidly, and increasing the efficiency of use. Access to and use of current and accurate geographical data, which are the most important components of the Geographical Information System, has become a necessity rather than a need for sustainable and economic development. This project aims to enable sharing of data collected by public institutions and organizations on a web-based platform. Within the scope of the project, INSPIRE (Infrastructure for Spatial Information in the European Community) data specifications are considered as a road-map. In this context, Turkey's National Geographic Information System (TUCBS) Integration Project supports sharing spatial data within 61 pilot public institutions as complied with defined national standards. In this paper, which is prepared by the project team members in the TUCBS Integration Project, the technical process with a detailed methodology is explained. In this context, the main technical processes of the Project consist of Geographic Data Analysis, Geographic Data Harmonization (Standardization), Web Service Creation (WMS, WFS) and Metadata Creation-Publication. In this paper, the integration process carried out to provide the data produced by 61 institutions to be shared from the National Geographic Data Portal (GEOPORTAL), have been trying to be conveyed with a detailed methodology.
Keywords: Data specification, geoportal, GIS, INSPIRE, TUCBS, Turkey’s National Geographic Information System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695683 Prophylactic Effects of Dairy Kluyveromyces marxianus YAS through Overexpression of BAX, CASP 3, CASP 8 and CASP 9 on Human Colon Cancer Cell Lines
Authors: Amir Saber Gharamaleki, Beitollah Alipour, Zeinab Faghfoori, Ahmad YariKhosroushahi
Abstract:
Colorectal cancer (CRC) is one of the most prevalent cancers and intestinal microbial community plays an important role in colorectal tumorigenesis. Probiotics have recently been assessed as effective anti-proliferative agents and thus this study was performed to examine whether CRC undergo apoptosis by treating with isolated Iranian native dairy yeast, Kluyveromyces marxianus YAS, secretion metabolites. The cytotoxicity assessments on cells (HT-29, Caco-2) were accomplished through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay as well as qualitative DAPI (4',6-diamidino-2-phenylindole staining) and quantitative (flow cytometry assessments) evaluations of apoptosis. To evaluate the main mechanism of apoptosis, Real time PCR method was applied. Kluyveromyces marxianus YAS secretions (IC50) showed significant cytotoxicity against HT-29 and Caco-2 cancer cell lines (66.57 % and 66.34 % apoptosis) similar to 5-Fluorouracil (5-FU) while apoptosis only was developed in 27.57 % of KDR normal cells. The prophylactic effects of Kluyveromyces marxianus (PTCC 5195), as a reference yeast, was not similar to Kluyveromyces marxianus YAS indicating strain dependency of bioactivities on CRC disease prevention. Based on real time PCR results, the main cytotoxicity is related to apoptosis phenomenon and the core related mechanism is depended on the overexpression of BAX, CASP 9, CASP 8 and CASP 3 inducing apoptosis genes. However, several investigations should be conducted to precisely determine the effective compounds to be used as anticancer therapeutics in the future.Keywords: Anticancer, anti-proliferative, apoptosis, cytotoxicity, yeast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661682 Socio-Economic Influences on Soilless Agriculture
Authors: G. V. Byrd, B. B. Ghaley, E. Hayashi
Abstract:
In urban farming, research and innovation are taking place at an unprecedented pace, and soilless growing technologies are emerging at different rates motivated by different objectives in various parts of the world. Local food production is ultimately a main objective everywhere, but adoption rates and expressions vary with socio-economic drivers. Herein, the status of hydroponics and aquaponics is summarized for four countries with diverse socio-economic settings: Europe (Denmark), Asia (Japan and Nepal) and North America (US). In Denmark, with a strong environmental ethic, soilless growing is increasing in urban agriculture because it is considered environmentally friendly. In Japan, soil-based farming is being replaced with commercial plant factories using advanced technology such as complete environmental control and computer monitoring. In Nepal, where rapid loss of agricultural land is occurring near cities, dozens of hydroponics and aquaponics systems have been built in the past decade, particularly in “non-traditional” sites such as roof tops to supplement family food. In the US, where there is also strong interest in locally grown fresh food, backyard and commercial systems have proliferated. Nevertheless, soilless growing is still in the research and development and early adopter stages, and the broad contribution of hydroponics and aquaponics to food security is yet to be fully determined. Nevertheless, current adoption of these technologies in diverse environments in different socio-economic settings highlights the potential contribution to food security with social and environmental benefits which contribute to several Sustainable Development Goals.
Keywords: Aquaponics, hydroponics, soilless agriculture, urban agriculture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201681 A Zero-Cost Collar Option Applied to Materials Procurement Contracts to Reduce Price Fluctuation Risks in Construction
Authors: H. L. Yim, S. H. Lee, S. K. Yoo, J. J. Kim
Abstract:
This study proposes a materials procurement contracts model to which the zero-cost collar option is applied for heading price fluctuation risks in construction.The material contract model based on the collar option that consists of the call option striking zone of the construction company(the buyer) following the materials price increase andthe put option striking zone of the material vendor(the supplier) following a materials price decrease. This study first determined the call option strike price Xc of the construction company by a simple approach: it uses the predicted profit at the project starting point and then determines the strike price of put option Xp that has an identical option value, which completes the zero-cost material contract.The analysis results indicate that the cost saving of the construction company increased as Xc decreased. This was because the critical level of the steel materials price increasewas set at a low level. However, as Xc decreased, Xpof a put option that had an identical option value gradually increased. Cost saving increased as Xc decreased. However, as Xp gradually increased, the risk of loss from a construction company increased as the steel materials price decreased. Meanwhile, cost saving did not occur for the construction company, because of volatility. This result originated in the zero-cost features of the two-way contract of the collar option. In the case of the regular one-way option, the transaction cost had to be subtracted from the cost saving. The transaction cost originated from an option value that fluctuated with the volatility. That is, the cost saving of the one-way option was affected by the volatility. Meanwhile, even though the collar option with zero transaction cost cut the connection between volatility and cost saving, there was a risk of exercising the put option.Keywords: Construction materials, Supply chain management, Procurement, Payment, Collar option
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2522680 Building Information Modelling for Construction Delay Management
Authors: Essa Alenazi, Zulfikar Adamu
Abstract:
The Kingdom of Saudi Arabia (KSA) is not an exception in relying on the growth of its construction industry to support rapid population growth. However, its need for infrastructure development is constrained by low productivity levels and cost overruns caused by factors such as delays to project completion. Delays in delivering a construction project are a global issue and while theories such as Optimism Bias have been used to explain such delays, in KSA, client-related causes of delays are also significant. The objective of this paper is to develop a framework-based approach to explore how the country’s construction industry can manage and reduce delays in construction projects through building information modelling (BIM) in order to mitigate the cost consequences of such delays. It comprehensively and systematically reviewed the global literature on the subject and identified gaps, critical delay factors and the specific benefits that BIM can deliver for the delay management. A case study comprising of nine hospital projects that have experienced delay and cost overruns was also carried out. Five critical delay factors related to the clients were identified as candidates that can be mitigated through BIM’s benefits. These factors are: Ineffective planning and scheduling of the project; changes during construction by the client; delay in progress payment; slowness in decision making by the client; and poor communication between clients and other stakeholders. In addition, data from the case study projects strongly suggest that optimism bias is present in many of the hospital projects. Further validation via key stakeholder interviews and documentations are planned.
Keywords: BIM, client perspective, delay management, optimism bias, public sector projects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2467679 Study of the Effect of the Contra-Rotating Component on the Performance of the Centrifugal Compressor
Authors: Van Thang Nguyen, Amelie Danlos, Richard Paridaens, Farid Bakir
Abstract:
This article presents a study of the effect of a contra-rotating component on the efficiency of centrifugal compressors. A contra-rotating centrifugal compressor (CRCC) is constructed using two independent rotors, rotating in the opposite direction and replacing the single rotor of a conventional centrifugal compressor (REF). To respect the geometrical parameters of the REF one, two rotors of the CRCC are designed, based on a single rotor geometry, using the hub and shroud length ratio parameter of the meridional contour. Firstly, the first rotor is designed by choosing a value of length ratio. Then, the second rotor is calculated to be adapted to the fluid flow of the first rotor according aerodynamics principles. In this study, four values of length ratios 0.3, 0.4, 0.5, and 0.6 are used to create four configurations CF1, CF2, CF3, and CF4 respectively. For comparison purpose, the circumferential velocity at the outlet of the REF and the CRCC are preserved, which means that the single rotor of the REF and the second rotor of the CRCC rotate with the same speed of 16000rpm. The speed of the first rotor in this case is chosen to be equal to the speed of the second rotor. The CFD simulation is conducted to compare the performance of the CRCC and the REF with the same boundary conditions. The results show that the configuration with a higher length ratio gives higher pressure rise. However, its efficiency is lower. An investigation over the entire operating range shows that the CF1 is the best configuration in this case. In addition, the CRCC can improve the pressure rise as well as the efficiency by changing the speed of each rotor independently. The results of changing the first rotor speed show with a 130% speed increase, the pressure ratio rises of 8.7% while the efficiency remains stable at the flow rate of the design operating point.Keywords: Centrifugal compressor, contra-rotating, interaction rotor, vacuum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829678 Effect of Exit Annular Area on the Flow Field Characteristics of an Unconfined Premixed Annular Swirl Burner
Authors: Vishnu Raj, Chockalingam Prathap
Abstract:
The objective of this study was to explore the impact of variation in the exit annular area on the local flow field features and the flame stability of an annular premixed swirl burner (unconfined) operated with a premixed n-butane air mixture at an equivalence ratio (Φ) = 1, 1 bar, and 300K. A swirl burner with an axial swirl generator having a swirl number of 1.5 was used. Three different burner heads were chosen to have the exit area increased from 100%, 160%, and 220% resulting in inner and outer diameters and cross-sectional areas as (1) 10 mm & 15 mm, 98 mm2 (2) 17.5 mm & 22.5 mm, 157 mm2 and (3) 25 mm & 30 mm, 216 mm2. The bulk velocity and Reynolds number based on the hydraulic diameter and unburned gas properties were kept constant at 12 m/s and 4000. (i) Planar Particle Image Velocimetry (PIV) with TiO2 seeding particles and (ii) CH* chemiluminescence was used to measure the velocity fields and reaction zones of the swirl flames at 5 Hz, respectively. Velocity fields and the jet spreading rates measured at the isothermal and reactive conditions revealed that the presence of a flame significantly altered the flow field in the radial direction due to the gas expansion. Important observations from the flame measurements were: the height and maximum width of the recirculation bubbles normalized by the hydraulic diameter, and the jet spreading angles for the flames for the three exit area cases were: (a) 4.52, 1.95, 34◦, (b) 6.78, 2.37, 26◦, and (c) 8.73, 2.32, 22◦. The lean blowout (LBO) was also measured, and the respective equivalence ratios were: 0.80, 0.92, and 0.82. LBO was relatively narrow for the 157 mm2 case. For this case, PIV measurements showed that Turbulent Kinetic Energy and turbulent intensity were relatively high compared to the other two cases, resulting in higher stretch rates and narrower LBO.
Keywords: Chemiluminescence, jet spreading rate, lean blow out, swirl flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 268677 Evaluation of Easy-to-Use Energy Building Design Tools for Solar Access Analysis in Urban Contexts: Comparison of Friendly Simulation Design Tools for Architectural Practice in the Early Design Stage
Abstract:
Current building sector is focused on reduction of energy requirements, on renewable energy generation and on regeneration of existing urban areas. These targets need to be solved with a systemic approach, considering several aspects simultaneously such as climate conditions, lighting conditions, solar radiation, PV potential, etc. The solar access analysis is an already known method to analyze the solar potentials, but in current years, simulation tools have provided more effective opportunities to perform this type of analysis, in particular in the early design stage. Nowadays, the study of the solar access is related to the easiness of the use of simulation tools, in rapid and easy way, during the design process. This study presents a comparison of three simulation tools, from the point of view of the user, with the aim to highlight differences in the easy-to-use of these tools. Using a real urban context as case study, three tools; Ecotect, Townscope and Heliodon, are tested, performing models and simulations and examining the capabilities and output results of solar access analysis. The evaluation of the ease-to-use of these tools is based on some detected parameters and features, such as the types of simulation, requirements of input data, types of results, etc. As a result, a framework is provided in which features and capabilities of each tool are shown. This framework shows the differences among these tools about functions, features and capabilities. The aim of this study is to support users and to improve the integration of simulation tools for solar access with the design process.
Keywords: Solar access analysis, energy building design tools, urban planning, solar potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068676 Networks in the Tourism Sector in Brazil: Proposal of a Management Model Applied to Tourism Clusters
Authors: Gysele Lima Ricci, Jose Miguel Rodriguez Anton
Abstract:
Companies in the tourism sector need to achieve competitive advantages for their survival in the market. In this way, the models based on association, cooperation, complementarity, distribution, exchange and mutual assistance arise as a possibility of organizational development, taking as reference the concept of networks. Many companies seek to partner in local networks as clusters to act together and associate. The main objective of the present research is to identify the specificities of management and the practices of cooperation in the tourist destination of São Paulo - Brazil, and to propose a new management model with possible cluster of tourism. The empirical analysis was carried out in three phases. As a first phase, a research was made by the companies, associations and tourism organizations existing in São Paulo, analyzing the characteristics of their business. In the second phase, the management specificities and cooperation practice used in the tourist destination. And in the third phase, identifying the possible strengths and weaknesses that potential or potential tourist cluster could have, proposing the development of the management model of the same adapted to the needs of the companies, associations and organizations. As a main result, it has been identified that companies, associations and organizations could be looking for synergies with each other and collaborate through a Hiperred organizational structure, in which they share their knowledge, try to make the most of the collaboration and to benefit from three concepts: flexibility, learning and collaboration. Finally, it is concluded that, the proposed tourism cluster management model is viable for the development of tourism destinations because it makes it possible to strategically address agents which are responsible for public policies, as well as public and private companies and organizations in their strategies competitiveness and cooperation.Keywords: Cluster, management model, networks, tourism sector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1010675 Municipal Solid Waste Management Using Life Cycle Assessment Approach: Case Study of Maku City, Iran
Authors: L. Heidari, M. Jalili Ghazizade
Abstract:
This paper aims to determine the best environmental and economic scenario for Municipal Solid Waste (MSW) management of the Maku city by using Life Cycle Assessment (LCA) approach. The functional elements of this study are collection, transportation, and disposal of MSW in Maku city. Waste composition and density, as two key parameters of MSW, have been determined by field sampling, and then, the other important specifications of MSW like chemical formula, thermal energy and water content were calculated. These data beside other information related to collection and disposal facilities are used as a reliable source of data to assess the environmental impacts of different waste management options, including landfills, composting, recycling and energy recovery. The environmental impact of MSW management options has been investigated in 15 different scenarios by Integrated Waste Management (IWM) software. The photochemical smog, greenhouse gases, acid gases, toxic emissions, and energy consumption of each scenario are measured. Then, the environmental indices of each scenario are specified by weighting these parameters. Economic costs of scenarios have been also compared with each other based on literature. As final result, since the organic materials make more than 80% of the waste, compost can be a suitable method. Although the major part of the remaining 20% of waste can be recycled, due to the high cost of necessary equipment, the landfill option has been suggested. Therefore, the scenario with 80% composting and 20% landfilling is selected as superior environmental and economic scenario. This study shows that, to select a scenario with practical applications, simultaneously environmental and economic aspects of different scenarios must be considered.
Keywords: IWM software, life cycle assessment, Maku, municipal solid waste management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318674 Thermo-mechanical Deformation Behavior of Functionally Graded Rectangular Plates Subjected to Various Boundary Conditions and Loadings
Authors: Mohammad Talha, B. N. Singh
Abstract:
This paper deals with the thermo-mechanical deformation behavior of shear deformable functionally graded ceramicmetal (FGM) plates. Theoretical formulations are based on higher order shear deformation theory with a considerable amendment in the transverse displacement using finite element method (FEM). The mechanical properties of the plate are assumed to be temperaturedependent and graded in the thickness direction according to a powerlaw distribution in terms of the volume fractions of the constituents. The temperature field is supposed to be a uniform distribution over the plate surface (XY plane) and varied in the thickness direction only. The fundamental equations for the FGM plates are obtained using variational approach by considering traction free boundary conditions on the top and bottom faces of the plate. A C0 continuous isoparametric Lagrangian finite element with thirteen degrees of freedom per node have been employed to accomplish the results. Convergence and comparison studies have been performed to demonstrate the efficiency of the present model. The numerical results are obtained for different thickness ratios, aspect ratios, volume fraction index and temperature rise with different loading and boundary conditions. Numerical results for the FGM plates are provided in dimensionless tabular and graphical forms. The results proclaim that the temperature field and the gradient in the material properties have significant role on the thermo-mechanical deformation behavior of the FGM plates.
Keywords: Functionally graded material, higher order shear deformation theory, finite element method, independent field variables.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334673 Parameter Optimization and Thermal Simulation in Laser Joining of Coach Peel Panels of Dissimilar Materials
Authors: Masoud Mohammadpour, Blair Carlson, Radovan Kovacevic
Abstract:
The quality of laser welded-brazed (LWB) joints were strongly dependent on the main process parameters, therefore the effect of laser power (3.2–4 kW), welding speed (60–80 mm/s) and wire feed rate (70–90 mm/s) on mechanical strength and surface roughness were investigated in this study. The comprehensive optimization process by means of response surface methodology (RSM) and desirability function was used for multi-criteria optimization. The experiments were planned based on Box– Behnken design implementing linear and quadratic polynomial equations for predicting the desired output properties. Finally, validation experiments were conducted on an optimized process condition which exhibited good agreement between the predicted and experimental results. AlSi3Mn1 was selected as the filler material for joining aluminum alloy 6022 and hot-dip galvanized steel in coach peel configuration. The high scanning speed could control the thickness of IMC as thin as 5 µm. The thermal simulations of joining process were conducted by the Finite Element Method (FEM), and results were validated through experimental data. The Fe/Al interfacial thermal history evidenced that the duration of critical temperature range (700–900 °C) in this high scanning speed process was less than 1 s. This short interaction time leads to the formation of reaction-control IMC layer instead of diffusion-control mechanisms.
Keywords: Laser welding-brazing, finite element, response surface methodology, multi-response optimization, cross-beam laser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961672 Impact of Climate Change on Sea Level Rise along the Coastline of Mumbai City, India
Authors: Chakraborty Sudipta, A. R. Kambekar, Sarma Arnab
Abstract:
Sea-level rise being one of the most important impacts of anthropogenic induced climate change resulting from global warming and melting of icebergs at Arctic and Antarctic, the investigations done by various researchers both on Indian Coast and elsewhere during the last decade has been reviewed in this paper. The paper aims to ascertain the propensity of consistency of different suggested methods to predict the near-accurate future sea level rise along the coast of Mumbai. Case studies at East Coast, Southern Tip and West and South West coast of India have been reviewed. Coastal Vulnerability Index of several important international places has been compared, which matched with Intergovernmental Panel on Climate Change forecasts. The application of Geographic Information System mapping, use of remote sensing technology, both Multi Spectral Scanner and Thematic Mapping data from Landsat classified through Iterative Self-Organizing Data Analysis Technique for arriving at high, moderate and low Coastal Vulnerability Index at various important coastal cities have been observed. Instead of data driven, hindcast based forecast for Significant Wave Height, additional impact of sea level rise has been suggested. Efficacy and limitations of numerical methods vis-à-vis Artificial Neural Network has been assessed, importance of Root Mean Square error on numerical results is mentioned. Comparing between various computerized methods on forecast results obtained from MIKE 21 has been opined to be more reliable than Delft 3D model.
Keywords: Climate change, coastal vulnerability index, global warming, sea level rise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566671 Retail Strategy to Reduce Waste Keeping High Profit Utilizing Taylor's Law in Point-of-Sales Data
Authors: Gen Sakoda, Hideki Takayasu, Misako Takayasu
Abstract:
Waste reduction is a fundamental problem for sustainability. Methods for waste reduction with point-of-sales (POS) data are proposed, utilizing the knowledge of a recent econophysics study on a statistical property of POS data. Concretely, the non-stationary time series analysis method based on the Particle Filter is developed, which considers abnormal fluctuation scaling known as Taylor's law. This method is extended for handling incomplete sales data because of stock-outs by introducing maximum likelihood estimation for censored data. The way for optimal stock determination with pricing the cost of waste reduction is also proposed. This study focuses on the examination of the methods for large sales numbers where Taylor's law is obvious. Numerical analysis using aggregated POS data shows the effectiveness of the methods to reduce food waste maintaining a high profit for large sales numbers. Moreover, the way of pricing the cost of waste reduction reveals that a small profit loss realizes substantial waste reduction, especially in the case that the proportionality constant of Taylor’s law is small. Specifically, around 1% profit loss realizes half disposal at =0.12, which is the actual value of processed food items used in this research. The methods provide practical and effective solutions for waste reduction keeping a high profit, especially with large sales numbers.
Keywords: Food waste reduction, particle filter, point of sales, sustainable development goals, Taylor's Law, time series analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 871670 Evaluation of Ensemble Classifiers for Intrusion Detection
Authors: M. Govindarajan
Abstract:
One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed with homogeneous ensemble classifier using bagging and heterogeneous ensemble classifier using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of standard datasets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase, and combining phase. A wide range of comparative experiments is conducted for standard datasets of intrusion detection. The performance of the proposed homogeneous and heterogeneous ensemble classifiers are compared to the performance of other standard homogeneous and heterogeneous ensemble methods. The standard homogeneous ensemble methods include Error correcting output codes, Dagging and heterogeneous ensemble methods include majority voting, stacking. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and the proposed bagged RBF and SVM performs significantly better than ECOC and Dagging and the proposed hybrid RBF-SVM performs significantly better than voting and stacking. Also heterogeneous models exhibit better results than homogeneous models for standard datasets of intrusion detection.Keywords: Data mining, ensemble, radial basis function, support vector machine, accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701669 Quality of Groundwater in the Shallow Aquifers of a Paddy Dominated Agricultural River Basin, Kerala, India
Authors: N. Kannan, Sabu Joseph
Abstract:
Groundwater is an essential and vital component of our life support system. The groundwater resources are being utilized for drinking, irrigation and industrial purposes. There is growing concern on deterioration of groundwater quality due to geogenic and anthropogenic activities. Groundwater, being a fragile must be carefully managed to maintain its purity within standard limits. So, quality assessment and management are to be carried out hand-in-hand to have a pollution free environment and for a sustainable use. In order to assess the quality for consumption by human beings and for use in agriculture, the groundwater from the shallow aquifers (dug well) in the Palakkad and Chittur taluks of Bharathapuzha river basin - a paddy dominated agricultural basin (order=8th; L= 209 Km; Area = 6186 Km2), Kerala, India, has been selected. The water samples (n= 120) collected for various seasons, viz., monsoon-MON (August, 2005), postmonsoon-POM (December, 2005) and premonsoon-PRM (April, 2006), were analyzed for important physico-chemical attributes. Spatial and temporal variation of attributes do exist in the study area, and based on major cations and anions, different hydrochemical facies have been identified. Using Gibbs'diagram, rock dominance has been identified as the mechanism controlling groundwater chemistry. Further, the suitability of water for irrigation was determined by analyzing salinity hazard indicated by sodium adsorption ratio (SAR), residual sodium carbonate (RSC) and sodium percent (%Na). Finally, stress zones in the study area were delineated using Arc GIS spatial analysis and various management options were recommended to restore the ecosystem.
Keywords: Groundwater quality, agricultural basin, Kerala, India.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2598668 Performance Augmentation of a Combined Cycle Power Plant with Waste Heat Recovery and Solar Energy
Authors: Mohammed A. Elhaj, Jamal S. Yassin
Abstract:
In the present time, energy crises is considered a severe problem across the world. For the protection of global environment and maintain ecological balance, energy saving is considered one of the most vital issues from the view point of fuel consumption. As the industrial sectors everywhere continue efforts to improve their energy efficiency, recovering waste heat losses provides an attractive opportunity for an emission free and less costly energy resource. In the other hand the using of solar energy has become more insistent particularly after the high gross of prices and running off the conventional energy sources. Therefore, it is essential that we should endeavor for waste heat recovery as well as solar energy by making significant and concrete efforts. For these reasons this investigation is carried out to study and analyze the performance of a power plant working by a combined cycle in which heat recovery system generator (HRSG) gets its energy from the waste heat of a gas turbine unit. Evaluation of the performance of the plant is based on different thermal efficiencies of the main components in addition to the second law analysis considering the exergy destructions for the whole components. The contribution factors including the solar as well as the wasted energy are considered in the calculations. The final results have shown that there is significant exergy destruction in solar concentrator and the combustion chamber of the gas turbine unit. Other components such as compressor, gas turbine, steam turbine and heat exchangers having insignificant exergy destruction. Also, solar energy can contribute by about 27% of the input energy to the plant while the energy lost with exhaust gases can contribute by about 64% at maximum cases.
Keywords: Solar energy, environment, efficiency, waste heat, steam generator, performance, exergy destruction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131667 LIDAR Obstacle Warning and Avoidance System for Unmanned Aircraft
Authors: Roberto Sabatini, Alessandro Gardi, Mark A. Richardson
Abstract:
The availability of powerful eye-safe laser sources and the recent advancements in electro-optical and mechanical beam-steering components have allowed laser-based Light Detection and Ranging (LIDAR) to become a promising technology for obstacle warning and avoidance in a variety of manned and unmanned aircraft applications. LIDAR outstanding angular resolution and accuracy characteristics are coupled to its good detection performance in a wide range of incidence angles and weather conditions, providing an ideal obstacle avoidance solution, which is especially attractive in low-level flying platforms such as helicopters and small-to-medium size Unmanned Aircraft (UA). The Laser Obstacle Avoidance Marconi (LOAM) system is one of such systems, which was jointly developed and tested by SELEX-ES and the Italian Air Force Research and Flight Test Centre. The system was originally conceived for military rotorcraft platforms and, in this paper, we briefly review the previous work and discuss in more details some of the key development activities required for integration of LOAM on UA platforms. The main hardware and software design features of this LOAM variant are presented, including a brief description of the system interfaces and sensor characteristics, together with the system performance models and data processing algorithms for obstacle detection, classification and avoidance. In particular, the paper focuses on the algorithm proposed for optimal avoidance trajectory generation in UA applications.
Keywords: LIDAR, Low-Level Flight, Nap-of-the-Earth Flight, Near Infra-Red, Obstacle Avoidance, Obstacle Detection, Obstacle Warning System, Sense and Avoid, Trajectory Optimisation, Unmanned Aircraft.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7085666 Low Temperature Biological Treatment of Chemical Oxygen Demand for Agricultural Water Reuse Application Using Robust Biocatalysts
Authors: Vedansh Gupta, Allyson Lutz, Ameen Razavi, Fatemeh Shirazi
Abstract:
The agriculture industry is especially vulnerable to forecasted water shortages. In the fresh and fresh-cut produce sector, conventional flume-based washing with recirculation exhibits high water demand. This leads to a large water footprint and possible cross-contamination of pathogens. These can be alleviated through advanced water reuse processes, such as membrane technologies including reverse osmosis (RO). Water reuse technologies effectively remove dissolved constituents but can easily foul without pre-treatment. Biological treatment is effective for the removal of organic compounds responsible for fouling, but not at the low temperatures encountered at most produce processing facilities. This study showed that the Microvi MicroNiche Engineering (MNE) technology effectively removes organic compounds (> 80%) at low temperatures (6-8 °C) from wash water. The MNE technology uses synthetic microorganism-material composites with negligible solids production, making it advantageously situated as an effective bio-pretreatment for RO. A preliminary technoeconomic analysis showed 60-80% savings in operation and maintenance costs (OPEX) when using the Microvi MNE technology for organics removal. This study and the accompanying economic analysis indicated that the proposed technology process will substantially reduce the cost barrier for adopting water reuse practices, thereby contributing to increased food safety and furthering sustainable water reuse processes across the agricultural industry.
Keywords: Biological pre-treatment, innovative technology, vegetable processing, water reuse, agriculture, reverse osmosis, MNE biocatalysts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 616665 Comparative Review of Modulation Techniques for Harmonic Minimization in Multilevel Inverter
Authors: M. Suresh Kumar, K. Ramani
Abstract:
This paper proposed the comparison made between Multi-Carrier Pulse Width Modulation, Sinusoidal Pulse Width Modulation and Selective Harmonic Elimination Pulse Width Modulation technique for minimization of Total Harmonic Distortion in Cascaded H-Bridge Multi-Level Inverter. In Multicarrier Pulse Width Modulation method by using Alternate Position of Disposition scheme for switching pulse generation to Multi-Level Inverter. Another carrier based approach; Sinusoidal Pulse Width Modulation method is also implemented to define the switching pulse generation system in the multi-level inverter. In Selective Harmonic Elimination method using Genetic Algorithm and Particle Swarm Optimization algorithm for define the required switching angles to eliminate low order harmonics from the inverter output voltage waveform and reduce the total harmonic distortion value. So, the results validate that the Selective Harmonic Elimination Pulse Width Modulation method does capably eliminate a great number of precise harmonics and minimize the Total Harmonic Distortion value in output voltage waveform in compared with Multi-Carrier Pulse Width Modulation method, Sinusoidal Pulse Width Modulation method. In this paper, comparison of simulation results shows that the Selective Harmonic Elimination method can attain optimal harmonic minimization solution better than Multi-Carrier Pulse Width Modulation method, Sinusoidal Pulse Width Modulation method.Keywords: Multi-level inverter, Selective Harmonic Elimination Pulse Width Modulation, Multi-Carrier Pulse Width Modulation, Total Harmonic Distortion, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2975664 Wavelet Based Qualitative Assessment of Femur Bone Strength Using Radiographic Imaging
Authors: Sundararajan Sangeetha, Joseph Jesu Christopher, Swaminathan Ramakrishnan
Abstract:
In this work, the primary compressive strength components of human femur trabecular bone are qualitatively assessed using image processing and wavelet analysis. The Primary Compressive (PC) component in planar radiographic femur trabecular images (N=50) is delineated by semi-automatic image processing procedure. Auto threshold binarization algorithm is employed to recognize the presence of mineralization in the digitized images. The qualitative parameters such as apparent mineralization and total area associated with the PC region are derived for normal and abnormal images.The two-dimensional discrete wavelet transforms are utilized to obtain appropriate features that quantify texture changes in medical images .The normal and abnormal samples of the human femur are comprehensively analyzed using Harr wavelet.The six statistical parameters such as mean, median, mode, standard deviation, mean absolute deviation and median absolute deviation are derived at level 4 decomposition for both approximation and horizontal wavelet coefficients. The correlation coefficient of various wavelet derived parameters with normal and abnormal for both approximated and horizontal coefficients are estimated. It is seen that in almost all cases the abnormal show higher degree of correlation than normals. Further the parameters derived from approximation coefficient show more correlation than those derived from the horizontal coefficients. The parameters mean and median computed at the output of level 4 Harr wavelet channel was found to be a useful predictor to delineate the normal and the abnormal groups.Keywords: Image processing, planar radiographs, trabecular bone and wavelet analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493663 Comparative Parametric and Emission Characteristics of Single Cylinder Spark Ignition Engine Using Gasoline, Ethanol, and H₂O as Micro Emulsion Fuels
Authors: Ufaith Qadri, M Marouf Wani
Abstract:
In this paper, the performance and emission characteristics of a Single Cylinder Spark Ignition engine have been investigated. The research is based on micro emulsion application as fuel in a gasoline engine. We have analyzed many micro emulsion compositions in various proportions, for predicting the performance of the Spark Ignition engine. This new technology of fuel modifications is emerging very rapidly as lot of research is going on in the field of micro emulsion fuels in Compression Ignition engines, but the micro emulsion fuel used in a Gasoline engine is very rare. The use of micro emulsion as fuel in a Spark Ignition engine is virtually unexplored. So, our main goal is to see the performance and emission characteristics of micro emulsions as fuel, in Spark Ignition engines, and finding which composition is more efficient. In this research, we have used various micro emulsion fuels whose composition varies for all the three blends, and their performance and emission characteristic were predicted in AVL Boost software. Conventional Gasoline fuel 90%, 80% and 85% were blended with co-surfactant Ethanol in different compositions, and water was used as an additive for making it crystal clear transparent micro emulsion fuel, which is thermodynamically stable. By comparing the performances of engines, the power has shown similarity for micro emulsion fuel and conventional Gasoline fuel. On the other hand, Torque and BMEP shows increase for all the micro emulsion fuels. Micro emulsion fuel shows higher thermal efficiency and lower Specific Fuel Consumption for all the compositions as compared to the Gasoline fuel. Carbon monoxide and Hydro carbon emissions were also measured. The result shows that emissions decrease for all the composition of micro emulsion fuels, and proved to be the most efficient fuel both in terms of performance and emission characteristics.
Keywords: AVL Boost, emissions, micro emulsion, performance, SI engine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 852662 Metal Inert Gas Welding-Based-Shaped Metal Deposition in Additive Layered Manufacturing: A Review
Authors: Adnan A. Ugla, Hassan J. Khaudair, Ahmed R. J. Almusawi
Abstract:
Shaped Metal Deposition (SMD) in additive layered manufacturing technique is a promising alternative to traditional manufacturing used for manufacturing large, expensive metal components with complex geometry in addition to producing free structures by building materials in a layer by layer technique. The present paper is a comprehensive review of the literature and the latest rapid manufacturing technologies of the SMD technique. The aim of this paper is to comprehensively review the most prominent facts that researchers have dealt with in the SMD techniques especially those associated with the cold wire feed. The intent of this study is to review the literature presented on metal deposition processes and their classifications, including SMD process using Wire + Arc Additive Manufacturing (WAAM) which divides into wire + tungsten inert gas (TIG), metal inert gas (MIG), or plasma. This literary research presented covers extensive details on bead geometry, process parameters and heat input or arc energy resulting from the deposition process in both cases MIG and Tandem-MIG in SMD process. Furthermore, SMD may be done using Single Wire-MIG (SW-MIG) welding and SMD using Double Wire-MIG (DW-MIG) welding. The present review shows that the method of deposition of metals when using the DW-MIG process can be considered a distinctive and low-cost method to produce large metal components due to high deposition rates as well as reduce the input of high temperature generated during deposition and reduce the distortions. However, the accuracy and surface finish of the MIG-SMD are less as compared to electron and laser beam.
Keywords: Shaped metal deposition, additive manufacturing, double-wire feed, cold feed wire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396661 Quality of Bali Beef and Broiler after Immersion in Liquid Smoke on Different Concentrations and Storage Times
Authors: E. Abustam, M. Yusuf, H. M. Ali, M. I. Said, F. N. Yuliati
Abstract:
The aim of this study was to improve the durability and quality of Bali beef (M. Longissimus dorsi) and broiler carcass through the addition of liquid smoke as a natural preservative. This study was using Longissimus dorsi muscle from male Bali beef aged 3 years, broiler breast and thigh aged 40 days. Three types of meat were marinated in liquid smoke with concentrations of 0, 5, and 10% for 30 minutes at the level of 20% of the sample weight (w/w). The samples were storage at 2-5°C for 1 month. This study designed as a factorial experiment 3 x 3 x 4 based on a completely randomized design with 5 replications; the first factor was meat type (beef, chicken breast and chicken thigh); the 2nd factor was liquid smoke concentrations (0, 5, and 10%), and the 3rd factor was storage duration (1, 2, 3, and 4 weeks). Parameters measured were TBA value, total bacterial colonies, water holding capacity (WHC), shear force value both before and after cooking (80°C – 15min.), and cooking loss. The results showed that the type of meat produced WHC, shear force value, cooking loss and TBA differed between the three types of meat. Higher concentration of liquid smoke, the WHC, shear force value, TBA, and total bacterial colonies were decreased; at a concentration of 10% of liquid smoke, the total bacterial colonies decreased by 57.3% from untreated with liquid smoke. Longer storage, the total bacterial colonies and WHC were increased, while the shear force value and cooking loss were decreased. It can be concluded that a 10% concentration of liquid smoke was able to maintain fat oxidation and bacterial growth in Bali beef and chicken breast and thigh.Keywords: Bali beef, chicken meat, liquid smoke, meat quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548660 Efficient Compact Micro DBD Plasma Reactor for Ozone Generation for Industrial Application in Liquid and Gas Phase Systems
Authors: Kuvshinov, D., Siswanto, A., Lozano-Parada, J., Zimmerman, W. B.
Abstract:
Ozone is well known as a powerful, fast reacting oxidant. Ozone based processes produce no by-product residual as non-reacted ozone decomposes to molecular oxygen. Therefore an application of ozone is widely accepted as one of the main approaches for a Sustainable and Clean Technologies development.
There are number of technologies which require ozone to be delivered to specific points of a production network or reactors construction. Due to space constraints, high reactivity and short life time of ozone the use of ozone generators even of a bench top scale is practically limited. This requires development of mini/micro scale ozone generator which can be directly incorporated into production units.
Our report presents a feasibility study of a new micro scale rector for ozone generation (MROG). Data on MROG calibration and indigo decomposition at different operation conditions are presented.
At selected operation conditions with residence time of 0.25 s the process of ozone generation is not limited by reaction rate and the amount of ozone produced is a function of power applied. It was shown that the MROG is capable to produce ozone at voltage level starting from 3.5kV with ozone concentration of 5.28*10-6 (mol/L) at 5kV. This is in line with data presented on numerical investigation for a MROG. It was shown that in compare to a conventional ozone generator, MROG has lower power consumption at low voltages and atmospheric pressure.
The MROG construction makes it applicable for both submerged and dry systems. With a robust compact design MROG can be used as an integrated module for production lines of high complexity.
Keywords: DBD, micro reactor, ozone, plasma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3004659 Analysis of Transformer Reactive Power Fluctuations during Adverse Space Weather
Authors: Patience Muchini, Electdom Matandiroya, Emmanuel Mashonjowa
Abstract:
A ground-end manifestation of space weather phenomena is known as geomagnetically induced currents (GICs). GICs flow along the electric power transmission cables connecting the transformers and between the grounding points of power transformers during significant geomagnetic storms. Zimbabwe has no study that notes if grid failures have been caused by GICs. Research and monitoring are needed to investigate this possible relationship purpose of this paper is to characterize GICs with a power grid network. This paper analyses data collected, which are geomagnetic data, which include the Kp index, Disturbance storm time (DST) index, and the G-Scale from geomagnetic storms and also analyses power grid data, which includes reactive power, relay tripping, and alarms from high voltage substations and then correlates the data. This research analysis was first theoretically analyzed by studying geomagnetic parameters and then experimented upon. To correlate, MATLAB was used as the basic software to analyze the data. Latitudes of the substations were also brought into scrutiny to note if they were an impact due to the location as low latitudes areas like most parts of Zimbabwe, there are less severe geomagnetic variations. Based on theoretical and graphical analysis, it has been proven that there is a slight relationship between power system failures and GICs. Further analyses can be done by implementing measuring instruments to measure any currents in the grounding of high-voltage transformers when geomagnetic storms occur. Mitigation measures can then be developed to minimize the susceptibility of the power network to GICs.
Keywords: Adverse space weather, DST index, geomagnetically induced currents, Kp index, reactive power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161