Search results for: Equality of P and NP Complexity Classes.
154 Automatic Tuning for a Systemic Model of Banking Originated Losses (SYMBOL) Tool on Multicore
Authors: Ronal Muresano, Andrea Pagano
Abstract:
Nowadays, the mathematical/statistical applications are developed with more complexity and accuracy. However, these precisions and complexities have brought as result that applications need more computational power in order to be executed faster. In this sense, the multicore environments are playing an important role to improve and to optimize the execution time of these applications. These environments allow us the inclusion of more parallelism inside the node. However, to take advantage of this parallelism is not an easy task, because we have to deal with some problems such as: cores communications, data locality, memory sizes (cache and RAM), synchronizations, data dependencies on the model, etc. These issues are becoming more important when we wish to improve the application’s performance and scalability. Hence, this paper describes an optimization method developed for Systemic Model of Banking Originated Losses (SYMBOL) tool developed by the European Commission, which is based on analyzing the application's weakness in order to exploit the advantages of the multicore. All these improvements are done in an automatic and transparent manner with the aim of improving the performance metrics of our tool. Finally, experimental evaluations show the effectiveness of our new optimized version, in which we have achieved a considerable improvement on the execution time. The time has been reduced around 96% for the best case tested, between the original serial version and the automatic parallel version.
Keywords: Algorithm optimization, Bank Failures, OpenMP, Parallel Techniques, Statistical tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901153 Least Square-SVM Detector for Wireless BPSK in Multi-Environmental Noise
Authors: J. P. Dubois, Omar M. Abdul-Latif
Abstract:
Support Vector Machine (SVM) is a statistical learning tool developed to a more complex concept of structural risk minimization (SRM). In this paper, SVM is applied to signal detection in communication systems in the presence of channel noise in various environments in the form of Rayleigh fading, additive white Gaussian background noise (AWGN), and interference noise generalized as additive color Gaussian noise (ACGN). The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these advanced stochastic noise models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to conventional binary signaling optimal model-based detector driven by binary phase shift keying (BPSK) modulation. We show that the SVM performance is superior to that of conventional matched filter-, innovation filter-, and Wiener filter-driven detectors, even in the presence of random Doppler carrier deviation, especially for low SNR (signal-to-noise ratio) ranges. For large SNR, the performance of the SVM was similar to that of the classical detectors. However, the convergence between SVM and maximum likelihood detection occurred at a higher SNR as the noise environment became more hostile.Keywords: Colour noise, Doppler shift, innovation filter, least square-support vector machine, matched filter, Rayleigh fading, Wiener filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813152 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine
Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li
Abstract:
Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.
Keywords: Machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948151 An Algorithm Proposed for FIR Filter Coefficients Representation
Authors: Mohamed Al Mahdi Eshtawie, Masuri Bin Othman
Abstract:
Finite impulse response (FIR) filters have the advantage of linear phase, guaranteed stability, fewer finite precision errors, and efficient implementation. In contrast, they have a major disadvantage of high order need (more coefficients) than IIR counterpart with comparable performance. The high order demand imposes more hardware requirements, arithmetic operations, area usage, and power consumption when designing and fabricating the filter. Therefore, minimizing or reducing these parameters, is a major goal or target in digital filter design task. This paper presents an algorithm proposed for modifying values and the number of non-zero coefficients used to represent the FIR digital pulse shaping filter response. With this algorithm, the FIR filter frequency and phase response can be represented with a minimum number of non-zero coefficients. Therefore, reducing the arithmetic complexity needed to get the filter output. Consequently, the system characteristic i.e. power consumption, area usage, and processing time are also reduced. The proposed algorithm is more powerful when integrated with multiplierless algorithms such as distributed arithmetic (DA) in designing high order digital FIR filters. Here the DA usage eliminates the need for multipliers when implementing the multiply and accumulate unit (MAC) and the proposed algorithm will reduce the number of adders and addition operations needed through the minimization of the non-zero values coefficients to get the filter output.
Keywords: Pulse shaping Filter, Distributed Arithmetic, Optimization algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3175150 Using Genetic Algorithms to Outline Crop Rotations and a Cropping-System Model
Authors: Nicolae Bold, Daniel Nijloveanu
Abstract:
The idea of cropping-system is a method used by farmers. It is an environmentally-friendly method, protecting the natural resources (soil, water, air, nutritive substances) and increase the production at the same time, taking into account some crop particularities. The combination of this powerful method with the concepts of genetic algorithms results into a possibility of generating sequences of crops in order to form a rotation. The usage of this type of algorithms has been efficient in solving problems related to optimization and their polynomial complexity allows them to be used at solving more difficult and various problems. In our case, the optimization consists in finding the most profitable rotation of cultures. One of the expected results is to optimize the usage of the resources, in order to minimize the costs and maximize the profit. In order to achieve these goals, a genetic algorithm was designed. This algorithm ensures the finding of several optimized solutions of cropping-systems possibilities which have the highest profit and, thus, which minimize the costs. The algorithm uses genetic-based methods (mutation, crossover) and structures (genes, chromosomes). A cropping-system possibility will be considered a chromosome and a crop within the rotation is a gene within a chromosome. Results about the efficiency of this method will be presented in a special section. The implementation of this method would bring benefits into the activity of the farmers by giving them hints and helping them to use the resources efficiently.Keywords: Genetic algorithm, chromosomes, genes, cropping, agriculture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602149 Design for Manufacturability and Concurrent Engineering for Product Development
Authors: Alemu Moges Belay
Abstract:
In the 1980s, companies began to feel the effect of three major influences on their product development: newer and innovative technologies, increasing product complexity and larger organizations. And therefore companies were forced to look for new product development methods. This paper tries to focus on the two of new product development methods (DFM and CE). The aim of this paper is to see and analyze different product development methods specifically on Design for Manufacturability and Concurrent Engineering. Companies can achieve and be benefited by minimizing product life cycle, cost and meeting delivery schedule. This paper also presents simplified models that can be modified and used by different companies based on the companies- objective and requirements. Methodologies that are followed to do this research are case studies. Two companies were taken and analysed on the product development process. Historical data, interview were conducted on these companies in addition to that, Survey of literatures and previous research works on similar topics has been done during this research. This paper also tries to show the implementation cost benefit analysis and tries to calculate the implementation time. From this research, it has been found that the two companies did not achieve the delivery time to the customer. Some of most frequently coming products are analyzed and 50% to 80 % of their products are not delivered on time to the customers. The companies are following the traditional way of product development that is sequentially design and production method, which highly affect time to market. In the case study it is found that by implementing these new methods and by forming multi disciplinary team in designing and quality inspection; the company can reduce the workflow steps from 40 to 30.
Keywords: Design for manufacturability, Concurrent Engineering, Time-to-Market, Product development
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5586148 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks
Authors: B. Golchin, N. Riahi
Abstract:
One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.
Keywords: emotion classification, sentiment analysis, social networks, deep neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665147 Delineating Students’ Speaking Anxieties and Assessment Gaps in Online Speech Performances
Authors: Mary Jane B. Suarez
Abstract:
Speech anxiety is innumerable in any traditional communication classes especially for ESL students. The speech anxiety intensifies when communication skills assessments have taken its toll in an online mode of learning due to the perils of the COVID-19 virus. Teachers and students have experienced vast ambiguity on how to realize a still effective way to teach and learn various speaking skills amidst the pandemic. This mixed method study determined the factors that affected the public speaking skills of students in online performances, delineated the assessment gaps in assessing speaking skills in an online setup, and recommended ways to address students’ speech anxieties. Using convergent parallel design, quantitative data were gathered by examining the desired learning competencies of the English course including a review of the teacher’s class record to analyze how students’ performances reflected a significantly high level of anxiety in online speech delivery. Focus group discussion was also conducted for qualitative data describing students’ public speaking anxiety and assessment gaps. Results showed a significantly high level of students’ speech anxiety affected by time constraints, use of technology, lack of audience response, being conscious of making mistakes, and the use of English as a second language. The study presented recommendations to redesign curricular assessments of English teachers and to have a robust diagnosis of students’ speaking anxiety to better cater to the needs of learners in attempt to bridge any gaps in cultivating public speaking skills of students as educational institutions segue from the pandemic to the post-pandemic milieu.
Keywords: Blended learning, communication skills assessment, online speech delivery, public speaking anxiety, speech anxiety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178146 A Modular On-line Profit Sharing Approach in Multiagent Domains
Authors: Pucheng Zhou, Bingrong Hong
Abstract:
How to coordinate the behaviors of the agents through learning is a challenging problem within multi-agent domains. Because of its complexity, recent work has focused on how coordinated strategies can be learned. Here we are interested in using reinforcement learning techniques to learn the coordinated actions of a group of agents, without requiring explicit communication among them. However, traditional reinforcement learning methods are based on the assumption that the environment can be modeled as Markov Decision Process, which usually cannot be satisfied when multiple agents coexist in the same environment. Moreover, to effectively coordinate each agent-s behavior so as to achieve the goal, it-s necessary to augment the state of each agent with the information about other existing agents. Whereas, as the number of agents in a multiagent environment increases, the state space of each agent grows exponentially, which will cause the combinational explosion problem. Profit sharing is one of the reinforcement learning methods that allow agents to learn effective behaviors from their experiences even within non-Markovian environments. In this paper, to remedy the drawback of the original profit sharing approach that needs much memory to store each state-action pair during the learning process, we firstly address a kind of on-line rational profit sharing algorithm. Then, we integrate the advantages of modular learning architecture with on-line rational profit sharing algorithm, and propose a new modular reinforcement learning model. The effectiveness of the technique is demonstrated using the pursuit problem.Keywords: Multi-agent learning; reinforcement learning; rationalprofit sharing; modular architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446145 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils
Authors: Muqdad Al-Juboori, Bithin Datta
Abstract:
Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.Keywords: Artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377144 Visualization and Indexing of Spectral Databases
Authors: Tibor Kulcsar, Gabor Sarossy, Gabor Bereznai, Robert Auer, Janos Abonyi
Abstract:
On-line (near infrared) spectroscopy is widely used to support the operation of complex process systems. Information extracted from spectral database can be used to estimate unmeasured product properties and monitor the operation of the process. These techniques are based on looking for similar spectra by nearest neighborhood algorithms and distance based searching methods. Search for nearest neighbors in the spectral space is an NP-hard problem, the computational complexity increases by the number of points in the discrete spectrum and the number of samples in the database. To reduce the calculation time some kind of indexing could be used. The main idea presented in this paper is to combine indexing and visualization techniques to reduce the computational requirement of estimation algorithms by providing a two dimensional indexing that can also be used to visualize the structure of the spectral database. This 2D visualization of spectral database does not only support application of distance and similarity based techniques but enables the utilization of advanced clustering and prediction algorithms based on the Delaunay tessellation of the mapped spectral space. This means the prediction has not to use the high dimension space but can be based on the mapped space too. The results illustrate that the proposed method is able to segment (cluster) spectral databases and detect outliers that are not suitable for instance based learning algorithms.
Keywords: indexing high dimensional databases, dimensional reduction, clustering, similarity, k-nn algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769143 Hybrid Collaborative-Context Based Recommendations for Civil Affairs Operations
Authors: Patrick Cummings, Laura Cassani, Deirdre Kelliher
Abstract:
In this paper we present findings from a research effort to apply a hybrid collaborative-context approach for a system focused on Marine Corps civil affairs data collection, aggregation, and analysis called the Marine Civil Information Management System (MARCIMS). The goal of this effort is to provide operators with information to make sense of the interconnectedness of entities and relationships in their area of operation and discover existing data to support civil military operations. Our approach to build a recommendation engine was designed to overcome several technical challenges, including 1) ensuring models were robust to the relatively small amount of data collected by the Marine Corps civil affairs community; 2) finding methods to recommend novel data for which there are no interactions captured; and 3) overcoming confirmation bias by ensuring content was recommended that was relevant for the mission despite being obscure or less well known. We solve this by implementing a combination of collective matrix factorization (CMF) and graph-based random walks to provide recommendations to civil military operations users. We also present a method to resolve the challenge of computation complexity inherent from highly connected nodes through a precomputed process.
Keywords: Recommendation engine, collaborative filtering, context based recommendation, graph analysis, coverage, civil affairs operations, Marine Corps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 389142 PAPR Reduction of FBMC Using Sliding Window Tone Reservation Active Constellation Extension Technique
Authors: V. Sandeep Kumar, S. Anuradha
Abstract:
The high Peak to Average Power Ratio (PAR) in Filter Bank Multicarrier with Offset Quadrature Amplitude Modulation (FBMC-OQAM) can significantly reduce power efficiency and performance. In this paper, we address the problem of PAPR reduction for FBMC-OQAM systems using Tone Reservation (TR) technique. Due to the overlapping structure of FBMCOQAM signals, directly applying TR schemes of OFDM systems to FBMC-OQAM systems is not effective. We improve the tone reservation (TR) technique by employing sliding window with Active Constellation Extension for the PAPR reduction of FBMC-OQAM signals, called sliding window tone reservation Active Constellation Extension (SW-TRACE) technique. The proposed SW-TRACE technique uses the peak reduction tones (PRTs) of several consecutive data blocks to cancel the peaks of the FBMC-OQAM signal inside a window, with dynamically extending outer constellation points in active(data-carrying) channels, within margin-preserving constraints, in order to minimize the peak magnitude. Analysis and simulation results compared to the existing Tone Reservation (TR) technique for FBMC/OQAM system. The proposed method SW-TRACE has better PAPR performance and lower computational complexity.
Keywords: FBMC-OQAM, peak-to-average power ratio, sliding window, tone reservation Active Constellation Extension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2839141 Amelioration of Cardiac Arrythmias Classification Performance Using Artificial Neural Network, Adaptive Neuro-Fuzzy and Fuzzy Inference Systems Classifiers
Authors: Alexandre Boum, Salomon Madinatou
Abstract:
This paper aims at bringing a scientific contribution to the cardiac arrhythmia biomedical diagnosis systems; more precisely to the study of the amelioration of cardiac arrhythmia classification performance using artificial neural network, adaptive neuro-fuzzy and fuzzy inference systems classifiers. The purpose of this amelioration is to enable cardiologists to make reliable diagnosis through automatic cardiac arrhythmia analyzes and classifications based on high confidence classifiers. In this study, six classes of the most commonly encountered arrhythmias are considered: the Right Bundle Branch Block, the Left Bundle Branch Block, the Ventricular Extrasystole, the Auricular Extrasystole, the Atrial Fibrillation and the Normal Cardiac rate beat. From the electrocardiogram (ECG) extracted parameters, we constructed a matrix (360x360) serving as an input data sample for the classifiers based on neural networks and a matrix (1x6) for the classifier based on fuzzy logic. By varying three parameters (the quality of the neural network learning, the data size and the quality of the input parameters) the automatic classification permitted us to obtain the following performances: in terms of correct classification rate, 83.6% was obtained using the fuzzy logic based classifier, 99.7% using the neural network based classifier and 99.8% for the adaptive neuro-fuzzy based classifier. These results are based on signals containing at least 360 cardiac cycles. Based on the comparative analysis of the aforementioned three arrhythmia classifiers, the classifiers based on neural networks exhibit a better performance.
Keywords: Adaptive neuro-fuzzy, artificial neural network, cardiac arrythmias, fuzzy inference systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 710140 Comparative Safety Performance Evaluation of Profiled Deck Composite Slab from the Use of Slope-Intercept and Partial Shear Methods
Authors: Izian Abd. Karim, Kachalla Mohammed, Nora Farah A. A. Aziz, Law Teik Hua
Abstract:
The economic use and ease of construction of profiled deck composite slab is marred with the complex and un-economic strength verification required for the serviceability and general safety considerations. Beside these, albeit factors such as shear span length, deck geometries and mechanical frictions greatly influence the longitudinal shear strength, that determines the ultimate strength of profiled deck composite slab, and number of methods available for its determination; partial shear and slope-intercept are the two methods according to Euro-code 4 provision. However, the complexity associated with shear behavior of profiled deck composite slab, the use of these methods in determining the load carrying capacities of such slab yields different and conflicting values. This couple with the time and cost constraint associated with the strength verification is a source of concern that draws more attentions nowadays, the issue is critical. Treating some of these known shear strength influencing factors as random variables, the load carrying capacity violation of profiled deck composite slab from the use of the two-methods defined according to Euro-code 4 are determined using reliability approach, and comparatively studied. The study reveals safety values from the use of m-k method shows good standing compared with that from the partial shear method.Keywords: Composite slab, first order reliability method, longitudinal shear, partial shear connection, slope-intercept.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910139 Composite Coatings of Piezoelectric Quartz Sensors Based on Viscous Sorbents and Casein Micelles
Authors: Anastasiia Shuba, Tatiana Kuchmenko, Umarkhanov Ruslan, Bogdanova Ekaterina
Abstract:
The development of new sensitive coatings for sensors is one of the key directions in the development of sensor technologies. Recently, there has been a trend towards the creation of multicomponent coatings for sensors, which make it possible to increase the sensitivity, and specificity, and improve the performance properties of sensors. When analyzing samples with a complex matrix of biological origin, the inclusion of micelles of bioactive substances (amino and nucleic acids, peptides, proteins) in the composition of the sensor coating can also increase useful analytical information. The purpose of this work is to evaluate the analytical characteristics of composite coatings of piezoelectric quartz sensors based on medium-molecular viscous sorbents with incorporated micellar casein concentrate during the sorption of vapors of volatile organic compounds. The sorption properties of the coatings were studied by piezoelectric quartz microbalance. Macromolecular compounds (dicyclohexyl-18-crown-6, triton X-100, lanolin, micellar casein concentrate) were used as sorbents. Highly volatile organic compounds of various classes (alcohols, acids, aldehydes, esters) and water were selected as test substances. It has been established that composite coatings of sensors with the inclusion of micellar casein are more stable and selective to vapors of highly volatile compounds than to water vapors. The method and technique of forming a composite coating using molecular viscous sorbents does not affect the kinetic features of VOC sorption. When casein micelles are used, the features of kinetic sorption depend on the matrix of the coating.
Keywords: Composite coating, piezoelectric quartz microbalance, sensor, volatile organic compounds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150138 Performing Diagnosis in Building with Partially Valid Heterogeneous Tests
Authors: Houda Najeh, Mahendra Pratap Singh, Stéphane Ploix, Antoine Caucheteux, Karim Chabir, Mohamed Naceur Abdelkrim
Abstract:
Building system is highly vulnerable to different kinds of faults and human misbehaviors. Energy efficiency and user comfort are directly targeted due to abnormalities in building operation. The available fault diagnosis tools and methodologies particularly rely on rules or pure model-based approaches. It is assumed that model or rule-based test could be applied to any situation without taking into account actual testing contexts. Contextual tests with validity domain could reduce a lot of the design of detection tests. The main objective of this paper is to consider fault validity when validate the test model considering the non-modeled events such as occupancy, weather conditions, door and window openings and the integration of the knowledge of the expert on the state of the system. The concept of heterogeneous tests is combined with test validity to generate fault diagnoses. A combination of rules, range and model-based tests known as heterogeneous tests are proposed to reduce the modeling complexity. Calculation of logical diagnoses coming from artificial intelligence provides a global explanation consistent with the test result. An application example shows the efficiency of the proposed technique: an office setting at Grenoble Institute of Technology.Keywords: Heterogeneous tests, validity, building system, sensor grids, sensor fault, diagnosis, fault detection and isolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 652137 Relationship between Personality Traits and Postural Stability among Czech Military Combat Troops
Authors: K. Rusnakova, D. Gerych, M. Stehlik
Abstract:
Postural stability is a complex process involving actions of biomechanical, motor, sensory and central nervous system components. Numerous joint systems, muscles involved, the complexity of sporting movements and situations require perfect coordination of the body's movement patterns. To adapt to a constantly changing situation in such a dynamic environment as physical performance, optimal input of information from visual, vestibular and somatosensory sensors are needed. Combat soldiers are required to perform physically and mentally demanding tasks in adverse conditions, and poor postural stability has been identified as a risk factor for lower extremity musculoskeletal injury. The aim of this study is to investigate whether some personality traits are related to the performance of static postural stability among soldiers of combat troops. NEO personality inventory (NEO-PI-R) was used to identify personality traits and the Nintendo Wii Balance Board was used to assess static postural stability of soldiers. Postural stability performance was assessed by changes in center of pressure (CoP) and center of gravity (CoG). A posturographic test was performed for 60 s with eyes opened during quiet upright standing. The results showed that facets of neuroticism and conscientiousness personality traits were significantly correlated with measured parameters of CoP and CoG. This study can help for better understanding the relationship between personality traits and static postural stability. The results can be used to optimize the training process at the individual level.Keywords: Neuroticism, conscientiousness, postural stability, combat troops.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 512136 Primary School Teachers’ Conceptual and Procedural Knowledge of Rational Number and Its Effects on Pupils’ Achievement in Rational Numbers
Authors: R. M. Kashim
Abstract:
The study investigated primary school teachers’ conceptual and procedural knowledge of rational numbers and its effects on pupil’s achievement in rational numbers. Specifically, primary school teachers’ level of conceptual knowledge about rational numbers, primary school teachers’ level of procedural knowledge about rational numbers, and the effects of teachers conceptual and procedural knowledge on their pupils understanding of rational numbers in primary schools is investigated. The study was carried out in Bauchi metropolis in the Bauchi state of Nigeria. The design of the study was a multi-stage design. The first stage was a descriptive design. The second stage involves a pre-test, post-test only quasi-experimental design. Two instruments were used for the data collection in the study. These were Conceptual and Procedural knowledge test (CPKT) and Rational number achievement test (RAT), the population of the study comprises of three (3) mathematics teachers’ holders of Nigerian Certificate in Education (NCE) teaching primary six and 210 pupils in their intact classes were used for the study. The data collected were analyzed using mean, standard deviation, analysis of variance, analysis of covariance and t- test. The findings indicated that the pupils taught rational number by a teacher that has high conceptual and procedural knowledge understand and perform better than the pupil taught by a teacher who has low conceptual and procedural knowledge of rational number. It is, therefore, recommended that teachers in primary schools should be encouraged to enrich their conceptual knowledge of rational numbers. Also, the superiority performance of teachers in procedural knowledge in rational number should not become an obstruction of understanding. Teachers Conceptual and procedural knowledge of rational numbers should be balanced so that primary school pupils will have a view of better teaching and learning of rational number in our contemporary schools.Keywords: Achievement, conceptual knowledge, procedural knowledge, rational numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886135 Greenhouse Micro Climate Monitoring Based On WSN with Smart Irrigation Technique
Authors: Mahmoud Shaker, Ala'a Imran
Abstract:
Greenhouse is a building, which provides controlled climate conditions to the plants to keep them from external hard conditions. Greenhouse technology gives freedom to the farmer to select any crop type in any time during year. The quality and productivity of plants inside greenhouse is highly dependent on the management quality and a good management scheme is defined by the quality of the information collected from the greenhouse environment. Therefore, Continuous monitoring of environmental variables such as temperature, humidity, and soil moisture gives information to the grower to better understand, how each factor affects growth and how to manage maximal crop productiveness. In this piper, we designed and implemented climate monitoring with irrigation control system based on Wireless Sensor Network (WSN) technology. The designed system is characterized with friendly to use, easy to install by any greenhouse user, multi-sensing nodes, multi-PAN ID, low cast, water irrigation control and low operation complexity. The system consists of two node types (sensing and control) with star topology on one PAN ID. Moreover, greenhouse manager can modifying system parameters such as (sensing node addresses, irrigation upper and lower control limits) by updating corresponding data in SDRAM memory. In addition, the designed system uses 2*16 characters. LCD to display the micro climate parameters values of each plants row inside the greenhouse.
Keywords: ZigBee, WSN, Arduino platform, Greenhouse automation, micro climate monitoring, smart Irrigation control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5162134 Optimal Construction Using Multi-Criteria Decision-Making Methods
Authors: Masood Karamoozian, Zhang Hong
Abstract:
The necessity and complexity of the decision-making process and the interference of the various factors to make decisions and consider all the relevant factors in a problem are very obvious nowadays. Hence, researchers show their interest in multi-criteria decision-making methods. In this research, the Analytical Hierarchy Process (AHP), Simple Additive Weighting (SAW), and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methods of multi-criteria decision-making have been used to solve the problem of optimal construction systems. Systems being evaluated in this problem include; Light Steel Frames (LSF), a case study of designs by Zhang Hong studio in the Southeast University of Nanjing, Insulating Concrete Form (ICF), Ordinary Construction System (OCS), and Precast Concrete System (PRCS) as another case study designs in Zhang Hong studio in the Southeast University of Nanjing. Crowdsourcing was done by using a questionnaire at the sample level (200 people). Questionnaires were distributed among experts in university centers and conferences. According to the results of the research, the use of different methods of decision-making led to relatively the same results. In this way, with the use of all three multi-criteria decision-making methods mentioned above, the PRCS was in the first rank, and the LSF system ranked second. Also, the PRCS, in terms of performance standards and economics, was ranked first, and the LSF system was allocated the first rank in terms of environmental standards.
Keywords: Multi-criteria decision making, AHP, SAW, TOPSIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 253133 Stochastic Risk Analysis Framework for Building Construction Projects
Authors: Abdulkadir Abu Lawal
Abstract:
The study was carried out to establish the probability density function of some selected building construction projects of similar complexity delivered using Bill of Quantities (BQ) and Lump Sum (LS) forms of contract, and to draw a reliability scenario for each form of contract. 30 of such delivered projects are analyzed for each of the contract forms using Weibull Analysis, and their Weibull functions (α, and β) are determined based on their completion times. For the BQ form of contract delivered projects, α is calculated as 1.6737E20 and β as + 0.0115 and for the LS form, α is found to be 5.6556E03 and β is determined as + 0.4535. Using these values, respective probability density functions are calculated and plotted, as handy tool for risk analysis of future projects of similar characteristics. By input of variables from other projects, decision making processes can be made for a whole project or its components using EVM Analysis in project evaluation and review techniques. This framework, as a quantitative approach, depends on the assumption of normality in projects completion time, it can help greatly in determining the completion time probability for veritable projects using any of the contract forms under consideration. Projects aspects that are not amenable to measurement, on the other hand, can be analyzed using fuzzy sets and fuzzy logic. This scenario can be drawn for different types of building construction projects, and using different suitable forms of contract in projects delivery.
Keywords: Building construction, Projects, Forms of contract, Probability density function, Reliability scenario.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782132 Comparison of Two Maintenance Policies for a Two-Unit Series System Considering General Repair
Authors: Seyedvahid Najafi, Viliam Makis
Abstract:
In recent years, maintenance optimization has attracted special attention due to the growth of industrial systems complexity. Maintenance costs are high for many systems, and preventive maintenance is effective when it increases operations' reliability and safety at a reduced cost. The novelty of this research is to consider general repair in the modeling of multi-unit series systems and solve the maintenance problem for such systems using the semi-Markov decision process (SMDP) framework. We propose an opportunistic maintenance policy for a series system composed of two main units. Unit 1, which is more expensive than unit 2, is subjected to condition monitoring, and its deterioration is modeled using a gamma process. Unit 1 hazard rate is estimated by the proportional hazards model (PHM), and two hazard rate control limits are considered as the thresholds of maintenance interventions for unit 1. Maintenance is performed on unit 2, considering an age control limit. The objective is to find the optimal control limits and minimize the long-run expected average cost per unit time. The proposed algorithm is applied to a numerical example to compare the effectiveness of the proposed policy (policy Ⅰ) with policy Ⅱ, which is similar to policy Ⅰ, but instead of general repair, replacement is performed. Results show that policy Ⅰ leads to lower average cost compared with policy Ⅱ.
Keywords: Condition-based maintenance, proportional hazards model, semi-Markov decision process, two-unit series systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 585131 Multi-Objective Evolutionary Computation Based Feature Selection Applied to Behaviour Assessment of Children
Authors: F. Jiménez, R. Jódar, M. Martín, G. Sánchez, G. Sciavicco
Abstract:
Abstract—Attribute or feature selection is one of the basic strategies to improve the performances of data classification tasks, and, at the same time, to reduce the complexity of classifiers, and it is a particularly fundamental one when the number of attributes is relatively high. Its application to unsupervised classification is restricted to a limited number of experiments in the literature. Evolutionary computation has already proven itself to be a very effective choice to consistently reduce the number of attributes towards a better classification rate and a simpler semantic interpretation of the inferred classifiers. We present a feature selection wrapper model composed by a multi-objective evolutionary algorithm, the clustering method Expectation-Maximization (EM), and the classifier C4.5 for the unsupervised classification of data extracted from a psychological test named BASC-II (Behavior Assessment System for Children - II ed.) with two objectives: Maximizing the likelihood of the clustering model and maximizing the accuracy of the obtained classifier. We present a methodology to integrate feature selection for unsupervised classification, model evaluation, decision making (to choose the most satisfactory model according to a a posteriori process in a multi-objective context), and testing. We compare the performance of the classifier obtained by the multi-objective evolutionary algorithms ENORA and NSGA-II, and the best solution is then validated by the psychologists that collected the data.Keywords: Feature selection, multi-objective evolutionary computation, unsupervised classification, behavior assessment system for children.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447130 The Effect of Tool Path Strategy on Surface and Dimension in High Speed Milling
Authors: A. Razavykia, A. Esmaeilzadeh, S. Iranmanesh
Abstract:
Many orthopedic implants like proximal humerus cases require lower surface roughness and almost immediate/short lead time surgery. Thus, rapid response from the manufacturer is very crucial. Tool path strategy of milling process has a direct influence on the surface roughness and lead time of medical implant. High-speed milling as promised process would improve the machined surface quality, but conventional or super-abrasive grinding still required which imposes some drawbacks such as additional costs and time. Currently, many CAD/CAM software offers some different tool path strategies to milling free form surfaces. Nevertheless, the users must identify how to choose the strategies according to cutting tool geometry, geometry complexity, and their effects on the machined surface. This study investigates the effect of different tool path strategies for milling a proximal humerus head during finishing operation on stainless steel 316L. Experiments have been performed using MAHO MH700 S vertical milling machine and four machining strategies, namely, spiral outward, spiral inward, and radial as well as zig-zag. In all cases, the obtained surfaces were analyzed in terms of roughness and dimension accuracy compared with those obtained by simulation. The findings provide evidence that surface roughness, dimensional accuracy, and machining time have been affected by the considered tool path strategy.Keywords: CAD/CAM software, milling, orthopedic implants, tool path strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 996129 Variability of Hydrological Modeling of the Blue Nile
Authors: Abeer Samy, Oliver C. Saavedra Valeriano, Abdelazim Negm
Abstract:
The Blue Nile Basin is the most important tributary of the Nile River. Egypt and Sudan are almost dependent on water originated from the Blue Nile. This multi-dependency creates conflicts among the three countries Egypt, Sudan, and Ethiopia making the management of these conflicts as an international issue. Good assessment of the water resources of the Blue Nile is an important to help in managing such conflicts. Hydrological models are good tool for such assessment. This paper presents a critical review of the nature and variability of the climate and hydrology of the Blue Nile Basin as a first step of using hydrological modeling to assess the water resources of the Blue Nile. Many several attempts are done to develop basin-scale hydrological modeling on the Blue Nile. Lumped and semi distributed models used averages of meteorological inputs and watershed characteristics in hydrological simulation, to analyze runoff for flood control and water resource management. Distributed models include the temporal and spatial variability of catchment conditions and meteorological inputs to allow better representation of the hydrological process. The main challenge of all used models was to assess the water resources of the basin is the shortage of the data needed for models calibration and validation. It is recommended to use distributed model for their higher accuracy to cope with the great variability and complexity of the Blue Nile basin and to collect sufficient data to have more sophisticated and accurate hydrological modeling.
Keywords: Blue Nile Basin, Climate Change, Hydrological Modeling, Watershed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3073128 Small Scale Solar-Photovoltaic and Wind Pump-Storage Hydroelectric System for Remote Residential Applications
Authors: Seshi Reddy Kasu, Florian Misoc
Abstract:
The use of hydroelectric pump-storage system at large scale, MW-size systems, is already widespread around the world. Designed for large scale applications, pump-storage station can be scaled-down for small, remote residential applications. Given the cost and complexity associated with installing a substation further than 100 miles from the main transmission lines, a remote, independent and self-sufficient system is by far the most feasible solution. This article is aiming at the design of wind and solar power generating system, by means of pumped-storage to replace the wind and /or solar power systems with a battery bank energy storage. Wind and solar pumped-storage power generating system can reduce the cost of power generation system, according to the user's electricity load and resource condition and also can ensure system reliability of power supply. Wind and solar pumped-storage power generation system is well suited for remote residential applications with intermittent wind and/or solar energy. This type of power systems, installed in these locations, could be a very good alternative, with economic benefits and positive social effects. The advantage of pumped storage power system, where wind power regulation is calculated, shows that a significant smoothing of the produced power is obtained, resulting in a power-on-demand system’s capability, concomitant to extra economic benefits.Keywords: Battery bank, photo-voltaic, pump-storage, wind energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4121127 Foreign Languages and Employability in the EU
Authors: Paulina Pietrzyk-Kowalec
Abstract:
This paper presents the phenomenon of multilingualism becoming the norm rather than the exception in the European Union. It also seeks to describe the correlation between the command of foreign languages and employability. It is evident that the challenges of today's societies when it comes to employability are more and more complex. Thus, it is one of the crucial tasks of higher education to prepare its students to face this kind of complexity, understand its nuances, and have the capacity to adapt effectively to situations that are common in corporations based in the countries belonging to the EU. From this point of view, the assessment of the impact that the command of foreign languages of European university students could have on the numerous business sectors becomes vital. It also involves raising awareness of future professionals to make them understand the importance of mastering communicative skills in foreign languages that will meet the requirements of students' prospective employers. The direct connection between higher education institutions and the world of business also allows companies to realize that they should rethink their recruitment and human resources procedures in order to take into account the importance of foreign languages. This article focuses on the objective of the multilingualism policy developed by the European Commission, which is to enable young people to master at least two foreign languages, which is crucial in their future careers. The article puts emphasis on the existence of a crucial connection between the research conducted in higher education institutions and the business sector in order to reduce current qualification gaps.
Keywords: Cross-cultural communication, employability, human resources, language attitudes, multilingualism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 396126 Recent Advances in Pulse Width Modulation Techniques and Multilevel Inverters
Authors: Satish Kumar Peddapelli
Abstract:
This paper presents advances in pulse width modulation techniques which refers to a method of carrying information on train of pulses and the information be encoded in the width of pulses. Pulse Width Modulation is used to control the inverter output voltage. This is done by exercising the control within the inverter itself by adjusting the ON and OFF periods of inverter. By fixing the DC input voltage we get AC output voltage. In variable speed AC motors the AC output voltage from a constant DC voltage is obtained by using inverter. Recent developments in power electronics and semiconductor technology have lead improvements in power electronic systems. Hence, different circuit configurations namely multilevel inverters have became popular and considerable interest by researcher are given on them. A fast space-vector pulse width modulation (SVPWM) method for five-level inverter is also discussed. In this method, the space vector diagram of the five-level inverter is decomposed into six space vector diagrams of three-level inverters. In turn, each of these six space vector diagrams of three-level inverter is decomposed into six space vector diagrams of two-level inverters. After decomposition, all the remaining necessary procedures for the three-level SVPWM are done like conventional two-level inverter. The proposed method reduces the algorithm complexity and the execution time. It can be applied to the multilevel inverters above the five-level also. The experimental setup for three-level diode-clamped inverter is developed using TMS320LF2407 DSP controller and the experimental results are analyzed.
Keywords: Five-level inverter, Space vector pulse wide modulation, diode clamped inverter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7770125 On Methodologies for Analysing Sickness Absence Data: An Insight into a New Method
Authors: Xiaoshu Lu, Päivi Leino-Arjas, Kustaa Piha, Akseli Aittomäki, Peppiina Saastamoinen, Ossi Rahkonen, Eero Lahelma
Abstract:
Sickness absence represents a major economic and social issue. Analysis of sick leave data is a recurrent challenge to analysts because of the complexity of the data structure which is often time dependent, highly skewed and clumped at zero. Ignoring these features to make statistical inference is likely to be inefficient and misguided. Traditional approaches do not address these problems. In this study, we discuss model methodologies in terms of statistical techniques for addressing the difficulties with sick leave data. We also introduce and demonstrate a new method by performing a longitudinal assessment of long-term absenteeism using a large registration dataset as a working example available from the Helsinki Health Study for municipal employees from Finland during the period of 1990-1999. We present a comparative study on model selection and a critical analysis of the temporal trends, the occurrence and degree of long-term sickness absences among municipal employees. The strengths of this working example include the large sample size over a long follow-up period providing strong evidence in supporting of the new model. Our main goal is to propose a way to select an appropriate model and to introduce a new methodology for analysing sickness absence data as well as to demonstrate model applicability to complicated longitudinal data.Keywords: Sickness absence, longitudinal data, methodologies, mix-distribution model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2271