Search results for: resource and task allocation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1712

Search results for: resource and task allocation

662 An Algorithm for an Optimal Staffing Problem in Open Shop Environment

Authors: Daniela I. Borissova, Ivan C. Mustakerov

Abstract:

The paper addresses a problem of optimal staffing in open shop environment. The problem is to determine the optimal number of operators serving a given number of machines to fulfill the number of independent operations while minimizing staff idle. Using a Gantt chart presentation of the problem it is modeled as twodimensional cutting stock problem. A mixed-integer programming model is used to get minimal job processing time (makespan) for fixed number of machines' operators. An algorithm for optimal openshop staffing is developed based on iterative solving of the formulated optimization task. The execution of the developed algorithm provides optimal number of machines' operators in the sense of minimum staff idle and optimal makespan for that number of operators. The proposed algorithm is tested numerically for a real life staffing problem. The testing results show the practical applicability for similar open shop staffing problems.

Keywords: Integer programming, open shop problem, optimal staffing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3320
661 Evaluation of Robust Feature Descriptors for Texture Classification

Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo

Abstract:

Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.

Keywords: Texture classification, texture descriptor, SIFT, SURF, ORB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
660 A Hybrid Gene Selection Technique Using Improved Mutual Information and Fisher Score for Cancer Classification Using Microarrays

Authors: M. Anidha, K. Premalatha

Abstract:

Feature Selection is significant in order to perform constructive classification in the area of cancer diagnosis. However, a large number of features compared to the number of samples makes the task of classification computationally very hard and prone to errors in microarray gene expression datasets. In this paper, we present an innovative method for selecting highly informative gene subsets of gene expression data that effectively classifies the cancer data into tumorous and non-tumorous. The hybrid gene selection technique comprises of combined Mutual Information and Fisher score to select informative genes. The gene selection is validated by classification using Support Vector Machine (SVM) which is a supervised learning algorithm capable of solving complex classification problems. The results obtained from improved Mutual Information and F-Score with SVM as a classifier has produced efficient results.

Keywords: Gene selection, mutual information, Fisher score, classification, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
659 Design of Reconfigurable Supernumerary Robotic Limb Based on Differential Actuated Joints

Authors: Qinghua Zhang, Yanhe Zhu, Xiang Zhao, Yeqin Yang, Hongwei Jing, Guoan Zhang, Jie Zhao

Abstract:

This paper presents a wearable reconfigurable supernumerary robotic limb with differential actuated joints, which is lightweight, compact and comfortable for the wearers. Compared to the existing supernumerary robotic limbs which mostly adopted series structure with large movement space but poor carrying capacity, a prototype with the series-parallel configuration to better adapt to different task requirements has been developed in this design. To achieve a compact structure, two kinds of cable-driven mechanical structures based on guide pulleys and differential actuated joints were designed. Moreover, two different tension devices were also designed to ensure the reliability and accuracy of the cable-driven transmission. The proposed device also employed self-designed bearings which greatly simplified the structure and reduced the cost.

Keywords: Cable-driven, differential actuated joints, reconfigurable, supernumerary robotic limb.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1011
658 Triadic Relationship of Icon Design for Semi-Literate Communities

Authors: Peng-Hui Maffee Wan, Klarissa Ting Ting Chang, Rax Suen Chun Lung

Abstract:

Icons, or pictorial and graphical objects, are commonly used in human-computer interaction (HCI) fields as the mediator in order to communicate information to users. Yet there has been little studies focusing on a majority of the world’s population – semi-literate communities – in terms of the fundamental knowhow for designing icons for such population. In this study, two sets of icons belonging in different icon taxonomy – abstract and concrete – are designed for a mobile application for semi-literate agricultural communities. In this paper, we propose a triadic relationship of an icon, namely meaning, task and mental image, which inherits the triadic relationship of a sign. User testing with the application and a post-pilot questionnaire are conducted as the experimental approach in two rural villages in India. Icons belonging to concrete taxonomy perform better than abstract icons on the premise that the design of the icon fulfills the underlying rules of the proposed triadic relationship.

Keywords: Icon, GUI, mobile app, semi-literate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
657 Modelling of Multi-Agent Systems for the Scheduling of Multi-EV Charging from Power Limited Sources

Authors: Manan’Iarivo Rasolonjanahary, Chris Bingham, Nigel Schofield, Masoud Bazargan

Abstract:

This paper presents the research and application of model predictive scheduled charging of electric vehicles (EV) subject to limited available power resource. To focus on algorithm and operational characteristics, the EV interface to the source is modelled as a battery state equation during the charging operation. The researched methods allow for the priority scheduling of EV charging in a multi-vehicle regime and when subject to limited source power availability. Priority attribution for each connected EV is described. The validity of the developed methodology is shown through the simulation of different scenarios of charging operation of multiple connected EVs including non-scheduled and scheduled operation with various numbers of vehicles. Performance of the developed algorithms is also reported with the recommendation of the choice of suitable parameters.

Keywords: Model predictive control, non-scheduled, power limited sources, scheduled and stop-start battery charging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 512
656 Generating High-Accuracy Tool Path for 5-axis Flank Milling of Globoidal Spatial Cam

Authors: Li Chen, ZhouLong Li, Qing-zhen Bi, LiMin Zhu

Abstract:

A new tool path planning method for 5-axis flank milling of a globoidal indexing cam is developed in this paper. The globoidal indexing cam is a practical transmission mechanism due to its high transmission speed, accuracy and dynamic performance. Machining the cam profile is a complex and precise task. The profile surface of the globoidal cam is generated by the conjugate contact motion of the roller. The generated complex profile surface is usually machined by 5-axis point-milling method. The point-milling method is time-consuming compared with flank milling. The tool path for 5-axis flank milling of globoidal cam is developed to improve the cutting efficiency. The flank milling tool path is globally optimized according to the minimum zone criterion, and high accuracy is guaranteed. The computational example and cutting simulation finally validate the developed method.

Keywords: Globoidal cam, flank milling, LSQR, MINIMAX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2279
655 Multi-Sensor Target Tracking Using Ensemble Learning

Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana

Abstract:

Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfil requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.

Keywords: Single classifier, machine learning, ensemble learning, multi-sensor target tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 598
654 Reducing Power Consumption in Cloud Platforms using an Effective Mechanism

Authors: Shuen-Tai Wang, Chin-Hung Li, Ying-Chuan Chen

Abstract:

In recent years there has been renewal of interest in the relation between Green IT and Cloud Computing. The growing use of computers in cloud platform has caused marked energy consumption, putting negative pressure on electricity cost of cloud data center. This paper proposes an effective mechanism to reduce energy utilization in cloud computing environments. We present initial work on the integration of resource and power management that aims at reducing power consumption. Our mechanism relies on recalling virtualization services dynamically according to user-s virtualization request and temporarily shutting down the physical machines after finish in order to conserve energy. Given the estimated energy consumption, this proposed effort has the potential to positively impact power consumption. The results from the experiment concluded that energy indeed can be saved by powering off the idling physical machines in cloud platforms.

Keywords: Green IT, Cloud Computing, virtualization, power consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157
653 Synthetic Daily Flow Duration Curves for the Çoruh River Basin, Turkey

Authors: Fatih Tosunoğlu, İbrahim Can

Abstract:

The flow duration curve (FDC) is an informative method that represents the flow regime’s properties for a river basin. Therefore, the FDC is widely used for water resource projects such as hydropower, water supply, irrigation and water quality management. The primary purpose of this study is to obtain synthetic daily flow duration curves for Çoruh Basin, Turkey. For this aim, we firstly developed univariate auto-regressive moving average (ARMA) models for daily flows of 9 stations located in Çoruh basin and then these models were used to generate 100 synthetic flow series each having same size as historical series. Secondly, flow duration curves of each synthetic series were drawn and the flow values exceeded 10, 50 and 95% of the time and 95% confidence limit of these flows were calculated. As a result, flood, mean and low flows potential of Çoruh basin will comprehensively be represented.

Keywords: ARMA models, Çoruh basin, flow duration curve, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3791
652 Physiological Effects on Scientist Astronaut Candidates: Hypobaric Training Assessment

Authors: Pedro Llanos, Diego García

Abstract:

This paper is addressed to expanding our understanding of the effects of hypoxia training on our bodies to better model its dynamics and leverage some of its implications and effects on human health. Hypoxia training is a recommended practice for military and civilian pilots that allow them to recognize their early hypoxia signs and symptoms, and Scientist Astronaut Candidates (SACs) who underwent hypobaric hypoxia (HH) exposure as part of a training activity for prospective suborbital flight applications. This observational-analytical study describes physiologic responses and symptoms experienced by a SAC group before, during and after HH exposure and proposes a model for assessing predicted versus observed physiological responses. A group of individuals with diverse Science Technology Engineering Mathematics (STEM) backgrounds conducted a hypobaric training session to an altitude up to 22,000 ft (FL220) or 6,705 meters, where heart rate (HR), breathing rate (BR) and core temperature (Tc) were monitored with the use of a chest strap sensor pre and post HH exposure. A pulse oximeter registered levels of saturation of oxygen (SpO2), number and duration of desaturations during the HH chamber flight. Hypoxia symptoms as described by the SACs during the HH training session were also registered. This data allowed to generate a preliminary predictive model of the oxygen desaturation and O2 pressure curve for each subject, which consists of a sixth-order polynomial fit during exposure, and a fifth or fourth-order polynomial fit during recovery. Data analysis showed that HR and BR showed no significant differences between pre and post HH exposure in most of the SACs, while Tc measures showed slight but consistent decrement changes. All subjects registered SpO2 greater than 94% for the majority of their individual HH exposures, but all of them presented at least one clinically significant desaturation (SpO2 < 85% for more than 5 seconds) and half of the individuals showed SpO2 below 87% for at least 30% of their HH exposure time. Finally, real time collection of HH symptoms presented temperature somatosensory perceptions (SP) for 65% of individuals, and task-focus issues for 52.5% of individuals as the most common HH indications. 95% of the subjects experienced HH onset symptoms below FL180; all participants achieved full recovery of HH symptoms within 1 minute of donning their O2 mask. The current HH study performed on this group of individuals suggests a rapid and fully reversible physiologic response after HH exposure as expected and obtained in previous studies. Our data showed consistent results between predicted versus observed SpO2 curves during HH suggesting a mathematical function that may be used to model HH performance deficiencies. During the HH study, real-time HH symptoms were registered providing evidenced SP and task focusing as the earliest and most common indicators. Finally, an assessment of HH signs of symptoms in a group of heterogeneous, non-pilot individuals showed similar results to previous studies in homogeneous populations of pilots.

Keywords: Altitude sickness, cabin pressure, hypobaric chamber training, symptoms and altitude, slow onset hypoxia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 416
651 A Distributed Weighted Cluster Based Routing Protocol for Manets

Authors: Naveen Chauhan, L.K. Awasthi, Narottam chand, Vivek Katiyar, Ankit Chug

Abstract:

Mobile ad-hoc networks (MANETs) are a form of wireless networks which do not require a base station for providing network connectivity. Mobile ad-hoc networks have many characteristics which distinguish them from other wireless networks which make routing in such networks a challenging task. Cluster based routing is one of the routing schemes for MANETs in which various clusters of mobile nodes are formed with each cluster having its own clusterhead which is responsible for routing among clusters. In this paper we have proposed and implemented a distributed weighted clustering algorithm for MANETs. This approach is based on combined weight metric that takes into account several system parameters like the node degree, transmission range, energy and mobility of the nodes. We have evaluated the performance of proposed scheme through simulation in various network situations. Simulation results show that proposed scheme outperforms the original distributed weighted clustering algorithm (DWCA).

Keywords: MANETs, Clustering, Routing, WirelessCommunication, Distributed Clustering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
650 Design of Gravity Dam by Genetic Algorithms

Authors: Farzin Salmasi

Abstract:

The design of a gravity dam is performed through an interactive process involving a preliminary layout of the structure followed by a stability and stress analysis. This study presents a method to define the optimal top width of gravity dam with genetic algorithm. To solve the optimization task (minimize the cost of the dam), an optimization routine based on genetic algorithms (GAs) was implemented into an Excel spreadsheet. It was found to perform well and GA parameters were optimized in a parametric study. Using the parameters found in the parametric study, the top width of gravity dam optimization was performed and compared to a gradient-based optimization method (classic method). The accuracy of the results was within close proximity. In optimum dam cross section, the ratio of is dam base to dam height is almost equal to 0.85, and ratio of dam top width to dam height is almost equal to 0.13. The computerized methodology may provide the help for computation of the optimal top width for a wide range of height of a gravity dam.

Keywords: Chromosomes, dam, genetic algorithm, globaloptimum, preliminary layout, stress analysis, theoretical profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4333
649 The Use of Scuba Diving Tourism for Marine Protected Area Management

Authors: L. Mota, O. Frausto

Abstract:

Marine Protected Areas can benefit from nature based tourism, monitoring environmental impacts and also become target for human presence. From more than 3 million tourists visiting Cozumel Island every year, an average of 2,8 million arrive by cruise ship, and 41% are estimated to have motivation for water activities. The destination is relying so much on the tourism activity, that scuba diving and snorkeling in the National Park Reef of Cozumel sustain the major economic activity. In order to achieve the sustainable development indicator designed for regional environmental development, the PNAC offers a training course to tourism providers to access the protected area. This way, the update of the last 5 years of such training is directed to diving staff, boat crew and professionals, making them able to assist in managing the natural resource. Moreover, the case study is an example to be used for raising awareness among tourists visiting protected areas.

Keywords: Education, Marine Protected Area, scuba diving, sustainability, tourism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531
648 Power Distance and Knowledge Management from a Post-Taylorist Perspective

Authors: John Walton, Vishal Parikh

Abstract:

Contact centres have been exemplars of scientific management in the discipline of operations management for more than a decade now. With the movement of industries from a resource based economy to knowledge based economy businesses have started to realize the customer eccentricity being the key to sustainability amidst high velocity of the market. However, as technologies have converged and advanced, so have the contact centres. Contact Centres have redirected the supply chains and the concept of retailing is highly diminished due to over exaggeration of cost reduction strategies. In conditions of high environmental velocity together with services featuring considerable information intensity contact centres will require up to date and enlightened agents to satisfy the demands placed upon them by those requesting their services. In this paper we examine salient factors such as Power Distance, Knowledge structures and the dynamics of job specialisation and enlargement to suggest critical success factors in the domain of contact centres.

Keywords: Post Taylorism, Knowledge Management, Power Distance, Organisational Learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
647 High Performance in Parallel Data Integration: An Empirical Evaluation of the Ratio Between Processing Time and Number of Physical Nodes

Authors: Caspar von Seckendorff, Eldar Sultanow

Abstract:

Many studies have shown that parallelization decreases efficiency [1], [2]. There are many reasons for these decrements. This paper investigates those which appear in the context of parallel data integration. Integration processes generally cannot be allocated to packages of identical size (i. e. tasks of identical complexity). The reason for this is unknown heterogeneous input data which result in variable task lengths. Process delay is defined by the slowest processing node. It leads to a detrimental effect on the total processing time. With a real world example, this study will show that while process delay does initially increase with the introduction of more nodes it ultimately decreases again after a certain point. The example will make use of the cloud computing platform Hadoop and be run inside Amazon-s EC2 compute cloud. A stochastic model will be set up which can explain this effect.

Keywords: Process delay, speedup, efficiency, parallel computing, data integration, E-Commerce, Amazon Elastic Compute Cloud (EC2), Hadoop, Nutch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
646 3A Distributed Method Algorithm for Exact Side Load Managing Smart Grid Using LABVIEW

Authors: N. Ravi Kumar, R. Kamalakannan

Abstract:

The advancement of hybrid energy resources such as solar and wind power leading to the emergence of customer owned grid. It provides an opportunity to regulars to obtain low energy costs as well as enabling the power supplier to regulate the utility grid. There is a need to develop smart systems that will automatically submit energy demand schedule and monitors energy price signals in real-time without the prompt of customers. In this paper, a demand side energy management for a grid connected household and also smart preparation of electrical appliance have been presented. It also reduces electricity bill for the consumers in the grid. In addition to this, when production is high, the surplus energy fashioned in the customer owned grid is given to main grid or neighboring micro grids. The simulation of the entire system is presented using LabVIEW software.

Keywords: Distributed renewable energy resource, power storage devices, scheduling, smart meters, smart micro grid, electric vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1093
645 Self-Supervised Pretraining on Paired Sequences of fMRI Data for Transfer Learning to Brain Decoding Tasks

Authors: Sean Paulsen, Michael Casey

Abstract:

In this work, we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.

Keywords: Transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151
644 Performance Analysis of the First-Order Characteristics of Polling Systems Based on Parallel Limited (k = 1) Services Mode

Authors: Liu Yi, Bao Liyong

Abstract:

Aiming at the problem of low efficiency of pipelined scheduling in periodic query-qualified service, this paper proposes a system service resource scheduling strategy with parallel optimized qualified service polling control. The paper constructs the polling queuing system and its mathematical model; firstly, the first-order and second-order characteristic parameter equations are obtained by partial derivation of the probability mother function of the system state variables, and the complete mathematical, analytical expressions of each system parameter are deduced after the joint solution. The simulation experimental results are consistent with the theoretical calculated values. The system performance analysis shows that the average captain and average period of the system have been greatly improved, which can better adapt to the service demand of delay-sensitive data in the dense data environment.

Keywords: Polling, parallel scheduling, mean queue length, average cycle time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61
643 A Timed and Colored Petri Nets for Modeling and Verifying Cloud System Elasticity

Authors: W. Louhichi, M.Berrima, N. Ben Rajeb Robbana

Abstract:

Elasticity is the essential property of cloud computing. As the name suggests, it constitutes the ability of a cloud system to adjust resource provisioning in relation to fluctuating workloads. There are two types of elasticity operations, vertical and horizontal. In this work, we are interested in horizontal scaling, which is ensured by two mechanisms; scaling in and scaling out. Following the sizing of the system, we can adopt scaling in the event of over-supply and scaling out in the event of under-supply. In this paper, we propose a formal model, based on temporized and colored Petri nets (TdCPNs), for the modeling of the duplication and the removal of a virtual machine from a server. This model is based on formal Petri Nets (PNs) modeling language. The proposed models are edited, verified, and simulated with two examples implemented in colored Petri nets (CPNs)tools, which is a modeling tool for colored and timed PNs.

Keywords: Cloud computing, elasticity, elasticity controller, petri nets, scaling in, scaling out.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 646
642 On Speeding Up Support Vector Machines: Proximity Graphs Versus Random Sampling for Pre-Selection Condensation

Authors: Xiaohua Liu, Juan F. Beltran, Nishant Mohanchandra, Godfried T. Toussaint

Abstract:

Support vector machines (SVMs) are considered to be the best machine learning algorithms for minimizing the predictive probability of misclassification. However, their drawback is that for large data sets the computation of the optimal decision boundary is a time consuming function of the size of the training set. Hence several methods have been proposed to speed up the SVM algorithm. Here three methods used to speed up the computation of the SVM classifiers are compared experimentally using a musical genre classification problem. The simplest method pre-selects a random sample of the data before the application of the SVM algorithm. Two additional methods use proximity graphs to pre-select data that are near the decision boundary. One uses k-Nearest Neighbor graphs and the other Relative Neighborhood Graphs to accomplish the task.

Keywords: Machine learning, data mining, support vector machines, proximity graphs, relative-neighborhood graphs, k-nearestneighbor graphs, random sampling, training data condensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
641 Recovery of Post-Consumer PET Bottles in a Composite Material Preparation

Authors: Rafenomananjara Tsinjo Nirina, Tomoo Sekito, Andrianaivoravelona Jaconnet Oliva

Abstract:

Manufacturing a composite material from post-consumer bottles is an interesting outlet since Madagascar is still facing the challenges of managing plastic waste on the one hand and appropriate waste treatment facilities are not yet developed on the other hand. New waste management options are needed to divert End-Of-Life (EOL) soft plastic wastes from landfills and incineration. Waste polyethylene terephthalate (PET) bottles might be considered as a valuable resource and recovered into polymer concrete. The methodology is easy to implement and appropriate to the local context in Madagascar. This approach will contribute to the production of ecological building materials that might be profitable for the environment and the construction sector. This work aims to study the feasibility of using the post-consumer PET bottles as an alternative binding agent instead of the conventional Portland cement and water. Then, the mechanical and physical properties of the materials were evaluated.

Keywords: PET recycling, polymer concrete, ecological building materials, pollution mitigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 955
640 Public Transport Prospective of People with Reduced Mobility in Hungary

Authors: Veronika Kántor-Forgách

Abstract:

To comply with the international human right legislation concerning the freedom of movement, transport systems are required to be made accessible in order that all citizens, regardless of their physical condition, have equal possibilities to use them. In Hungary, apparently there is a considerable default in the improvement of accessible public transport. This study is aiming to overview the current Hungarian situation and to reveal the reasons of the deficiency. The result shows that in spite of the relatively favourable juridical background linked to the accessibility needs and to the rights of persons with disabilities there is a strong delay in putting all in practice in the field of public transport. Its main reason is the lack of financial resource and referring to this the lack of creating mandatory regulations. In addition to this the proprietary rights related to public transport are also variable, which also limits the improvement possibilities. Consequently, first of all an accurate and detailed regulatory procedure is expected to change the present unfavourable situation and to create the conditions of the fast realization, which is already behind time.

Keywords: accessibility, legislation, people with reducedmobility, public transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354
639 A Comparative Study of the Effectiveness of Trained Inspectors in Different Workloads between Feed Forward and Feedback Training

Authors: Sittichai K., Anucha W., Phonsak L.

Abstract:

Objective of this study was to study and compare the effectiveness of inspectors who had different workloads for feed forward and feedback training. The visual search task was simulated to search for specified alphabets called defects. These defects were included of four alphabets in Thai and English such as s ภ, ถ, X, and V with different background. These defects were combined in the specified alphabets and were given the different three backgrounds i.e., Thai, English, and mixed English and Thai alphabets. Sixty students were chosen as a sample in this study and test for final selection subject. Finally, five subjects were taken into testing process. They were asked to search for defects after they were provided basic information. Experiment design was used factorial design and subjects were trained for feed forward and the feedback training. The results show that both trainings were affected on mean search time. It was also found that the feedback training can increase the effectiveness of visual inspectors rather than the feed forward training significantly different at the level of .05

Keywords: visual search, feed forward, feedback training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156
638 Input Textural Feature Selection By Mutual Information For Multispectral Image Classification

Authors: Mounir Ait kerroum, Ahmed Hammouch, Driss Aboutajdine

Abstract:

Texture information plays increasingly an important role in remotely sensed imagery classification and many pattern recognition applications. However, the selection of relevant textural features to improve this classification accuracy is not a straightforward task. This work investigates the effectiveness of two Mutual Information Feature Selector (MIFS) algorithms to select salient textural features that contain highly discriminatory information for multispectral imagery classification. The input candidate features are extracted from a SPOT High Resolution Visible(HRV) image using Wavelet Transform (WT) at levels (l = 1,2). The experimental results show that the selected textural features according to MIFS algorithms make the largest contribution to improve the classification accuracy than classical approaches such as Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA).

Keywords: Feature Selection, Texture, Mutual Information, Wavelet Transform, SVM classification, SPOT Imagery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
637 Optimal Route Policy in Air Traffic Control with Competing Airlines

Authors: Siliang Wang, Minghui Wang

Abstract:

This work proposes a novel market-based air traffic flow control model considering competitive airlines in air traffic network. In the flow model, an agent based framework for resources (link/time pair) pricing is described. Resource agent and auctioneer for groups of resources are also introduced to simulate the flow management in Air Traffic Control (ATC). Secondly, the distributed group pricing algorithm is introduced, which efficiently reflect the competitive nature of the airline industry. Resources in the system are grouped according to the degree of interaction, and each auctioneer adjust s the price of one group of resources respectively until the excess demand of resources becomes zero when the demand and supply of resources of the system changes. Numerical simulation results show the feasibility of solving the air traffic flow control problem using market mechanism and pricing algorithms on the air traffic network.

Keywords: Air traffic control, Nonlinear programming, Marketmechanism, Route policy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
636 Server Virtualization Using User Behavior Model Focus on Provisioning Concept

Authors: D. Prangchumpol

Abstract:

Server provisioning is one of the most attractive topics in virtualization systems. Virtualization is a method of running multiple independent virtual operating systems on a single physical computer. It is a way of maximizing physical resources to maximize the investment in hardware. Additionally, it can help to consolidate servers, improve hardware utilization and reduce the consumption of power and physical space in the data center. However, management of heterogeneous workloads, especially for resource utilization of the server, or so called provisioning becomes a challenge. In this paper, a new concept for managing workloads based on user behavior is presented. The experimental results show that user behaviors are different in each type of service workload and time. Understanding user behaviors may improve the efficiency of management in provisioning concept. This preliminary study may be an approach to improve management of data centers running heterogeneous workloads for provisioning in virtualization system.

Keywords: association rule, provisioning, server virtualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
635 The Current Implementation Status of Manufacturing Control Systems for a Key Manufacturing Industry

Authors: Rajab Abdullah Hokoma

Abstract:

Manufacturing, production and service industries within Libya have struggled with many problems during the past two decades due to many difficulties. These problems have created a negative impact on the productivity and utilization of many industries around the country. This paper studies the implementation levels of the manufacturing control systems known as Manufacturing Resource Planning (MRPII) being adapted within some Libyan industries. A survey methodology has been applied for this research, based on the survey analysis, the results pointed out that the system within these industries has a modest strategy towards most of the areas that are considered as being very crucial in implementing these systems successfully. The findings also show a variation within these implementation levels with a respect to the key-elements that related to MRPII, giving the highest levels in the emphasise on financial data accuracy. The paper has also identified limitations within the investigated manufacturing and managerial areas and has pointed to where senior managers should take immediate actions in order to achieve effective implementation of MRPII within their business area.

Keywords: Control, Industry, Manufacturing, Survey, System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
634 A Comparative Study on Fuzzy and Neuro-Fuzzy Enabled Cluster Based Routing Protocols for Wireless Sensor Networks

Authors: Y. Harold Robinson, E. Golden Julie

Abstract:

Dynamic Routing in Wireless Sensor Networks (WSNs) has played a significant task in research for the recent years. Energy consumption and data delivery in time are the major parameters with the usage of sensor nodes that are significant criteria for these networks. The location of sensor nodes must not be prearranged. Clustering in WSN is a key methodology which is used to enlarge the life-time of a sensor network. It consists of numerous real-time applications. The features of WSNs are minimized the consumption of energy. Soft computing techniques can be included to accomplish improved performance. This paper surveys the modern trends in routing enclose fuzzy logic and Neuro-fuzzy logic based on the clustering techniques and implements a comparative study of the numerous related methodologies.

Keywords: Wireless sensor networks, clustering, fuzzy logic, neuro-fuzzy logic, energy efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 989
633 An MADM Framework toward Hierarchical Production Planning in Hybrid MTS/MTO Environments

Authors: H. Rafiei, M. Rabbani

Abstract:

This paper proposes a new decision making structure to determine the appropriate product delivery strategy for different products in a manufacturing system among make-to-stock, make-toorder, and hybrid strategy. Given product delivery strategies for all products in the manufacturing system, the position of the Order Penetrating Point (OPP) can be located regarding the delivery strategies among which location of OPP in hybrid strategy is a cumbersome task. In this regard, we employ analytic network process, because there are varieties of interrelated driving factors involved in choosing the right location. Moreover, the proposed structure is augmented with fuzzy sets theory in order to cope with the uncertainty of judgments. Finally, applicability of the proposed structure is proven in practice through a real industrial case company. The numerical results demonstrate the efficiency of the proposed decision making structure in order partitioning and OPP location.

Keywords: Hybrid make-to-stock/make-to-order, Multi-attribute decision making, Order partitioning, Order penetration point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223