Search results for: image fusion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1678

Search results for: image fusion

628 Underlying Cognitive Complexity Measure Computation with Combinatorial Rules

Authors: Benjapol Auprasert, Yachai Limpiyakorn

Abstract:

Measuring the complexity of software has been an insoluble problem in software engineering. Complexity measures can be used to predict critical information about testability, reliability, and maintainability of software systems from automatic analysis of the source code. During the past few years, many complexity measures have been invented based on the emerging Cognitive Informatics discipline. These software complexity measures, including cognitive functional size, lend themselves to the approach of the total cognitive weights of basic control structures such as loops and branches. This paper shows that the current existing calculation method can generate different results that are algebraically equivalence. However, analysis of the combinatorial meanings of this calculation method shows significant flaw of the measure, which also explains why it does not satisfy Weyuker's properties. Based on the findings, improvement directions, such as measures fusion, and cumulative variable counting scheme are suggested to enhance the effectiveness of cognitive complexity measures.

Keywords: Cognitive Complexity Measure, Cognitive Weight of Basic Control Structure, Counting Rules, Cumulative Variable Counting Scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
627 An Evaluation of Drivers in Implementing Sustainable Manufacturing in India: Using DEMATEL Approach

Authors: D. Garg, S. Luthra, A. Haleem

Abstract:

Due to growing concern about environmental and social consequences throughout the world, a need has been felt to incorporate sustainability concepts in conventional manufacturing. This paper is an attempt to identify and evaluate drivers in implementing sustainable manufacturing in Indian context. Nine possible drivers for successful implementation of sustainable manufacturing have been identified from extensive review. Further, Decision Making Trial and Evaluation Laboratory (DEMATEL) approach has been utilized to evaluate and categorize these identified drivers for implementing sustainable manufacturing in to the cause and effect groups. Five drivers (Societal Pressure and Public Concerns; Regulations and Government Policies; Top Management Involvement, Commitment and Support; Effective Strategies and Activities towards Socially Responsible Manufacturing and Market Trends) have been categorized into the cause group and four drivers (Holistic View in Manufacturing Systems; Supplier Participation; Building Sustainable culture in Organization; and Corporate Image and Benefits) have been categorized into the effect group. “Societal Pressure and Public Concerns” has been found the most critical driver and “Corporate Image and Benefits” as least critical or the most easily influenced driver to implementing sustainable manufacturing in Indian context. This paper may surely help practitioners in better understanding of these drivers and their priorities towards effective implementation of sustainable manufacturing.

Keywords: Drivers, Decision Making Trial and Evaluation Laboratory (DEMATEL), India, Sustainable Manufacturing (SM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3221
626 Possibilistic Clustering Technique-Based Traffic Light Control for Handling Emergency Vehicle

Authors: F. Titouna, S. Benferhat, K. Aksa, C. Titouna

Abstract:

A traffic light gives security from traffic congestion,reducing the traffic jam, and organizing the traffic flow. Furthermore,increasing congestion level in public road networks is a growingproblem in many countries. Using Intelligent Transportation Systemsto provide emergency vehicles a green light at intersections canreduce driver confusion, reduce conflicts, and improve emergencyresponse times. Nowadays, the technology of wireless sensornetworks can solve many problems and can offer a good managementof the crossroad. In this paper, we develop a new approach based onthe technique of clustering and the graphical possibilistic fusionmodeling. So, the proposed model is elaborated in three phases. Thefirst one consists to decompose the environment into clusters,following by the fusion intra and inter clusters processes. Finally, wewill show some experimental results by simulation that proves theefficiency of our proposed approach.KeywordsTraffic light, Wireless sensor network, Controller,Possibilistic network/Bayesain network.

Keywords: Traffic light, Wireless sensor network, Controller, Possibilistic network/Bayesain network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
625 Low Resolution Face Recognition Using Mixture of Experts

Authors: Fatemeh Behjati Ardakani, Fatemeh Khademian, Abbas Nowzari Dalini, Reza Ebrahimpour

Abstract:

Human activity is a major concern in a wide variety of applications, such as video surveillance, human computer interface and face image database management. Detecting and recognizing faces is a crucial step in these applications. Furthermore, major advancements and initiatives in security applications in the past years have propelled face recognition technology into the spotlight. The performance of existing face recognition systems declines significantly if the resolution of the face image falls below a certain level. This is especially critical in surveillance imagery where often, due to many reasons, only low-resolution video of faces is available. If these low-resolution images are passed to a face recognition system, the performance is usually unacceptable. Hence, resolution plays a key role in face recognition systems. In this paper we introduce a new low resolution face recognition system based on mixture of expert neural networks. In order to produce the low resolution input images we down-sampled the 48 × 48 ORL images to 12 × 12 ones using the nearest neighbor interpolation method and after that applying the bicubic interpolation method yields enhanced images which is given to the Principal Component Analysis feature extractor system. Comparison with some of the most related methods indicates that the proposed novel model yields excellent recognition rate in low resolution face recognition that is the recognition rate of 100% for the training set and 96.5% for the test set.

Keywords: Low resolution face recognition, Multilayered neuralnetwork, Mixture of experts neural network, Principal componentanalysis, Bicubic interpolation, Nearest neighbor interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
624 Development of a Basic Robot System for Medical and Nursing Care for Patients with Glaucoma

Authors: Naoto Suzuki

Abstract:

Medical methods to completely treat glaucoma are yet to be developed. Therefore, ophthalmologists manage patients mainly to delay disease progression. Patients with glaucoma are mainly elderly individuals. In elderly people's houses, having an equipment that can provide medical treatment and care can release their family from their care. For elderly people with the glaucoma to live by themselves as much as possible, we developed a support robot having five functions: elderly people care, ophthalmological examination, trip assistance to the neighborhood, medical treatment, and data referral to a hospital. The medical and nursing care robot should approach the visual field that the patients can see at a speed suitable for their eyesight. This is because the robot will be dangerous if it approaches the patients from the visual field that they cannot see. We experimentally developed a robot that brings a white cane to elderly people with glaucoma. The base part of the robot is a carriage, which is a Megarover 1.1, and it has two infrared sensors. The robot moves along a white line on the floor using the infrared sensors and has a special arm, which does not use electricity. The arm can scoop the block attached to the white cane. Next, we also developed a direction detector comprised of a charge-coupled device camera (SVR41ResucueHD; Sun Mechatronics), goggles (MG-277MLF; Midori Anzen Co. Ltd.), and biconvex lenses with a focal length of 25 mm (Edmund Co.). Some young people were photographed using the direction detector, which was put on their faces. Image processing was performed using Scilab 6.1.0 and Image Processing and Computer Vision Toolbox 4.1.2. To measure the people's line of vision, we calculated the iris's center of gravity using five processes: reduction, trimming, binarization or gray scale, edge extraction, and Hough transform. We compared the binarization and gray scale processes in image processing. The binarization process was better than the gray scale process. For edge extraction, we compared five methods: Sobel, Prewitt, Laplacian of Gaussian, fast Fourier transform, and Canny. The Canny method was the optimal extraction method. We performed the Hough transform to search for the main coordinates from the iris's edge, and we found that the Hough transform could calculate the center point of the iris.

Keywords: Glaucoma, support robot, elderly people, Hough transform, direction detector, line of vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 553
623 A Study on Early Prediction of Fault Proneness in Software Modules using Genetic Algorithm

Authors: Parvinder S. Sandhu, Sunil Khullar, Satpreet Singh, Simranjit K. Bains, Manpreet Kaur, Gurvinder Singh

Abstract:

Fault-proneness of a software module is the probability that the module contains faults. To predict faultproneness of modules different techniques have been proposed which includes statistical methods, machine learning techniques, neural network techniques and clustering techniques. The aim of proposed study is to explore whether metrics available in the early lifecycle (i.e. requirement metrics), metrics available in the late lifecycle (i.e. code metrics) and metrics available in the early lifecycle (i.e. requirement metrics) combined with metrics available in the late lifecycle (i.e. code metrics) can be used to identify fault prone modules using Genetic Algorithm technique. This approach has been tested with real time defect C Programming language datasets of NASA software projects. The results show that the fusion of requirement and code metric is the best prediction model for detecting the faults as compared with commonly used code based model.

Keywords: Genetic Algorithm, Fault Proneness, Software Faultand Software Quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
622 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars, and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: Remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
621 Machine Learning Approach for Identifying Dementia from MRI Images

Authors: S. K. Aruna, S. Chitra

Abstract:

This research paper presents a framework for classifying Magnetic Resonance Imaging (MRI) images for Dementia. Dementia, an age-related cognitive decline is indicated by degeneration of cortical and sub-cortical structures. Characterizing morphological changes helps understand disease development and contributes to early prediction and prevention of the disease. Modelling, that captures the brain’s structural variability and which is valid in disease classification and interpretation is very challenging. Features are extracted using Gabor filter with 0, 30, 60, 90 orientations and Gray Level Co-occurrence Matrix (GLCM). It is proposed to normalize and fuse the features. Independent Component Analysis (ICA) selects features. Support Vector Machine (SVM) classifier with different kernels is evaluated, for efficiency to classify dementia. This study evaluates the presented framework using MRI images from OASIS dataset for identifying dementia. Results showed that the proposed feature fusion classifier achieves higher classification accuracy.

Keywords: Magnetic resonance imaging, dementia, Gabor filter, gray level co-occurrence matrix, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118
620 Knowledge Reactor: A Contextual Computing Work in Progress for Eldercare

Authors: Scott N. Gerard, Aliza Heching, Susann M. Keohane, Samuel S. Adams

Abstract:

The world-wide population of people over 60 years of age is growing rapidly. The explosion is placing increasingly onerous demands on individual families, multiple industries and entire countries. Current, human-intensive approaches to eldercare are not sustainable, but IoT and AI technologies can help. The Knowledge Reactor (KR) is a contextual, data fusion engine built to address this and other similar problems. It fuses and centralizes IoT and System of Record/Engagement data into a reactive knowledge graph. Cognitive applications and services are constructed with its multiagent architecture. The KR can scale-up and scaledown, because it exploits container-based, horizontally scalable services for graph store (JanusGraph) and pub-sub (Kafka) technologies. While the KR can be applied to many domains that require IoT and AI technologies, this paper describes how the KR specifically supports the challenging domain of cognitive eldercare. Rule- and machine learning-based analytics infer activities of daily living from IoT sensor readings. KR scalability, adaptability, flexibility and usability are demonstrated.

Keywords: Ambient sensing, AI, artificial intelligence, eldercare, IoT, internet of things, knowledge graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1046
619 Topographical Image Transference Compatibility Generated Through Moiré Technique Applying Parametrical Softwares of Computer Assisted Design

Authors: M. V. G. Silva, J. Gazzola, I. M. Dal Fabbro, A. C. L. Lino

Abstract:

Computer aided design accounts with the support of parametric software in the design of machine components as well as of any other pieces of interest. The complexities of the element under study sometimes offer certain difficulties to computer design, or ever might generate mistakes in the final body conception. Reverse engineering techniques are based on the transformation of already conceived body images into a matrix of points which can be visualized by the design software. The literature exhibits several techniques to obtain machine components dimensional fields, as contact instrument (MMC), calipers and optical methods as laser scanner, holograms as well as moiré methods. The objective of this research work was to analyze the moiré technique as instrument of reverse engineering, applied to bodies of nom complex geometry as simple solid figures, creating matrices of points. These matrices were forwarded to a parametric software named SolidWorks to generate the virtual object. Volume data obtained by mechanical means, i.e., by caliper, the volume obtained through the moiré method and the volume generated by the SolidWorks software were compared and found to be in close agreement. This research work suggests the application of phase shifting moiré methods as instrument of reverse engineering, serving also to support farm machinery element designs.

Keywords: Reverse engineering, Moiré technique, three dimensional image generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3459
618 The Effect of Development of Two-Phase Flow Regimes on the Stability of Gas Lift Systems

Authors: Khalid. M. O. Elmabrok, M. L. Burby, G. G. Nasr

Abstract:

Flow instability during gas lift operation is caused by three major phenomena – the density wave oscillation, the casing heading pressure and the flow perturbation within the two-phase flow region. This paper focuses on the causes and the effect of flow instability during gas lift operation and suggests ways to control it in order to maximise productivity during gas lift operations. A laboratory-scale two-phase flow system to study the effects of flow perturbation was designed and built. The apparatus is comprised of a 2 m long by 66 mm ID transparent PVC pipe with air injection point situated at 0.1 m above the base of the pipe. This is the point where stabilised bubbles were visibly clear after injection. Air is injected into the water filled transparent pipe at different flow rates and pressures. The behavior of the different sizes of the bubbles generated within the two-phase region was captured using a digital camera and the images were analysed using the advanced image processing package. It was observed that the average maximum bubbles sizes increased with the increase in the length of the vertical pipe column from 29.72 to 47 mm. The increase in air injection pressure from 0.5 to 3 bars increased the bubble sizes from 29.72 mm to 44.17 mm and then decreasing when the pressure reaches 4 bars. It was observed that at higher bubble velocity of 6.7 m/s, larger diameter bubbles coalesce and burst due to high agitation and collision with each other. This collapse of the bubbles causes pressure drop and reverse flow within two phase flow and is the main cause of the flow instability phenomena.

Keywords: Gas lift instability, bubble forming, bubble collapsing, image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
617 Indian License Plate Detection and Recognition Using Morphological Operation and Template Matching

Authors: W. Devapriya, C. Nelson Kennedy Babu, T. Srihari

Abstract:

Automatic License plate recognition (ALPR) is a technology which recognizes the registration plate or number plate or License plate of a vehicle. In this paper, an Indian vehicle number plate is mined and the characters are predicted in efficient manner. ALPR involves four major technique i) Pre-processing ii) License Plate Location Identification iii) Individual Character Segmentation iv) Character Recognition. The opening phase, named pre-processing helps to remove noises and enhances the quality of the image using the conception of Morphological Operation and Image subtraction. The second phase, the most puzzling stage ascertain the location of license plate using the protocol Canny Edge detection, dilation and erosion. In the third phase, each characters characterized by Connected Component Approach (CCA) and in the ending phase, each segmented characters are conceptualized using cross correlation template matching- a scheme specifically appropriate for fixed format. Major application of ALPR is Tolling collection, Border Control, Parking, Stolen cars, Enforcement, Access Control, Traffic control. The database consists of 500 car images taken under dissimilar lighting condition is used. The efficiency of the system is 97%. Our future focus is Indian Vehicle License Plate Validation (Whether License plate of a vehicle is as per Road transport and highway standard).

Keywords: Automatic License plate recognition, Character recognition, Number plate Recognition, Template matching, morphological operation, canny edge detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2407
616 Energy Efficient Transmission of Image over DWT-OFDM System

Authors: Lakshmi Pujitha Dachuri, Nalini Uppala

Abstract:

In many applications retransmissions of lost packets are not permitted. OFDM is a multi-carrier modulation scheme having excellent performance which allows overlapping in frequency domain. With OFDM there is a simple way of dealing with multipath relatively simple DSP algorithms.

 In this paper, an image frame is compressed using DWT, and the compressed data is arranged in data vectors, each with equal number of coefficients. These vectors are quantized and binary coded to get the bit steams, which are then packetized and intelligently mapped to the OFDM system. Based on one-bit channel state information at the transmitter, the descriptions in order of descending priority are assigned to the currently good channels such that poorer sub-channels can only affect the lesser important data vectors. We consider only one-bit channel state information available at the transmitter, informing only about the sub-channels to be good or bad. For a good sub-channel, instantaneous received power should be greater than a threshold Pth. Otherwise, the sub-channel is in fading state and considered bad for that batch of coefficients. In order to reduce the system power consumption, the mapped descriptions onto the bad sub channels are dropped at the transmitter. The binary channel state information gives an opportunity to map the bit streams intelligently and to save a reasonable amount of power. By using MAT LAB simulation we can analysis the performance of our proposed scheme, in terms of system energy saving without compromising the received quality in terms of peak signal-noise ratio.

Keywords: Binary channel state, Channel state feedback, DWT-OFDM system, Energy saving, Fading broadcast channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2814
615 A Perceptually Optimized Wavelet Embedded Zero Tree Image Coder

Authors: A. Bajit, M. Nahid, A. Tamtaoui, E. H. Bouyakhf

Abstract:

In this paper, we propose a Perceptually Optimized Embedded ZeroTree Image Coder (POEZIC) that introduces a perceptual weighting to wavelet transform coefficients prior to control SPIHT encoding algorithm in order to reach a targeted bit rate with a perceptual quality improvement with respect to the coding quality obtained using the SPIHT algorithm only. The paper also, introduces a new objective quality metric based on a Psychovisual model that integrates the properties of the HVS that plays an important role in our POEZIC quality assessment. Our POEZIC coder is based on a vision model that incorporates various masking effects of human visual system HVS perception. Thus, our coder weights the wavelet coefficients based on that model and attempts to increase the perceptual quality for a given bit rate and observation distance. The perceptual weights for all wavelet subbands are computed based on 1) luminance masking and Contrast masking, 2) the contrast sensitivity function CSF to achieve the perceptual decomposition weighting, 3) the Wavelet Error Sensitivity WES used to reduce the perceptual quantization errors. The new perceptually optimized codec has the same complexity as the original SPIHT techniques. However, the experiments results show that our coder demonstrates very good performance in terms of quality measurement.

Keywords: DWT, linear-phase 9/7 filter, 9/7 Wavelets Error Sensitivity WES, CSF implementation approaches, JND Just Noticeable Difference, Luminance masking, Contrast masking, standard SPIHT, Objective Quality Measure, Probability Score PS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
614 Performance Analysis of Reconstruction Algorithms in Diffuse Optical Tomography

Authors: K. Uma Maheswari, S. Sathiyamoorthy, G. Lakshmi

Abstract:

Diffuse Optical Tomography (DOT) is a non-invasive imaging modality used in clinical diagnosis for earlier detection of carcinoma cells in brain tissue. It is a form of optical tomography which produces gives the reconstructed image of a human soft tissue with by using near-infra-red light. It comprises of two steps called forward model and inverse model. The forward model provides the light propagation in a biological medium. The inverse model uses the scattered light to collect the optical parameters of human tissue. DOT suffers from severe ill-posedness due to its incomplete measurement data. So the accurate analysis of this modality is very complicated. To overcome this problem, optical properties of the soft tissue such as absorption coefficient, scattering coefficient, optical flux are processed by the standard regularization technique called Levenberg - Marquardt regularization. The reconstruction algorithms such as Split Bregman and Gradient projection for sparse reconstruction (GPSR) methods are used to reconstruct the image of a human soft tissue for tumour detection. Among these algorithms, Split Bregman method provides better performance than GPSR algorithm. The parameters such as signal to noise ratio (SNR), contrast to noise ratio (CNR), relative error (RE) and CPU time for reconstructing images are analyzed to get a better performance.

Keywords: Diffuse optical tomography, ill-posedness, Levenberg Marquardt method, Split Bregman, the Gradient projection for sparse reconstruction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
613 Analysis of Aiming Performance for Games Using Mapping Method of Corneal Reflections Based on Two Different Light Sources

Authors: Yoshikazu Onuki, Itsuo Kumazawa

Abstract:

Fundamental motivation of this paper is how gaze estimation can be utilized effectively regarding an application to games. In games, precise estimation is not always important in aiming targets but an ability to move a cursor to an aiming target accurately is also significant. Incidentally, from a game producing point of view, a separate expression of a head movement and gaze movement sometimes becomes advantageous to expressing sense of presence. A case that panning a background image associated with a head movement and moving a cursor according to gaze movement can be a representative example. On the other hand, widely used technique of POG estimation is based on a relative position between a center of corneal reflection of infrared light sources and a center of pupil. However, a calculation of a center of pupil requires relatively complicated image processing, and therefore, a calculation delay is a concern, since to minimize a delay of inputting data is one of the most significant requirements in games. In this paper, a method to estimate a head movement by only using corneal reflections of two infrared light sources in different locations is proposed. Furthermore, a method to control a cursor using gaze movement as well as a head movement is proposed. By using game-like-applications, proposed methods are evaluated and, as a result, a similar performance to conventional methods is confirmed and an aiming control with lower computation power and stressless intuitive operation is obtained.

Keywords: Point-of-gaze, gaze estimation, head movement, corneal reflections, two infrared light sources, game.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
612 A Process of Forming a Single Competitive Factor in the Digital Camera Industry

Authors: Kiyohiro Yamazaki

Abstract:

This paper considers a forming process of a single competitive factor in the digital camera industry from the viewpoint of product platform. To make product development easier for companies and to increase product introduction ratios, development efforts concentrate on improving and strengthening certain product attributes, and it is born in the process that the product platform is formed continuously. It is pointed out that the formation of this product platform raises product development efficiency of individual companies, but on the other hand, it has a trade-off relationship of causing unification of competitive factors in the whole industry. This research tries to analyze product specification data which were collected from the web page of digital camera companies. Specifically, this research collected all product specification data released in Japan from 1995 to 2003 and analyzed the composition of image sensor and optical lens; and it identified product platforms shared by multiple products and discussed their application. As a result, this research found that the product platformation was born in the development of the standard product for major market segmentation. Every major company has made product platforms of image sensors and optical lenses, and as a result, this research found that the competitive factors were unified in the entire industry throughout product platformation. In other words, this product platformation brought product development efficiency of individual firms; however, it also caused industrial competition factors to be unified in the industry.

Keywords: Digital camera industry, product evolution trajectory, product platform, unification of competitive factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 653
611 Automated Video Surveillance System for Detection of Suspicious Activities during Academic Offline Examination

Authors: G. Sandhya Devi, G. Suvarna Kumar, S. Chandini

Abstract:

This research work aims to develop a system that will analyze and identify students who indulge in malpractices/suspicious activities during the course of an academic offline examination. Automated Video Surveillance provides an optimal solution which helps in monitoring the students and identifying the malpractice event immediately. This work is organized into three modules. The first module deals with performing an impersonation check using a PCA-based face recognition method which is done by cross checking his profile with the database. The presence or absence of the student is even determined in this module by implementing an image registration technique wherein a grid is formed by considering all the images registered using the frontal camera at the determined positions. Second, detecting such facial malpractices in which a student gets involved in conversation with another, trying to obtain unauthorized information etc., based on the threshold range evaluated by considering his/her mouth state whether open or closed. The third module deals with identification of unauthorized material or gadgets used in the examination hall by training the positive samples of the object through various stages. Here, a top view camera feed is analyzed to detect the suspicious activities. The system automatically alerts the administration when any suspicious activities are identified, thereby reducing the error rate caused due to manual monitoring. This work is an improvement over our previous work published in identifying suspicious activities done by examinees in an offline examination.

Keywords: Impersonation, image registration, incrimination, object detection, threshold evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
610 Near-Infrared Hyperspectral Imaging Spectroscopy to Detect Microplastics and Pieces of Plastic in Almond Flour

Authors: H. Apaza, L. Chévez, H. Loro

Abstract:

Plastic and microplastic pollution in human food chain is a big problem for human health that requires more elaborated techniques that can identify their presences in different kinds of food. Hyperspectral imaging technique is an optical technique than can detect the presence of different elements in an image and can be used to detect plastics and microplastics in a scene. To do this statistical techniques are required that need to be evaluated and compared in order to find the more efficient ones. In this work, two problems related to the presence of plastics are addressed, the first is to detect and identify pieces of plastic immersed in almond seeds, and the second problem is to detect and quantify microplastic in almond flour. To do this we make use of the analysis hyperspectral images taken in the range of 900 to 1700 nm using 4 unmixing techniques of hyperspectral imaging which are: least squares unmixing (LSU), non-negatively constrained least squares unmixing (NCLSU), fully constrained least squares unmixing (FCLSU), and scaled constrained least squares unmixing (SCLSU). NCLSU, FCLSU, SCLSU techniques manage to find the region where the plastic is found and also manage to quantify the amount of microplastic contained in the almond flour. The SCLSU technique estimated a 13.03% abundance of microplastics and 86.97% of almond flour compared to 16.66% of microplastics and 83.33% abundance of almond flour prepared for the experiment. Results show the feasibility of applying near-infrared hyperspectral image analysis for the detection of plastic contaminants in food.

Keywords: Food, plastic, microplastic, NIR hyperspectral imaging, unmixing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1194
609 EEIA: Energy Efficient Indexed Aggregation in Smart Wireless Sensor Networks

Authors: Mohamed Watfa, William Daher, Hisham Al Azar

Abstract:

The main idea behind in network aggregation is that, rather than sending individual data items from sensors to sinks, multiple data items are aggregated as they are forwarded by the sensor network. Existing sensor network data aggregation techniques assume that the nodes are preprogrammed and send data to a central sink for offline querying and analysis. This approach faces two major drawbacks. First, the system behavior is preprogrammed and cannot be modified on the fly. Second, the increased energy wastage due to the communication overhead will result in decreasing the overall system lifetime. Thus, energy conservation is of prime consideration in sensor network protocols in order to maximize the network-s operational lifetime. In this paper, we give an energy efficient approach to query processing by implementing new optimization techniques applied to in-network aggregation. We first discuss earlier approaches in sensors data management and highlight their disadvantages. We then present our approach “Energy Efficient Indexed Aggregation" (EEIA) and evaluate it through several simulations to prove its efficiency, competence and effectiveness.

Keywords: Sensor Networks, Data Base, Data Fusion, Aggregation, Indexing, Energy Efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
608 Constitutive Equations for Human Saphenous Vein Coronary Artery Bypass Graft

Authors: Hynek Chlup, Lukas Horny, Rudolf Zitny, Svatava Konvickova, Tomas Adamek

Abstract:

Coronary artery bypass grafts (CABG) are widely studied with respect to hemodynamic conditions which play important role in presence of a restenosis. However, papers which concern with constitutive modeling of CABG are lacking in the literature. The purpose of this study is to find a constitutive model for CABG tissue. A sample of the CABG obtained within an autopsy underwent an inflation–extension test. Displacements were recoredered by CCD cameras and subsequently evaluated by digital image correlation. Pressure – radius and axial force – elongation data were used to fit material model. The tissue was modeled as onelayered composite reinforced by two families of helical fibers. The material is assumed to be locally orthotropic, nonlinear, incompressible and hyperelastic. Material parameters are estimated for two strain energy functions (SEF). The first is classical exponential. The second SEF is logarithmic which allows interpretation by means of limiting (finite) strain extensibility. Presented material parameters are estimated by optimization based on radial and axial equilibrium equation in a thick-walled tube. Both material models fit experimental data successfully. The exponential model fits significantly better relationship between axial force and axial strain than logarithmic one.

Keywords: Constitutive model, coronary artery bypass graft, digital image correlation, fiber reinforced composite, inflation test, saphenous vein.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
607 Infrastructure Change Monitoring Using Multitemporal Multispectral Satellite Images

Authors: U. Datta

Abstract:

The main objective of this study is to find a suitable approach to monitor the land infrastructure growth over a period of time using multispectral satellite images. Bi-temporal change detection method is unable to indicate the continuous change occurring over a long period of time. To achieve this objective, the approach used here estimates a statistical model from series of multispectral image data over a long period of time, assuming there is no considerable change during that time period and then compare it with the multispectral image data obtained at a later time. The change is estimated pixel-wise. Statistical composite hypothesis technique is used for estimating pixel based change detection in a defined region. The generalized likelihood ratio test (GLRT) is used to detect the changed pixel from probabilistic estimated model of the corresponding pixel. The changed pixel is detected assuming that the images have been co-registered prior to estimation. To minimize error due to co-registration, 8-neighborhood pixels around the pixel under test are also considered. The multispectral images from Sentinel-2 and Landsat-8 from 2015 to 2018 are used for this purpose. There are different challenges in this method. First and foremost challenge is to get quite a large number of datasets for multivariate distribution modelling. A large number of images are always discarded due to cloud coverage. Due to imperfect modelling there will be high probability of false alarm. Overall conclusion that can be drawn from this work is that the probabilistic method described in this paper has given some promising results, which need to be pursued further.

Keywords: Co-registration, GLRT, infrastructure growth, multispectral, multitemporal, pixel-based change detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734
606 The Effect of the Weld Current Types on Microstructure and Hardness in Tungsten Inert Gas Welding of the AZ31 Magnesium Alloy Sheet

Authors: Bilge Demir, Ahmet Durgutlu, Mustafa Acarer

Abstract:

In this study, the butt welding of the commercial AZ31 magnesium alloy sheets have been carried out by using Tungsten Inert Gas (TIG) welding process with alternative and pulsed current. Welded samples were examined with regards to hardness and microstructure. Despite some recent developments in welding of magnesium alloys, they have some problems such as porosity, hot cracking, oxide formation and so on. Samples of the welded parts have undergone metallographic and mechanical examination. Porosities and homogeneous micron grain oxides were rarely observed. Orientations of the weld microstructure in terms of heat transfer also were rarely observed and equiaxed grain morphology was dominant grain structure as in the base metal. As results, fusion zone and few locations of the HAZ of the welded samples have shown twin’s grains. Hot cracking was not observed for any samples. Weld bead geometry of the welded samples were evaluated as normal according to welding parameters. In the results, conditions of alternative and pulsed current and the samples were compared to each other with regards to microstructure and hardness.

Keywords: AZ31 magnesium alloy, microstructures, micro hardness TIG welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
605 A Perceptually Optimized Foveation Based Wavelet Embedded Zero Tree Image Coding

Authors: A. Bajit, M. Nahid, A. Tamtaoui, E. H. Bouyakhf

Abstract:

In this paper, we propose a Perceptually Optimized Foveation based Embedded ZeroTree Image Coder (POEFIC) that introduces a perceptual weighting to wavelet coefficients prior to control SPIHT encoding algorithm in order to reach a targeted bit rate with a perceptual quality improvement with respect to a given bit rate a fixation point which determines the region of interest ROI. The paper also, introduces a new objective quality metric based on a Psychovisual model that integrates the properties of the HVS that plays an important role in our POEFIC quality assessment. Our POEFIC coder is based on a vision model that incorporates various masking effects of human visual system HVS perception. Thus, our coder weights the wavelet coefficients based on that model and attempts to increase the perceptual quality for a given bit rate and observation distance. The perceptual weights for all wavelet subbands are computed based on 1) foveation masking to remove or reduce considerable high frequencies from peripheral regions 2) luminance and Contrast masking, 3) the contrast sensitivity function CSF to achieve the perceptual decomposition weighting. The new perceptually optimized codec has the same complexity as the original SPIHT techniques. However, the experiments results show that our coder demonstrates very good performance in terms of quality measurement.

Keywords: DWT, linear-phase 9/7 filter, Foveation Filtering, CSF implementation approaches, 9/7 Wavelet JND Thresholds and Wavelet Error Sensitivity WES, Luminance and Contrast masking, standard SPIHT, Objective Quality Measure, Probability Score PS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
604 Effective Dose and Size Specific Dose Estimation with and without Tube Current Modulation for Thoracic Computed Tomography Examinations: A Phantom Study

Authors: S. Gharbi, S. Labidi, M. Mars, M. Chelli, F. Ladeb

Abstract:

The purpose of this study is to reduce radiation dose for chest CT examination by including Tube Current Modulation (TCM) to a standard CT protocol. A scan of an anthropomorphic male Alderson phantom was performed on a 128-slice scanner. The estimation of effective dose (ED) in both scans with and without mAs modulation was done via multiplication of Dose Length Product (DLP) to a conversion factor. Results were compared to those measured with a CT-Expo software. The size specific dose estimation (SSDE) values were obtained by multiplication of the volume CT dose index (CTDIvol) with a conversion size factor related to the phantom’s effective diameter. Objective assessment of image quality was performed with Signal to Noise Ratio (SNR) measurements in phantom. SPSS software was used for data analysis. Results showed including CARE Dose 4D; ED was lowered by 48.35% and 51.51% using DLP and CT-expo, respectively. In addition, ED ranges between 7.01 mSv and 6.6 mSv in case of standard protocol, while it ranges between 3.62 mSv and 3.2 mSv with TCM. Similar results are found for SSDE; dose was higher without TCM of 16.25 mGy and was lower by 48.8% including TCM. The SNR values calculated were significantly different (p=0.03<0.05). The highest one is measured on images acquired with TCM and reconstructed with Filtered back projection (FBP). In conclusion, this study proves the potential of TCM technique in SSDE and ED reduction and in conserving image quality with high diagnostic reference level for thoracic CT examinations.

Keywords: Anthropomorphic phantom, computed tomography, CT-expo, radiation dose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
603 Anti-Homomorphism in Fuzzy Ideals

Authors: K. Chandrasekhara Rao, V. Swaminathan

Abstract:

The anti-homomorphic image of fuzzy ideals, fuzzy ideals of near-rings and anti ideals are discussed in this note. A necessary and sufficient condition has been established for near-ring anti ideal to be characteristic.

Keywords: Fuzzy Ideals, Anti fuzzy subgroup, Anti fuzzy ideals, Anti homomorphism, Lower α level cut.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2313
602 Experimental Correlation for Erythrocyte Aggregation Rate in Population Balance Modeling

Authors: Erfan Niazi, Marianne Fenech

Abstract:

Red Blood Cells (RBCs) or erythrocytes tend to form chain-like aggregates under low shear rate called rouleaux. This is a reversible process and rouleaux disaggregate in high shear rates. Therefore, RBCs aggregation occurs in the microcirculation where low shear rates are present but does not occur under normal physiological conditions in large arteries. Numerical modeling of RBCs interactions is fundamental in analytical models of a blood flow in microcirculation. Population Balance Modeling (PBM) is particularly useful for studying problems where particles agglomerate and break in a two phase flow systems to find flow characteristics. In this method, the elementary particles lose their individual identity due to continuous destructions and recreations by break-up and agglomeration. The aim of this study is to find RBCs aggregation in a dynamic situation. Simplified PBM was used previously to find the aggregation rate on a static observation of the RBCs aggregation in a drop of blood under the microscope. To find aggregation rate in a dynamic situation we propose an experimental set up testing RBCs sedimentation. In this test, RBCs interact and aggregate to form rouleaux. In this configuration, disaggregation can be neglected due to low shear stress. A high-speed camera is used to acquire video-microscopic pictures of the process. The sizes of the aggregates and velocity of sedimentation are extracted using an image processing techniques. Based on the data collection from 5 healthy human blood samples, the aggregation rate was estimated as 2.7x103(±0.3 x103) 1/s.

Keywords: Red blood cell, Rouleaux, microfluidics, image processing, population balance modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060
601 Brand Identity Creation for Thai Halal Brands

Authors: Pibool Waijittragum

Abstract:

The purpose of this paper is to synthesize the research result of brand Identities of Thai Halal brands which related to the way of life for Thai Muslims. The results will be transforming to Thai Halal Brands packaging and label design. The expected benefit is an alternative of marketing strategy for brand building process for Halal products in Thailand. Four elements of marketing strategies which necessary for the brand identity creation is the research framework: consists of Attributes, Benefits, Values and Personality. The research methodology was applied using qualitative and quantitative; 19 marketing experts with dynamic roles in Thai consumer products were interviewed. In addition, a field survey of 122 Thai Muslims selected from 175 Muslim communities in Bangkok was studied. Data analysis will be according to 5 categories of Thai Halal product: 1) Meat 2) Vegetable and Fruits 3) Instant foods and Garnishing ingredient 4) Beverages, Desserts and Snacks 5) Hygienic daily products.

The results will explain some suitable approach for brand Identities of Thai Halal brands as are: 1) Benefit approach as the characteristics of the product with its benefit. The brand identity created transform to the packaging design should be clear and display a fresh product 2) Value approach as the value of products that affect to consumers’ perception. The brand identity created transform to the packaging design should be simply look and using a trustful image 3) Personality approach as the reflection of consumers thought. The brand identity created transform to the packaging design should be sincere, enjoyable, merry, flamboyant look and using a humoristic image.

Keywords: Marketing strategies, Brand identity, Packaging and Label Design, Thai Halal products.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
600 A Spatial Hypergraph Based Semi-Supervised Band Selection Method for Hyperspectral Imagery Semantic Interpretation

Authors: Akrem Sellami, Imed Riadh Farah

Abstract:

Hyperspectral imagery (HSI) typically provides a wealth of information captured in a wide range of the electromagnetic spectrum for each pixel in the image. Hence, a pixel in HSI is a high-dimensional vector of intensities with a large spectral range and a high spectral resolution. Therefore, the semantic interpretation is a challenging task of HSI analysis. We focused in this paper on object classification as HSI semantic interpretation. However, HSI classification still faces some issues, among which are the following: The spatial variability of spectral signatures, the high number of spectral bands, and the high cost of true sample labeling. Therefore, the high number of spectral bands and the low number of training samples pose the problem of the curse of dimensionality. In order to resolve this problem, we propose to introduce the process of dimensionality reduction trying to improve the classification of HSI. The presented approach is a semi-supervised band selection method based on spatial hypergraph embedding model to represent higher order relationships with different weights of the spatial neighbors corresponding to the centroid of pixel. This semi-supervised band selection has been developed to select useful bands for object classification. The presented approach is evaluated on AVIRIS and ROSIS HSIs and compared to other dimensionality reduction methods. The experimental results demonstrate the efficacy of our approach compared to many existing dimensionality reduction methods for HSI classification.

Keywords: Hyperspectral image, spatial hypergraph, dimensionality reduction, semantic interpretation, band selection, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1221
599 Selecting the Best Sub-Region Indexing the Images in the Case of Weak Segmentation Based On Local Color Histograms

Authors: Mawloud Mosbah, Bachir Boucheham

Abstract:

Color Histogram is considered as the oldest method used by CBIR systems for indexing images. In turn, the global histograms do not include the spatial information; this is why the other techniques coming later have attempted to encounter this limitation by involving the segmentation task as a preprocessing step. The weak segmentation is employed by the local histograms while other methods as CCV (Color Coherent Vector) are based on strong segmentation. The indexation based on local histograms consists of splitting the image into N overlapping blocks or sub-regions, and then the histogram of each block is computed. The dissimilarity between two images is reduced, as consequence, to compute the distance between the N local histograms of the both images resulting then in N*N values; generally, the lowest value is taken into account to rank images, that means that the lowest value is that which helps to designate which sub-region utilized to index images of the collection being asked. In this paper, we make under light the local histogram indexation method in the hope to compare the results obtained against those given by the global histogram. We address also another noteworthy issue when Relying on local histograms namely which value, among N*N values, to trust on when comparing images, in other words, which sub-region among the N*N sub-regions on which we base to index images. Based on the results achieved here, it seems that relying on the local histograms, which needs to pose an extra overhead on the system by involving another preprocessing step naming segmentation, does not necessary mean that it produces better results. In addition to that, we have proposed here some ideas to select the local histogram on which we rely on to encode the image rather than relying on the local histogram having lowest distance with the query histograms.

Keywords: CBIR, Color Global Histogram, Color Local Histogram, Weak Segmentation, Euclidean Distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732