Search results for: stiffness estimation.
314 Estimating Shortest Circuit Path Length Complexity
Authors: Azam Beg, P. W. Chandana Prasad, S.M.N.A Senenayake
Abstract:
When binary decision diagrams are formed from uniformly distributed Monte Carlo data for a large number of variables, the complexity of the decision diagrams exhibits a predictable relationship to the number of variables and minterms. In the present work, a neural network model has been used to analyze the pattern of shortest path length for larger number of Monte Carlo data points. The neural model shows a strong descriptive power for the ISCAS benchmark data with an RMS error of 0.102 for the shortest path length complexity. Therefore, the model can be considered as a method of predicting path length complexities; this is expected to lead to minimum time complexity of very large-scale integrated circuitries and related computer-aided design tools that use binary decision diagrams.Keywords: Monte Carlo circuit simulation data, binary decision diagrams, neural network modeling, shortest path length estimation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378313 An Efficient Collocation Method for Solving the Variable-Order Time-Fractional Partial Differential Equations Arising from the Physical Phenomenon
Authors: Haniye Dehestani, Yadollah Ordokhani
Abstract:
In this work, we present an efficient approach for solving variable-order time-fractional partial differential equations, which are based on Legendre and Laguerre polynomials. First, we introduced the pseudo-operational matrices of integer and variable fractional order of integration by use of some properties of Riemann-Liouville fractional integral. Then, applied together with collocation method and Legendre-Laguerre functions for solving variable-order time-fractional partial differential equations. Also, an estimation of the error is presented. At last, we investigate numerical examples which arise in physics to demonstrate the accuracy of the present method. In comparison results obtained by the present method with the exact solution and the other methods reveals that the method is very effective.Keywords: Collocation method, fractional partial differential equations, Legendre-Laguerre functions, pseudo-operational matrix of integration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1023312 Predictions of Dynamic Behaviors for Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer Aided Engineering Simulations
Authors: Tai Yuan Yu, Pei-Jen Wang
Abstract:
A simulation scheme of rotational motions for predictions of bump-type gas foil bearings operating at steady-state is proposed. The scheme is based on multi-physics coupling computer aided engineering packages modularized with computational fluid dynamic model and structure elasticity model to numerically solve the dynamic equation of motions of a hydrodynamic loaded shaft supported by an elastic bump foil. The bump foil is assumed to be modelled as infinite number of Hookean springs mounted on stiff wall. Hence, the top foil stiffness is constant on the periphery of the bearing housing. The hydrodynamic pressure generated by the air film lubrication transfers to the top foil and induces elastic deformation needed to be solved by a finite element method program, whereas the pressure profile applied on the top foil must be solved by a finite element method program based on Reynolds Equation in lubrication theory. As a result, the equation of motions for the bearing shaft are iteratively solved via coupling of the two finite element method programs simultaneously. In conclusion, the two-dimensional center trajectory of the shaft plus the deformation map on top foil at constant rotational speed are calculated for comparisons with the experimental results.
Keywords: Computational fluid dynamics, fluid structure interaction multi-physics simulations, gas foil bearing, load capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 589311 Ionanofluids as Novel Fluids for Advanced Heat Transfer Applications
Authors: S. M. Sohel Murshed, C. A. Nieto de Castro, M. J. V. Lourenço, J. França, A. P. C. Ribeiro, S. I. C.Vieira, C. S. Queirós
Abstract:
Ionanofluids are a new and innovative class of heat transfer fluids which exhibit fascinating thermophysical properties compared to their base ionic liquids. This paper deals with the findings of thermal conductivity and specific heat capacity of ionanofluids as a function of a temperature and concentration of nanotubes. Simulation results using ionanofluids as coolants in heat exchanger are also used to access their feasibility and performance in heat transfer devices. Results on thermal conductivity and heat capacity of ionanofluids as well as the estimation of heat transfer areas for ionanofluids and ionic liquids in a model shell and tube heat exchanger reveal that ionanofluids possess superior thermal conductivity and heat capacity and require considerably less heat transfer areas as compared to those of their base ionic liquids. This novel class of fluids shows great potential for advanced heat transfer applications.
Keywords: Heat transfer, Ionanofluids, Ionic liquids, Nanotubes, Thermal conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218310 A Reliable FPGA-based Real-time Optical-flow Estimation
Authors: M. M. Abutaleb, A. Hamdy, M. E. Abuelwafa, E. M. Saad
Abstract:
Optical flow is a research topic of interest for many years. It has, until recently, been largely inapplicable to real-time applications due to its computationally expensive nature. This paper presents a new reliable flow technique which is combined with a motion detection algorithm, from stationary camera image streams, to allow flow-based analyses of moving entities, such as rigidity, in real-time. The combination of the optical flow analysis with motion detection technique greatly reduces the expensive computation of flow vectors as compared with standard approaches, rendering the method to be applicable in real-time implementation. This paper describes also the hardware implementation of a proposed pipelined system to estimate the flow vectors from image sequences in real time. This design can process 768 x 576 images at a very high frame rate that reaches to 156 fps in a single low cost FPGA chip, which is adequate for most real-time vision applications.Keywords: Optical flow, motion detection, real-time systems, FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744309 Investigating Performance of Numerical Distance Relay with Higher Order Antialiasing Filter
Authors: Venkatesh C., K. Shanti Swarup
Abstract:
This paper investigates the impact on operating time delay and relay maloperation when 1st,2nd and 3rd order analog antialiasing filters are used in numerical distance protection. RC filter with cut-off frequency 90 Hz is used. Simulations are carried out for different SIR (Source to line Impedance Ratio), load, fault type and fault conditions using SIMULINK, where the voltage and current signals are fed online to the developed numerical distance relay model. Matlab is used for plotting the impedance trajectory. Investigation results shows that, about 75 % of the simulated cases, numerical distance relay operating time is not increased even-though there is a time delay when higher order filters are used. Relay maloperation (selectivity) also reduces (increases) when higher order filters are used in numerical distance protection.
Keywords: Antialiasing, capacitive voltage transformers, delay estimation, discrete Fourier transform (DFT), distance measurement, low-pass filters, source to line impedance ratio (SIR), protective relaying.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2797308 Affine Radial Basis Function Neural Networks for the Robust Control of Hyperbolic Distributed Parameter Systems
Authors: Eleni Aggelogiannaki, Haralambos Sarimveis
Abstract:
In this work, a radial basis function (RBF) neural network is developed for the identification of hyperbolic distributed parameter systems (DPSs). This empirical model is based only on process input-output data and used for the estimation of the controlled variables at specific locations, without the need of online solution of partial differential equations (PDEs). The nonlinear model that is obtained is suitably transformed to a nonlinear state space formulation that also takes into account the model mismatch. A stable robust control law is implemented for the attenuation of external disturbances. The proposed identification and control methodology is applied on a long duct, a common component of thermal systems, for a flow based control of temperature distribution. The closed loop performance is significantly improved in comparison to existing control methodologies.
Keywords: Hyperbolic Distributed Parameter Systems, Radial Basis Function Neural Networks, H∞ control, Thermal systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421307 Evaluation of Wind Potential for the Lagoon of Venice (Italy) and Estimation of the Annual Energy Output for two Candidate Horizontal- Axis Low-Wind Turbines
Authors: M. Raciti Castelli, L. M. Moglia, E. Benini
Abstract:
This paper presents an evaluation of the wind potential in the area of the Lagoon of Venice (Italy). A full anemometric campaign of 2 year measurements, performed by the "Osservatorio Bioclimatologico dell'Ospedale al Mare di Venezia" has been analyzed to obtain the Weibull wind speed distribution and the main wind directions. The annual energy outputs of two candidate horizontal-axis wind turbines (“Aventa AV-7 LoWind" and “Gaia Wind 133-11kW") have been estimated on the basis of the computed Weibull wind distribution, registering a better performance of the former turbine, due to a higher ratio between rotor swept area and rated power of the electric generator, determining a lower cut-in wind speed.
Keywords: Wind potential, Annual Energy Output (AEO), Weibull distribution, Horizontal-Axis Wind Turbine (HAWT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223306 Optimum Radio Capacity Estimation of a Single-Cell Spread Spectrum MIMO System under Rayleigh Fading Conditions
Authors: P. Varzakas
Abstract:
In this paper, the problem of estimating the optimal radio capacity of a single-cell spread spectrum (SS) multiple-inputmultiple- output (MIMO) system operating in a Rayleigh fading environment is examined. The optimisation between the radio capacity and the theoretically achievable average channel capacity (in the sense of information theory) per user of a MIMO single-cell SS system operating in a Rayleigh fading environment is presented. Then, the spectral efficiency is estimated in terms of the achievable average channel capacity per user, during the operation over a broadcast time-varying link, and leads to a simple novel-closed form expression for the optimal radio capacity value based on the maximization of the achieved spectral efficiency. Numerical results are presented to illustrate the proposed analysis.Keywords: Channel capacity, MIMO systems, Radio capacity, Rayleigh fading, Spectral efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278305 Transmitter Design for LMS-MIMO-MCCDMA Systems with Pilot Channel Estimates and Zero Forcing Equalizer
Authors: S.M. Bahri, F.T. Bendimerad
Abstract:
We propose a downlink multiple-input multipleoutput (MIMO) multi-carrier code division multiple access (MCCDMA) system with adaptive beamforming algorithm for smart antennas. The algorithm used in this paper is based on the Least Mean Square (LMS), with pilot channel estimation (PCE) and the zero forcing equalizer (ZFE) in the receiver, requiring reference signal and no knowledge channel. MC-CDMA is studied in a multiple antenna context in order to efficiently exploit robustness against multipath effects and multi-user flexibility of MC-CDMA and channel diversity offered by MIMO systems for radio mobile channels. Computer simulations, considering multi-path Rayleigh Fading Channel, interference inter symbol and interference are presented to verify the performance. Simulation results show that the scheme achieves good performance in a multi-user system.Keywords: Adaptive Beamforming, LMS Algorithm, MCCDMA, MIMO System, Smart Antenna.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835304 A Modified Speech Enhancement Using Adaptive Gain Equalizer with Non linear Spectral Subtraction for Robust Speech Recognition
Authors: C. Ganesh Babu, P. T. Vanathi
Abstract:
In this paper we present an enhanced noise reduction method for robust speech recognition using Adaptive Gain Equalizer with Non linear Spectral Subtraction. In Adaptive Gain Equalizer method (AGE), the input signal is divided into a number of subbands that are individually weighed in time domain, in accordance to the short time Signal-to-Noise Ratio (SNR) in each subband estimation at every time instant. Instead of focusing on suppression the noise on speech enhancement is focused. When analysis was done under various noise conditions for speech recognition, it was found that Adaptive Gain Equalizer method algorithm has an obvious failing point for a SNR of -5 dB, with inadequate levels of noise suppression for SNR less than this point. This work proposes the implementation of AGE when coupled with Non linear Spectral Subtraction (AGE-NSS) for robust speech recognition. The experimental result shows that out AGE-NSS performs the AGE when SNR drops below -5db level.
Keywords: Adaptive Gain Equalizer, Non Linear Spectral Subtraction, Speech Enhancement, and Speech Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703303 Segmentation of Piecewise Polynomial Regression Model by Using Reversible Jump MCMC Algorithm
Authors: Suparman
Abstract:
Piecewise polynomial regression model is very flexible model for modeling the data. If the piecewise polynomial regression model is matched against the data, its parameters are not generally known. This paper studies the parameter estimation problem of piecewise polynomial regression model. The method which is used to estimate the parameters of the piecewise polynomial regression model is Bayesian method. Unfortunately, the Bayes estimator cannot be found analytically. Reversible jump MCMC algorithm is proposed to solve this problem. Reversible jump MCMC algorithm generates the Markov chain that converges to the limit distribution of the posterior distribution of piecewise polynomial regression model parameter. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of piecewise polynomial regression model.
Keywords: Piecewise, Bayesian, reversible jump MCMC, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668302 Human Growth Curve Estimation through a Combination of Longitudinal and Cross-sectional Data
Authors: Sedigheh Mirzaei S., Debasis Sengupta
Abstract:
Parametric models have been quite popular for studying human growth, particularly in relation to biological parameters such as peak size velocity and age at peak size velocity. Longitudinal data are generally considered to be vital for fittinga parametric model to individual-specific data, and for studying the distribution of these biological parameters in a human population. However, cross-sectional data are easier to obtain than longitudinal data. In this paper, we present a method of combining longitudinal and cross-sectional data for the purpose of estimating the distribution of the biological parameters. We demonstrate, through simulations in the special case ofthePreece Baines model, how estimates based on longitudinal data can be improved upon by harnessing the information contained in cross-sectional data.We study the extent of improvement for different mixes of the two types of data, and finally illustrate the use of the method through data collected by the Indian Statistical Institute.Keywords: Preece-Baines growth model, MCMC method, Mixed effect model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139301 Bandwidth Estimation Algorithms for the Dynamic Adaptation of Voice Codec
Authors: Davide Pierattoni, Ivan Macor, Pier Luca Montessoro
Abstract:
In the recent years multimedia traffic and in particular VoIP services are growing dramatically. We present a new algorithm to control the resource utilization and to optimize the voice codec selection during SIP call setup on behalf of the traffic condition estimated on the network path. The most suitable methodologies and the tools that perform realtime evaluation of the available bandwidth on a network path have been integrated with our proposed algorithm: this selects the best codec for a VoIP call in function of the instantaneous available bandwidth on the path. The algorithm does not require any explicit feedback from the network, and this makes it easily deployable over the Internet. We have also performed intensive tests on real network scenarios with a software prototype, verifying the algorithm efficiency with different network topologies and traffic patterns between two SIP PBXs. The promising results obtained during the experimental validation of the algorithm are now the basis for the extension towards a larger set of multimedia services and the integration of our methodology with existing PBX appliances.Keywords: Integrated voice-data communication, computernetwork performance, resource optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693300 Identification of Aircraft Gas Turbine Engines Temperature Condition
Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.
Abstract:
Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.
Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660299 Relocation of Plastic Hinge of Interior Beam-Column Connections with Intermediate Bars in Reinforced Concrete and T-Section Steel Inserts in Precast Concrete Frames
Authors: P. Wongmatar, C. Hansapinyo, C. Buachart
Abstract:
Failure of typical seismic frames has been found by plastic hinge occurring on beams section near column faces. On the other hand, the seismic capacity of the frames can be enhanced if the plastic hinges of the beams are shifted away from the column faces. This paper presents detailing of reinforcements in the interior beam– column connections aiming to relocate the plastic hinge of reinforced concrete and precast concrete frames. Four specimens were tested under quasi-static cyclic load including two monolithic specimens and two precast specimens. For one monolithic specimen, typical seismic reinforcement was provided and considered as a reference specimen named M1. The other reinforced concrete frame M2 contained additional intermediate steel in the connection area compared with the specimen M1. For the precast specimens, embedded T-section steels in joint were provided, with and without diagonal bars in the connection area for specimen P1 and P2, respectively. The test results indicated the ductile failure with beam flexural failure in monolithic specimen M1 and the intermediate steel increased strength and improved joint performance of specimen M2. For the precast specimens, cracks generated at the end of the steel inserts. However, slipping of reinforcing steel lapped in top of the beams was seen before yielding of the main bars leading to the brittle failure. The diagonal bars in precast specimens P2 improved the connection stiffness and the energy dissipation capacity.Keywords: Relocation, Plastic hinge, Intermediate bar, Tsection steel, Precast concrete frame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3346298 Identification of Aircraft Gas Turbine Engine's Temperature Condition
Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.
Abstract:
Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.
Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673297 Estimation of the Upper Tail Dependence Coefficient for Insurance Loss Data Using an Empirical Copula-Based Approach
Authors: Adrian O’Hagan, Robert McLoughlin
Abstract:
Considerable focus in the world of insurance risk quantification is placed on modeling loss values from lines of business (LOBs) that possess upper tail dependence. Copulas such as the Joe, Gumbel and Student-t copula may be used for this purpose. The copula structure imparts a desired level of tail dependence on the joint distribution of claims from the different LOBs. Alternatively, practitioners may possess historical or simulated data that already exhibit upper tail dependence, through the impact of catastrophe events such as hurricanes or earthquakes. In these circumstances, it is not desirable to induce additional upper tail dependence when modeling the joint distribution of the loss values from the individual LOBs. Instead, it is of interest to accurately assess the degree of tail dependence already present in the data. The empirical copula and its associated upper tail dependence coefficient are presented in this paper as robust, efficient means of achieving this goal.
Keywords: Empirical copula, extreme events, insurance loss reserving, upper tail dependence coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4847296 A Hybrid Scheme for on-Line Diagnostic Decision Making Using Optimal Data Representation and Filtering Technique
Authors: Hyun-Woo Cho
Abstract:
The early diagnostic decision making in industrial processes is absolutely necessary to produce high quality final products. It helps to provide early warning for a special event in a process, and finding its assignable cause can be obtained. This work presents a hybrid diagnostic schmes for batch processes. Nonlinear representation of raw process data is combined with classification tree techniques. The nonlinear kernel-based dimension reduction is executed for nonlinear classification decision boundaries for fault classes. In order to enhance diagnosis performance for batch processes, filtering of the data is performed to get rid of the irrelevant information of the process data. For the diagnosis performance of several representation, filtering, and future observation estimation methods, four diagnostic schemes are evaluated. In this work, the performance of the presented diagnosis schemes is demonstrated using batch process data.
Keywords: Diagnostics, batch process, nonlinear representation, data filtering, multivariate statistical approach
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1317295 Discrete Estimation of Spectral Density for Alpha Stable Signals Observed with an Additive Error
Authors: R. Sabre, W. Horrigue, J. C. Simon
Abstract:
This paper is interested in two difficulties encountered in practice when observing a continuous time process. The first is that we cannot observe a process over a time interval; we only take discrete observations. The second is the process frequently observed with a constant additive error. It is important to give an estimator of the spectral density of such a process taking into account the additive observation error and the choice of the discrete observation times. In this work, we propose an estimator based on the spectral smoothing of the periodogram by the polynomial Jackson kernel reducing the additive error. In order to solve the aliasing phenomenon, this estimator is constructed from observations taken at well-chosen times so as to reduce the estimator to the field where the spectral density is not zero. We show that the proposed estimator is asymptotically unbiased and consistent. Thus we obtain an estimate solving the two difficulties concerning the choice of the instants of observations of a continuous time process and the observations affected by a constant error.
Keywords: Spectral density, stable processes, aliasing, periodogram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 664294 Energy Communities from Municipality Level to Province Level: A Comparison Using Autoregressive Integrated Moving Average Model
Authors: Amro Issam Hamed Attia Ramadan, Marco Zappatore, Pasquale Balena, Antonella Longo
Abstract:
Considering the energy crisis that is hitting Europe, it becomes increasingly necessary to change energy policies to depend less on fossil fuels and replace them with energy from renewable sources. This has triggered the urge to use clean energy, not only to satisfy energy needs and fulfill the required consumption, but also to decrease the danger of climatic changes due to harmful emissions. Many countries have already started creating energy communities based on renewable energy sources. The first step to understanding energy needs in any place is to perfectly know the consumption. In this work, we aim to estimate electricity consumption for a municipality that makes up part of a rural area located in southern Italy using forecast models that allow for the estimation of electricity consumption for the next 10 years, and we then apply the same model to the province where the municipality is located and estimate the future consumption for the same period to examine whether it is possible to start from the municipality level to reach the province level when creating energy communities.
Keywords: ARIMA, electricity consumption, forecasting models, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 283293 Predicting Extrusion Process Parameters Using Neural Networks
Authors: Sachin Man Bajimaya, SangChul Park, Gi-Nam Wang
Abstract:
The objective of this paper is to estimate realistic principal extrusion process parameters by means of artificial neural network. Conventionally, finite element analysis is used to derive process parameters. However, the finite element analysis of the extrusion model does not consider the manufacturing process constraints in its modeling. Therefore, the process parameters obtained through such an analysis remains highly theoretical. Alternatively, process development in industrial extrusion is to a great extent based on trial and error and often involves full-size experiments, which are both expensive and time-consuming. The artificial neural network-based estimation of the extrusion process parameters prior to plant execution helps to make the actual extrusion operation more efficient because more realistic parameters may be obtained. And so, it bridges the gap between simulation and real manufacturing execution system. In this work, a suitable neural network is designed which is trained using an appropriate learning algorithm. The network so trained is used to predict the manufacturing process parameters.Keywords: Artificial Neural Network (ANN), Indirect Extrusion, Finite Element Analysis, MES.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368292 Prediction of the Thermal Parameters of a High-Temperature Metallurgical Reactor Using Inverse Heat Transfer
Authors: Mohamed Hafid, Marcel Lacroix
Abstract:
This study presents an inverse analysis for predicting the thermal conductivities and the heat flux of a high-temperature metallurgical reactor simultaneously. Once these thermal parameters are predicted, the time-varying thickness of the protective phase-change bank that covers the inside surface of the brick walls of a metallurgical reactor can be calculated. The enthalpy method is used to solve the melting/solidification process of the protective bank. The inverse model rests on the Levenberg-Marquardt Method (LMM) combined with the Broyden method (BM). A statistical analysis for the thermal parameter estimation is carried out. The effect of the position of the temperature sensors, total number of measurements and measurement noise on the accuracy of inverse predictions is investigated. Recommendations are made concerning the location of temperature sensors.
Keywords: Inverse heat transfer, phase change, metallurgical reactor, Levenberg–Marquardt method, Broyden method, bank thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693291 The Effects of Detector Spacing on Travel Time Prediction on Freeways
Authors: Piyali Chaudhuri, Peter T. Martin, Aleksandar Z. Stevanovic, Chongkai Zhu
Abstract:
Loop detectors report traffic characteristics in real time. They are at the core of traffic control process. Intuitively, one would expect that as density of detection increases, so would the quality of estimates derived from detector data. However, as detector deployment increases, the associated operating and maintenance cost increases. Thus, traffic agencies often need to decide where to add new detectors and which detectors should continue receiving maintenance, given their resource constraints. This paper evaluates the effect of detector spacing on freeway travel time estimation. A freeway section (Interstate-15) in Salt Lake City metropolitan region is examined. The research reveals that travel time accuracy does not necessarily deteriorate with increased detector spacing. Rather, the actual location of detectors has far greater influence on the quality of travel time estimates. The study presents an innovative computational approach that delivers optimal detector locations through a process that relies on Genetic Algorithm formulation.Keywords: Detector, Freeway, Genetic algorithm, Travel timeestimate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669290 Effect of Density on the Shear Modulus and Damping Ratio of Saturated Sand in Small Strain
Authors: M. Kakavand, S. A. Naeini
Abstract:
Dynamic properties of soil in small strains, especially for geotechnical engineers, are important for describing the behavior of soil and estimation of the earth structure deformations and structures, especially significant structures. This paper presents the effect of density on the shear modulus and damping ratio of saturated clean sand at various isotropic confining pressures. For this purpose, the specimens were compared with two different relative densities, loose Dr = 30% and dense Dr = 70%. Dynamic parameters were attained from a series of consolidated undrained fixed – free type torsional resonant column tests in small strain. Sand No. 161 is selected for this paper. The experiments show that by increasing sand density and confining pressure, the shear modulus increases and the damping ratio decreases.
Keywords: Dynamic properties, shear modulus, damping ratio, clean sand, density, confining pressure, resonant column/torsional simple shear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 885289 Knowledge Representation Based On Interval Type-2 CFCM Clustering
Authors: Myung-Won Lee, Keun-Chang Kwak
Abstract:
This paper is concerned with knowledge representation and extraction of fuzzy if-then rules using Interval Type-2 Context-based Fuzzy C-Means clustering (IT2-CFCM) with the aid of fuzzy granulation. This proposed clustering algorithm is based on information granulation in the form of IT2 based Fuzzy C-Means (IT2-FCM) clustering and estimates the cluster centers by preserving the homogeneity between the clustered patterns from the IT2 contexts produced in the output space. Furthermore, we can obtain the automatic knowledge representation in the design of Radial Basis Function Networks (RBFN), Linguistic Model (LM), and Adaptive Neuro-Fuzzy Networks (ANFN) from the numerical input-output data pairs. We shall focus on a design of ANFN in this paper. The experimental results on an estimation problem of energy performance reveal that the proposed method showed a good knowledge representation and performance in comparison with the previous works.
Keywords: IT2-FCM, IT2-CFCM, context-based fuzzy clustering, adaptive neuro-fuzzy network, knowledge representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2617288 Improving the Exploitation of Fluid in Elastomeric Polymeric Isolator
Authors: Haithem Elderrat, Huw Davies, Emmanuel Brousseau
Abstract:
Elastomeric polymer foam has been used widely in the automotive industry, especially for isolating unwanted vibrations. Such material is able to absorb unwanted vibration due to its combination of elastic and viscous properties. However, the ‘creep effect’, poor stress distribution and susceptibility to high temperatures are the main disadvantages of such a system. In this study, improvements in the performance of elastomeric foam as a vibration isolator were investigated using the concept of Foam Filled Fluid (FFFluid). In FFFluid devices, the foam takes the form of capsule shapes, and is mixed with viscous fluid, while the mixture is contained in a closed vessel. When the FFFluid isolator is affected by vibrations, energy is absorbed, due to the elastic strain of the foam. As the foam is compressed, there is also movement of the fluid, which contributes to further energy absorption as the fluid shears. Also, and dependent on the design adopted, the packaging could also attenuate vibration through energy absorption via friction and/or elastic strain. The present study focuses on the advantages of the FFFluid concept over the dry polymeric foam in the role of vibration isolation. This comparative study between the performance of dry foam and the FFFluid was made according to experimental procedures. The paper concludes by evaluating the performance of the FFFluid isolator in the suspension system of a light vehicle. One outcome of this research is that the FFFluid may preferable over elastomer isolators in certain applications, as it enables a reduction in the effects of high temperatures and of ‘creep effects’, thereby increasing the reliability and load distribution. The stiffness coefficient of the system has increased about 60% by using an FFFluid sample. The technology represented by the FFFluid is therefore considered by this research suitable for application in the suspension system of a light vehicle.Keywords: Anti-vibration devices, dry foam, FFFluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897287 Effect of Specimen Thickness on Probability Distribution of Grown Crack Size in Magnesium Alloys
Authors: Seon Soon Choi
Abstract:
The fatigue crack growth is stochastic because of the fatigue behavior having an uncertainty and a randomness. Therefore, it is necessary to determine the probability distribution of a grown crack size at a specific fatigue crack propagation life for maintenance of structure as well as reliability estimation. The essential purpose of this study is to present the good probability distribution fit for the grown crack size at a specified fatigue life in a rolled magnesium alloy under different specimen thickness conditions. Fatigue crack propagation experiments are carried out in laboratory air under three conditions of specimen thickness using AZ31 to investigate a stochastic crack growth behavior. The goodness-of-fit test for probability distribution of a grown crack size under different specimen thickness conditions is performed by Anderson-Darling test. The effect of a specimen thickness on variability of a grown crack size is also investigated.
Keywords: Crack size, Fatigue crack propagation, Magnesium alloys, Probability distribution, Specimen thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854286 Simulation and Workspace Analysis of a Tripod Parallel Manipulator
Authors: A. Arockia Selvakumar, R. Sivaramakrishnan, Srinivasa Karthik.T.V, Valluri Siva Ramakrishna, B.Vinodh.
Abstract:
Industrial robots play a vital role in automation however only little effort are taken for the application of robots in machining work such as Grinding, Cutting, Milling, Drilling, Polishing etc. Robot parallel manipulators have high stiffness, rigidity and accuracy, which cannot be provided by conventional serial robot manipulators. The aim of this paper is to perform the modeling and the workspace analysis of a 3 DOF Parallel Manipulator (3 DOF PM). The 3 DOF PM was modeled and simulated using 'ADAMS'. The concept involved is based on the transformation of motion from a screw joint to a spherical joint through a connecting link. This paper work has been planned to model the Parallel Manipulator (PM) using screw joints for very accurate positioning. A workspace analysis has been done for the determination of work volume of the 3 DOF PM. The position of the spherical joints connected to the moving platform and the circumferential points of the moving platform were considered for finding the workspace. After the simulation, the position of the joints of the moving platform was noted with respect to simulation time and these points were given as input to the 'MATLAB' for getting the work envelope. Then 'AUTOCAD' is used for determining the work volume. The obtained values were compared with analytical approach by using Pappus-Guldinus Theorem. The analysis had been dealt by considering the parameters, link length and radius of the moving platform. From the results it is found that the radius of moving platform is directly proportional to the work volume for a constant link length and the link length is also directly proportional to the work volume, at a constant radius of the moving platform.Keywords: Three Degrees of freedom Parallel Manipulator (3DOF PM), ADAMS, Work volume, MATLAB, AUTOCAD, Pappus- Guldinus Theorem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2995285 Video Super-Resolution Using Classification ANN
Authors: Ming-Hui Cheng, Jyh-Horng Jeng
Abstract:
In this study, a classification-based video super-resolution method using artificial neural network (ANN) is proposed to enhance low-resolution (LR) to high-resolution (HR) frames. The proposed method consists of four main steps: classification, motion-trace volume collection, temporal adjustment, and ANN prediction. A classifier is designed based on the edge properties of a pixel in the LR frame to identify the spatial information. To exploit the spatio-temporal information, a motion-trace volume is collected using motion estimation, which can eliminate unfathomable object motion in the LR frames. In addition, temporal lateral process is employed for volume adjustment to reduce unnecessary temporal features. Finally, ANN is applied to each class to learn the complicated spatio-temporal relationship between LR and HR frames. Simulation results show that the proposed method successfully improves both peak signal-to-noise ratio and perceptual quality.
Keywords: Super-resolution, classification, spatio-temporal information, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805